Uncertainty Quantification of the CO2 Storage Process in the Bunter Closure 36 Model
Abstract
:1. Introduction
2. Methods and Materials
2.1. Geological Model
2.2. Model Uncertainty
2.2.1. Pressure and Temperature
2.2.2. Porosity, Permeability, and Caprock Morphology
2.3. Simulation Approach
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.T.; Song, B. Plant adaptation to climate change—Where are we? J. Syst. Evol. 2020, 58, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Kreienkamp, F. Rapid Attribution of Heavy Rainfall Events Leading to the Severe Flooding in Western Europe during July 2021; World Weather Atribution: London, UK, 2021. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement. I: Proposal by the President (Draft Decision); United Nations Office: Geneva, Switzerland, 2015. [Google Scholar]
- Hausfather, Z. Analysis: How much ‘carbon budget’is left to limit global warming to 1.5 C. Carbon Brief 2018, 9. Available online: https://www.carbonbrief.org/analysis-how-much-carbon-budget-is-left-to-limit-global-warming-to-1-5c/ (accessed on 29 November 2022).
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.; Rogelj, J. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Jolly, M.; Velenturf, A.P.; Salonitis, K.; Paddea, S. The UK Transforming the Foundation Industries Research and Innovation Hub (TransFIRe). In REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I); Springer: Cham, Switzerland, 2022; pp. 341–353. [Google Scholar]
- Consoli, C.P.; Havercroft, I.; Irlam, L. Carbon Capture and Storage Readiness Index: Comparative Review of Global Progress towards Wide-scale Deployment. Energy Procedia 2017, 114, 7348–7355. [Google Scholar] [CrossRef]
- Vella, H. Ten steps to net zero [energy decarbonisation]. Eng. Technol. 2021, 16, 20–24. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Bentham, M.; Mallows, T.; Lowndes, J.; Green, A. CO2 STORage Evaluation Database (CO2 Stored). The UK’s online storage atlas. Energy Procedia 2014, 63, 5103–5113. [Google Scholar] [CrossRef] [Green Version]
- Pale Blue Dot Energy. Progressing Development of the UK’s Strategic Carbon Dioxide Storage Resource; A Summary of Results from the Strategic UK CO2; Pale Blue Dot Energy: Banchory, UK, 2016. [Google Scholar]
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 2011, 5, 952–965. [Google Scholar] [CrossRef]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Flemisch, B.; Gasda, S.E.; Nilsen, H.M.; Fan, Y.; Pickup, G.E.; Wiese, B.; Celia, M.A.; Dahle, H.K.; Eigestad, G.T.; et al. Uncertainties in practical simulation of CO2 storage. Int. J. Greenh. Gas Control 2012, 9, 234–242. [Google Scholar] [CrossRef]
- Sørensen, T.J. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons; I kommission hos E. Munksgaard: København, Denmark, 1948. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Hodneland, E.; Gasda, S.; Kaufmann, R.; Bekkvik, T.C.; Hermanrud, C.; Midttømme, K. Effect of temperature and concentration of impurities in the fluid stream on CO2 migration in the Utsira formation. Int. J. Greenh. Gas Control 2019, 83, 20–28. [Google Scholar] [CrossRef]
- Allen, R.; Nilsen, H.M.; Lie, K.A.; Møyner, O.; Andersen, O. Using simplified methods to explore the impact of parameter uncertainty on CO2 storage estimates with application to the Norwegian Continental Shelf. Int. J. Greenh. Gas Control 2018, 75, 198–213. [Google Scholar] [CrossRef]
- Lüth, S.; Ivanova, A.; Kempka, T. Conformity assessment of monitoring and simulation of CO2 storage: A case study from the Ketzin pilot site. Int. J. Greenh. Gas Control 2015, 42, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.; Marée, R.; Wehenkel, L.; Geurts, P. Fast Multi-Class Image Annotation with Random Subwindows and Multiple Output Randomized Trees. In Proceedings of the VISAPP 2009 - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, 5–8 February 2009; pp. 196–203. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Ahmadinia, M.; Shariatipour, S.M.; Andersen, O.; Nobakht, B. Quantitative evaluation of the joint effect of uncertain parameters in CO2 storage in the Sleipner project, using data-driven models. Int. J. Greenh. Gas Control 2020, 103, 103180. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30, Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Neural Information Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA; pp. 4765–4774.
- Nilsen, H.M.; Lie, K.A.; Andersen, O. Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity in large-scale aquifer systems. Comput. Geosci. 2016, 20, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, H.M.; Lie, K.A.; Andersen, O. Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. 2016, 20, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Ahmadinia, M.; Shariatipour, S.M.; Sadri, M. A Comprehensive Sensitivity Analysis on CO2 Plume Migration and Trapping under Tilted Sinusoidal Structures. In Proceedings of the 81st EAGE Conference & Exhibition, London, UK, 3–6 June 2019. [Google Scholar]
- Nilsen, H.M.; Herrera, P.A.; Ashraf, M.; Ligaarden, I.; Iding, M.; Hermanrud, C.; Lie, K.A.; Nordbotten, J.M.; Dahle, H.K.; Keilegavlen, E. Field-case simulation of CO2 plume migration using vertical-equilibrium models. Energy Procedia 2011, 4, 3801–3808. [Google Scholar] [CrossRef] [Green Version]
- Pale Blue Dot Energy. Axis Well Technology Bunter Closure 36 Outline Storage Development Plans Report; Pale Blue Dot Energy: Banchory, UK, 2016. [Google Scholar]
- Orsini, P.; Ponting, D.; Stone, D. A Study of Temperature Effects in the Bunter Closure 36, a Potential Large-scale CO2 Storage Site in UK. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Zhao, F.; Hao, H.; Lv, G.; Wang, Z.; Hou, J.; Wang, P.; Zhang, M.; Lu, G.; Fu, Z.; Li, W. Performance improvement of CO2 flooding using production controls in 3D areal heterogeneous models: Experimental and numerical simulations. J. Pet. Sci. Eng. 2018, 164, 12–23. [Google Scholar] [CrossRef]
- Gasda, S.E.; Nordbotten, J.M.; Celia, M.A. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 2009, 13, 469. [Google Scholar] [CrossRef]
- Ahmadinia, M.; Shariatipour, S.M.; Andersen, O.; Sadri, M. Benchmarking of vertically integrated models for the study of the impact of caprock morphology on CO2 migration. Int. J. Greenh. Gas Control 2019, 90, 102802. [Google Scholar] [CrossRef]
- Bandilla, K.; Celia, M. Numerical Modeling of Fluid Flow During Geologic Carbon Storage. In Science of Carbon Storage in Deep Saline Formations; Elsevier: Amsterdam, The Netherlands, 2019; pp. 181–208. [Google Scholar]
- Court, B.; Bandilla, K.W.; Celia, M.A.; Janzen, A.; Dobossy, M.; Nordbotten, J.M. Applicability of vertical-equilibrium and sharp-interface assumptions in CO2 sequestration modeling. Int. J. Greenh. Gas Control 2012, 10, 134–147. [Google Scholar] [CrossRef]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
Model | R-Squared |
---|---|
LR | 0.421144 |
KNN | 0.801134 |
RF | 0.999466 |
DTree | 0.999723 |
Parameter | Value |
---|---|
Average porosity | 0.22 |
Average horizontal permeability (mD) | 210 |
Number of cells (NX × NY × NZ) | 124 × 134 × 41 |
Initial temperature (°C) | 45 |
Initial pressure (bar) | 119 (@ 1170 m TVDSS) |
Injection rate (MT/y) | 7 |
Injection time | 40 years (2027–2067) |
Salinity (ppm) | 200,000 |
CO2 density at 45 °C and 119 bar (Kg/m3) | 653 |
Water density at 45 °C and 119 bar (Kg/m3) | 996 |
Geothermal gradient (°C/100 m) | 3 |
Seafloor depth (m) | 73 |
Well | UTM North (m) | UTM East (m) |
---|---|---|
Injection #1 | 5,991,224 | 444,000 |
Injection #2 | 5,988,108 | 441,357 |
Injection #3 | 5,990,901 | 442,178 |
Injection #4 | 5,989,675 | 442,662 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadinia, M.; Sadri, M.; Nobakht, B.; Shariatipour, S.M. Uncertainty Quantification of the CO2 Storage Process in the Bunter Closure 36 Model. Sustainability 2023, 15, 2004. https://doi.org/10.3390/su15032004
Ahmadinia M, Sadri M, Nobakht B, Shariatipour SM. Uncertainty Quantification of the CO2 Storage Process in the Bunter Closure 36 Model. Sustainability. 2023; 15(3):2004. https://doi.org/10.3390/su15032004
Chicago/Turabian StyleAhmadinia, Masoud, Mahdi Sadri, Behzad Nobakht, and Seyed M. Shariatipour. 2023. "Uncertainty Quantification of the CO2 Storage Process in the Bunter Closure 36 Model" Sustainability 15, no. 3: 2004. https://doi.org/10.3390/su15032004
APA StyleAhmadinia, M., Sadri, M., Nobakht, B., & Shariatipour, S. M. (2023). Uncertainty Quantification of the CO2 Storage Process in the Bunter Closure 36 Model. Sustainability, 15(3), 2004. https://doi.org/10.3390/su15032004