# Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Proposed System and Modes of Operation

_{A}, and D

_{B}), inductors (L1, L2, L3, and L4), switches (SW1 and SW2), and a parallel capacitor (C). A pictorial representation of the recommended converter model is given in Figure 2.

**Mode 1: (t0–t1)**

**Mode 2: (t1–t2)**

**Mode 3: (t2–t3)**

**Mode 4: (t3–t4)**

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Badawy, M.O.; Sharma, M.; Hernandez, C.; Elrayyah, A.; Guerra, S.; Coe, J. Model Predictive Control for Multi-Port Modular Multilevel Converters in Electric Vehicles Enabling HESDs. IEEE Trans. Energy Convers.
**2022**, 37, 10–23. [Google Scholar] [CrossRef] - The International Organization of Motor Vehicle Manufacturers. World Motor Vehicle Production by Country and Type. Available online: http://www.oica.net/wp-content/uploads/total-2013-2.pdf (accessed on 4 September 2014).
- Hariri, R.; Sebaaly, F.; Kanaan, H.Y. A Review on Modular Multilevel Converters in Electric Vehicles. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar] [CrossRef]
- Quraan, M.; Yeo, T.; Tricoli, P. Design and Control of Modular Multilevel Converters for Battery Electric Vehicles. IEEE Trans. Power Electron.
**2016**, 31, 507–517. [Google Scholar] [CrossRef] - Zhou, W.; Cleaver, C.J.; Dunant, C.F.; Allwood, J.M.; Lin, J. Cost, range anxiety and future electricity supply: A review of how today’s technology trends may influence the future uptake of BEVs. Renew. Sustain. Energy Rev.
**2023**, 173, 113074. [Google Scholar] [CrossRef] - Akhormeh, A.R.N.; Abbaszadeh, K.; Moradzadeh, M.; Shahirinia, A. High-Gain Bidirectional Quadratic DC–DC Converter Based on Coupled Inductor With Current Ripple Reduction Capability. IEEE Trans. Ind. Electron.
**2021**, 68, 7826–7837. [Google Scholar] [CrossRef] - Harasimczuk, M. A QR-ZCS boost converter with tapped inductor and active edge-resonant cell. IEEE Trans. Power Electron.
**2020**, 35, 13085–13095. [Google Scholar] [CrossRef] - Venkatesan, C.; Kannadasan, R.; Ravikumar, D.; Loganathan, V.; Alsharif, M.H.; Choi, D.; Hong, J.; Geem, Z.W. Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique. Sustainability
**2021**, 13, 13709. [Google Scholar] [CrossRef] - Balaguru, V.S.S.; Swaroopan, N.J.; Raju, K.; Alsharif, M.H.; Kim, M.-K. Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors. Sustainability
**2021**, 13, 2182. [Google Scholar] [CrossRef] - Raju, K.; Elavarasan, R.M.; Mihet-Popa, L. An Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame Optimization. Energies
**2020**, 13, 3063. [Google Scholar] - Subramanian, S.; Sankaralingam, C.; Elavarasan, R.M.; Vijayaraghavan, R.R.; Raju, K.; Mihet-Popa, L. An Evaluation on Wind Energy Potential Using Multi-Objective Optimization-Based Non-Dominated Sorting Genetic Algorithm III. Sustainability
**2021**, 13, 410. [Google Scholar] [CrossRef] - Ahmed, A.; Khan, M.A.; Badawy, M.; Sozer, Y.; Husain, I. Performance analysis of bi-directional DC-DC converters for electric vehicles and charging infrastructure. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013. [Google Scholar] [CrossRef]
- Murshid, S.; Singh, B. Reduced Sensor Based PMSM Driven Autonomous Solar Water Pumping System. IEEE Trans. Sustain. Energy
**2020**, 11, 1323–1331. [Google Scholar] [CrossRef] - Dixit, A.; Pande, K.; Gangavarapu, S.; Rathore, A.K. DCM-Based Bridgeless PFC Converter for EV Charging Application. IEEE J. Emerg. Sel. Top. Ind. Electron.
**2020**, 1, 57–66. [Google Scholar] [CrossRef] - Pandey, R.; Singh, B. Canonical Switching Cell (CSC) Converter-Based Power Factor-Corrected Battery Charger for E-Rickshaw. IEEE Trans. Ind. Appl.
**2020**, 56, 5046–5055. [Google Scholar] [CrossRef] - Kanimozhi, G.; Natrayan, L.; Angalaeswari, S.; Paramasivam, P. An Effective Charger for Plug-In Hybrid Electric Vehicles (PHEV) with an Enhanced PFC Rectifier and ZVS-ZCS DC/DC High-Frequency Converter. J. Adv. Transp.
**2022**, 2022, 7840102. [Google Scholar] [CrossRef] - Ortiz-Castrillón, J.R.; Mejía-Ruiz, G.E.; Muñoz-Galeano, N.; López-Lezama, J.M.; Cano-Quintero, J.B. A Sliding Surface for Controlling a Semi-Bridgeless Boost Converter with Power Factor Correction and Adaptive Hysteresis Band. Appl. Sci.
**2021**, 11, 1873. [Google Scholar] [CrossRef] - Chen, Z.; Liu, B.; Yang, Y.; Davari, P.; Wang, H. Bridgeless PFC Topology Simplification and Design for Performance Benchmarking. IEEE Trans. Power Electron.
**2021**, 36, 5398–5414. [Google Scholar] [CrossRef] - Lopez-Santos, O.; Cabeza-Cabeza, A.; Garcia, G.; Martinez-Salamero, L. Sliding Mode Control of the Isolated Bridgeless SEPIC High Power Factor Rectifier Interfacing an AC Source with a LVDC Distribution Bus. Energies
**2019**, 12, 3463. [Google Scholar] [CrossRef] - Fan, M.; Shi, L.; Yin, Z.; Jiang, L.; Zhang, F. Improved Pulse Density Modulation for Semi-bridgeless Active Rectifier in Inductive Power Transfer System. IEEE Trans. Power Electron.
**2019**, 34, 5893–5902. [Google Scholar] [CrossRef] - Kanimozhi, G.; Sreedevi, V.T. Semibridgeless Interleaved PFC Boost Rectifier for PHEV Battery Chargers. IETE J. Res.
**2018**, 65, 128–138. [Google Scholar] [CrossRef] - Khalid, M.R.; Alam, M.S.; Amrr, S.M.; Jamil Asghar, M.S. Multi-Pulse Converter based Rectification Scheme for Improving Power-Quality of EVs Charging Station. In Proceedings of the International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, 21–23 January 2021. [Google Scholar] [CrossRef]
- Mohammadi, F.; Nazri, G.A.; Saif, M. A Bidirectional Power Charging Control Strategy for Plug-in Hybrid Electric Vehicles. Sustainability
**2019**, 11, 4317. [Google Scholar] [CrossRef] - Rameshkumar, T.; Chandrasekar, P.; Kannadasan, R.; Thiyagarajan, V.; Alsharif, M.H.; Kim, J.H. Electrical and Mechanical Characteristics Assessment of Wind Turbine System Employing Acoustic Sensors and Matrix Converter. Sustainability
**2022**, 14, 4404. [Google Scholar] [CrossRef] - Rajalakshmi, M.; Chandramohan, S.; Kannadasan, R.; Alsharif, M.H.; Kim, M.-K.; Nebhen, J. Design and Validation of BAT Algorithm Based Photovoltaic System Using Simplified High Gain Quasi Boost Inverter. Energies
**2021**, 14, 1086. [Google Scholar] [CrossRef]

**Figure 9.**MOSFET parameters: (

**a**) voltage in MOSFET 1 and (

**b**) voltage in MOSFET 2 and (

**c**) gate pulse.

**Figure 10.**Load parameters: (

**a**) SoC, (

**b**) battery and load current, (

**c**) battery voltage, and (

**d**) battery power.

**Figure 14.**Hardware results: (

**a**) input voltage, (

**b**) gate pulse of proposed converter, (

**c**) rectified Direct Current (DC) voltage on the charging side, (

**d**) rectified voltage on discharging side, and (

**e**) voltage at load terminals.

Elements | Parameters | Rating/Values |
---|---|---|

MOSFET | FET resistance | 0.1 Ω |

Snubber resistance | 100 kΩ | |

Pulse generator | Period | 20 × 10^{−3} |

Pulse width | 50% of the period | |

Pulse type | Time based | |

Diodes | Resistance (R_{d}) | 0.001 Ω |

Snubber resistance (R_{sd}) | 500 Ω | |

Snubber resistance (R_{cd}) | 250 × 10^{−9} F | |

Input source | Peak voltage | 24 V |

Frequency | 50 Hz | |

Load parameter | Resistance (R_{L}) | 6 Ω |

Battery pack | Type | Lithium ion |

Nominal voltage | 24 V | |

Rated capacity | 50 Ah | |

Initial SOC | 40% | |

Response time | 1 s |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kadirvel, K.; Kannadasan, R.; Alsharif, M.H.; Geem, Z.W.
Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications. *Sustainability* **2023**, *15*, 2712.
https://doi.org/10.3390/su15032712

**AMA Style**

Kadirvel K, Kannadasan R, Alsharif MH, Geem ZW.
Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications. *Sustainability*. 2023; 15(3):2712.
https://doi.org/10.3390/su15032712

**Chicago/Turabian Style**

Kadirvel, Kanchana, Raju Kannadasan, Mohammed H. Alsharif, and Zong Woo Geem.
2023. "Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications" *Sustainability* 15, no. 3: 2712.
https://doi.org/10.3390/su15032712