Quality of Life Prediction in Driving Scenes on Thailand Roads Using Information Extraction from Deep Convolutional Neural Networks
Abstract
:1. Introduction
2. Literature Review
2.1. Semantic Segmentation
2.1.1. Tiramisu
2.1.2. DeepLab-v3+
2.2. Object Detection
3. Methodology
3.1. Our Framework
3.2. The Public Datasets
3.2.1. The CamVid Dataset
3.2.2. The Bangkok Urbanscapes Dataset
3.3. Our Dataset
3.4. Experimental Configurations
3.4.1. Experimental Configurations for Semantic Segmentation Models
- Intel® XeonTM Silver 4110 Central Processing Unit (8 Cores/16 Threads, up to 2.10 GHz), 128 GB of DDR3 Memory, and two NVIDIA Tesla V100 (32 GB) graphics cards.
- Intel® CoreTM i5-4590S Central Processing Unit (with 6M Cache, up to 3.70 GHz), 32 GB of DDR4 Memory, and three SLI-connected NVIDIA GeForce GTX 1080Ti (11 GB) graphics cards.
3.4.2. Experimental Configurations for QOL Prediction Model
3.5. Performance Evaluation
3.6. Knowledge Extraction Results
3.6.1. Predicting the Number of Objects Using the YOLO-v3 Model
3.6.2. Predicting the Percentage of Pixels from the CamVid Pre-Trained Weight
3.6.3. Predicting the Percentage of Pixels from the Training Model
4. Experimental Results
4.1. Benchmarking Results from Semantic Segmentation Models
4.2. QOL Prediction Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ASPP | Atrous Spatial Pyramid Pooling |
BN | Batch Normalization |
CamVid | Cambridge-driving Labeled Database |
CO | Carbon dioxide |
COCO | Common Objects In Context |
DCNNs | Deep Convolutional Neural Networks |
DenseNet | Densely Connected Convolutional Network |
FLIR | Forward Looking Infrared |
FN | False Negative |
FP | False Positive |
FPS | Frames Per Second |
GNSS | Global Navigation Satellite System |
IMU | Inertial Measurement Unit |
IoU | Intersection over Union |
KPI | Key Performance Index |
KPIs | Key Performance Indices |
Misc | Miscellaneous |
ms | Milliseconds |
MSE | Mean Square Error |
PACSCAL VOC | Pattern Analysis, Statistical Modelling, and |
Computational Learning Visual Object Challenge | |
QOL | Quality of Life |
ReLU | Rectified Linear Unit |
ResNet | Residual Neural Network |
RMSprop | Root Mean Squared propagation |
SOTA | State-of-the-art |
TD | Transition Down |
TN | True Negative |
TP | True Positive |
TU | Transition Up |
v | Version |
YOLO | You Only Look Once |
References
- Nakamura, K.; Wasuntarasook, V.; Gu, F.; Vichiensan, V.; Kii, M.; Hayashi, Y. Evaluation for Low-carbon Land-use Transport Development with QOL Indexes in Asian Developing Megacities: A Case Study of Bangkok. J. East. Asia Soc. Transp. Stud. 2015, 11, 1047–1063. [Google Scholar]
- Nakamura, K.; Morita, H.; Vichiensan, V.; Togawa, T.; Hayashi, Y. Comparative analysis of QOL in station areas between cities at different development stages, Bangkok and Nagoya. Transp. Res. Procedia 2017, 25, 3188–3202. [Google Scholar] [CrossRef]
- Besleme, K.; Mullin, M. Community indicators and healthy communities. Natl. Civ. Rev. 1997, 86, 43–52. [Google Scholar] [CrossRef]
- Diener, E.; Suh, E. Measuring quality of life: Economic, social, and subjective indicators. Soc. Indic. Res. 1997, 40, 189–216. [Google Scholar] [CrossRef]
- Kachi, N.; Kato, H.; Hayashi, Y.; BLACK, J. Making cities more compact by improving transport and amenity and reducing hazard risk. J. East. Asia Soc. Transp. Stud. 2005, 6, 3819–3834. [Google Scholar]
- Hayashi, Y.; Mai, X.; Kato, H. The role of rail transport for sustainable urban transport. In Transport Moving to Climate Intelligence; Springer: Berlin/Heidelberg, Germany, 2011; pp. 161–174. [Google Scholar]
- Nakamura, K.; Hayashi, Y.; Kato, H. Macroscopic design of measures to realise low-carbon land-use transport systems in Asian developing cities. Glob. Environ. Res. 2013, 17, 47–60. [Google Scholar]
- Geurs, K.; van Wee, B. Backcasting as a tool for sustainable transport policy making: The environmentally sustainable transport study in the Netherlands. Eur. J. Transp. Infrastruct. Res. 2004, 4, 47–69. [Google Scholar]
- Briassoulis, H. Sustainable development and its indicators: Through a (planner’s) glass darkly. J. Environ. Plan. Manag. 2001, 44, 409–427. [Google Scholar] [CrossRef]
- Felce, D.; Perry, J. Quality of life: Its definition and measurement. Res. Dev. Disabil. 1995, 16, 51–74. [Google Scholar] [CrossRef]
- Veenhoven, R. Freedom and happiness: A comparative study in forty-four nations in the early 1990s. Cult. Subj. Well-Being 2000, 257, 288. [Google Scholar]
- Hayashi, Y.; Sugiyama, I. Dual strategies for the environmental and financial goals of sustainable cities: De-suburbanization and social capitalization. Built Environ. 2003, 29, 8–15. [Google Scholar] [CrossRef]
- Doi, K.; Kii, M.; Nakanishi, H. An integrated evaluation method of accessibility, quality of life, and social interaction. Environ. Plan. B: Plan. Des. 2008, 35, 1098–1116. [Google Scholar] [CrossRef]
- Wasuntarasook, V.; Hayashi, Y. A historic review on consequences of critical events leading revolution in Mass Rapid Transit in Bangkok. In Proceedings of the 10th International Conference of Eastern Asia Society for Transportation Studies, Taipei, Taiwan, 9–12 September 2013; pp. 9–12. [Google Scholar]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Vichiensan, V.; Nakamura, K. Walkability perception in Asian cities: A comparative study in Bangkok and Nagoya. Sustainability 2021, 13, 6825. [Google Scholar] [CrossRef]
- Kantavat, P.; Kijsirikul, B.; Iwahori, Y.; Hayashi, Y.; Panboonyuen, T.; Vateekul, P.; Achariyaviriya, W. Transportation Mobility Factor Extraction Using Image Recognition Techniques. In Proceedings of the 2019 First International Conference on Smart Technology & Urban Development (STUD), Chiang Mai, Thailand, 13–14 December 2019; pp. 1–7. [Google Scholar]
- Thitisiriwech, K.; Panboonyuen, T.; Kantavat, P.; Iwahori, Y.; Kijsirikul, B. The Bangkok Urbanscapes Dataset for Semantic Urban Scene Understanding Using Enhanced Encoder-Decoder with Atrous Depthwise Separable A1 Convolutional Neural Networks. IEEE Access 2022, 10, 59327–59349. [Google Scholar] [CrossRef]
- Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognit. Lett. 2009, 30, 88–97. [Google Scholar] [CrossRef]
- Jegou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR, Hong Kong, China, 20–22 November 2015; pp. 448–456. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed on 18 June 2021).
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Fukui, S.; Watanabe, N.; Iwahori, Y.; Kantavat, P.; Kijsirikul, B.; Takeshita, H.; Hayashi, Y.; Okazaki, A. Deep Neural Network for Estimating Value of Quality of Life in Driving Scenes. In Proceedings of the ICPRAM, Vienna, Austria, 3–5 February 2022; pp. 616–621. [Google Scholar]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Wada, K. labelme: Image Polygonal Annotation with Python. 2016. Available online: https://github.com/wkentaro/labelme (accessed on 20 March 2022).
- Tieleman, T.; Hinton, G. RMSprop Gradient Optimization. 2014. Available online: http://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 20 January 2022).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the OSDI, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 20 May 2022).
Segmentation Model | Frontend | Mean IoU | |
---|---|---|---|
Using Pre-Trained Model on the CamVid Dataset | Using Pre-Trained Model on the Bangkok Urbanscapes Dataset | ||
Tiramisu | DenseNet-100 | 15.26% | 38.98% |
DeepLab-v3+ | ResNet-101 | 11.17% | 36.41% |
Xception | 11.63% | 38.26% |
Model | Frontend | Mean Square Error (MSE) | ||
---|---|---|---|---|
Using Pre-Trained Model on the CamVid Dataset | Using Pre-Trained Model on the Bangkok Urbanscapes Dataset and Fine-Tuned on Our Dataset | |||
Semantic Segmentation | Tiramisu | DenseNet-100 | 0.9117 | 0.6464 |
DeepLab-v3+ | ResNet-101 | 0.7105 | 0.4309 | |
Xception | 0.5864 | 0.3958 | ||
Object Detection | YOLO-v3 | DarkNet-53 | 1.5640 |
Object Detection | Semantic Segmentation | Frontend | Mean Square Error (MSE) | |
---|---|---|---|---|
Using Pre-Trained Model on the CamVid Dataset | Using Pre-Trained Model on the Bangkok Urbanscapes Dataset and Fine-Tuned on Our Dataset | |||
YOLO-v3 | Tiramisu | DenseNet-100 | 0.8300 | 0.6090 |
with | DeepLab-v3+ | ResNet-101 | 0.6904 | 0.4135 |
DarkNet-53 | Xception | 0.5489 | 0.3758 |
Model | Frontend | Average Inference Time (ms) | ||
---|---|---|---|---|
Using Pre-Trained Model on the CamVid Dataset | Using Pre-Trained Model on the Bangkok Urbanscapes Dataset and Fine-Tuned on Our Dataset | |||
Semantic Segmentation | Tiramisu | DenseNet-100 | 195.8168 | 210.8343 |
DeepLab-v3+ | ResNet-101 | 56.8238 | 63.4020 | |
Xception | 58.7625 | 64.1658 | ||
Object Detection | YOLO-v3 | DarkNet-53 | 22.8197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thitisiriwech, K.; Panboonyuen, T.; Kantavat, P.; Kijsirikul, B.; Iwahori, Y.; Fukui, S.; Hayashi, Y. Quality of Life Prediction in Driving Scenes on Thailand Roads Using Information Extraction from Deep Convolutional Neural Networks. Sustainability 2023, 15, 2847. https://doi.org/10.3390/su15032847
Thitisiriwech K, Panboonyuen T, Kantavat P, Kijsirikul B, Iwahori Y, Fukui S, Hayashi Y. Quality of Life Prediction in Driving Scenes on Thailand Roads Using Information Extraction from Deep Convolutional Neural Networks. Sustainability. 2023; 15(3):2847. https://doi.org/10.3390/su15032847
Chicago/Turabian StyleThitisiriwech, Kitsaphon, Teerapong Panboonyuen, Pittipol Kantavat, Boonserm Kijsirikul, Yuji Iwahori, Shinji Fukui, and Yoshitsugu Hayashi. 2023. "Quality of Life Prediction in Driving Scenes on Thailand Roads Using Information Extraction from Deep Convolutional Neural Networks" Sustainability 15, no. 3: 2847. https://doi.org/10.3390/su15032847
APA StyleThitisiriwech, K., Panboonyuen, T., Kantavat, P., Kijsirikul, B., Iwahori, Y., Fukui, S., & Hayashi, Y. (2023). Quality of Life Prediction in Driving Scenes on Thailand Roads Using Information Extraction from Deep Convolutional Neural Networks. Sustainability, 15(3), 2847. https://doi.org/10.3390/su15032847