Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design
Abstract
:1. Introduction
2. Green Open Space Pathways to Children’s Health and Well-Being
3. Types and Characteristics of Dedicated Public Green Open Space for Children
3.1. Parks, Schools, Trails, and Recreation Facilities
3.2. Forest and Edible Schools
3.3. Informal Green Spaces
3.4. Healing, Sensory, and Therapeutic Gardens for Children
3.5. Playgrounds, Sport Facilities, Fitness Camps
4. Biophilic Design for Children’s Health and Well-Being
- Children’s dedicated facilities, such as schoolyards, fitness camps, sports facilities, and playgrounds; and
- Child-friendly public open spaces, such as neighborhood open spaces and urban parks.
4.1. Kids’ City Christianshavn, Copenhagen as a Case Study of Biophilic Design in Children’s Open Space
4.2. Birmingham as a Case Study of Child-Friendly Public Open Space
5. Policy Context
- Target 3.4: By 2030, reduce by one third premature mortality from noncommunicable diseases through prevention and treatment, and promote mental health and well-being;
- Target 4.7: By 2030, ensure all learners acquire knowledge and skills needed to promote sustainable development, including, among others, education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship, and appreciation of cultural diversity and of culture’s contribution to sustainable development;
- Target 11.7: By 2030, provide universal access to safe, inclusive, and accessible green, and public spaces, in particular, for women and children, older persons, and persons with disabilities;
- Target 12.8: By 2030, ensure that people everywhere have the relevant information and awareness for sustainable development and lifestyles in harmony with nature;
- Target 13.1: Strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries;
- Target 15.9: By 2020, integrate ecosystem and biodiversity values into national and local planning, development processes, poverty reduction strategies, and accounts [114].
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, P.D. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO.3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Africa’s Youth and Prospects for Inclusive Development: Regional Situation Analysis Report; United Nations Economic Commission for Africa: Addis Ababa, Ethiopia, 2017.
- Bloom, D.E.; Khanna, T. The urban revolution. Financ. Dev. 2007, 44, 9–14. [Google Scholar]
- Aerts, J. Shaping Urbanization for Children: A Handbook on Child-Responsive Urban Planning; UNICEF: New York, NY, USA, 2018; ISBN 978-92-806-4960-4. [Google Scholar]
- Gehl Child Friendly Cities. Available online: https://gehlpeople.com/blog/towards-child-friendly-cities-1/ (accessed on 18 December 2022).
- Shi, Y. Explore Children’s Outdoor Play Spaces of Community Areas in High-density Cities in China: Wuhan as an Example. Procedia Eng. 2017, 198, 654–682. [Google Scholar] [CrossRef]
- McCurdy, L.E.; Winterbottom, K.E.; Mehta, S.S.; Roberts, J.R. Using Nature and Outdoor Activity to Improve Children’s Health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Mutambo, C.; Shumba, K.; Hlongwana, K.W. User-provider experiences of the implementation of KidzAlive-driven child-friendly spaces in KwaZulu-Natal, South Africa. BMC Public Health 2020, 20, 15–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitsikali, A.; Parnell, R.; McIntyre, L. The public value of child-friendly space. Archnet-IJAR Int. J. Arch. Res. 2020, 14, 149–165. [Google Scholar] [CrossRef]
- Jansson, M.; Herbert, E.; Zalar, A.; Johansson, M. Child-Friendly Environments—What, How and by Whom? Sustainability 2022, 14, 4852. [Google Scholar] [CrossRef]
- Nasrabadi, M.T.; García, E.H.; Pourzakarya, M. Let children plan neighborhoods for a sustainable future: A sustainable child-friendly city approach. Local Environ. 2021, 26, 198–215. [Google Scholar] [CrossRef]
- Adams, S.; Savahl, S.; Florence, M.; Jackson, K. Considering the Natural Environment in the Creation of Child-Friendly Cities: Implications for Children’s Subjective Well-Being. Child Indic. Res. 2019, 12, 545–567. [Google Scholar] [CrossRef]
- Agarwal, M.; Sehgal, V.; Ogra, A. Creating a Child-Friendly Environment: An Interpretation of Children’s Drawings from Planned Neighborhood Parks of Lucknow City. Societies 2021, 11, 80. [Google Scholar] [CrossRef]
- United Nations Envision 2030 Goal 11: Sustainable Cities and Communities. 2022. Available online: https://www.un.org/development/desa/disabilities/envision2030-goal11.html (accessed on 6 May 2022).
- The Value of Public Space: How High Quality Parks and Public Spaces Create Economic, Social and Environmental Value; CABE Space: London, UK, 2013.
- Capaldi, C.A.; Dopko, R.L.; Zelenski, J.M. The relationship between nature connectedness and happiness: A meta-analysis. Front. Psychol. 2014, 5, 976. [Google Scholar] [CrossRef] [Green Version]
- Krysiak, N. Designing Child-Friendly High Density Neighbourhoods. 2020. Available online: https://www.citiesforplay.com/_files/ugd/534edb_5e8553bb853d40228da3083a0ed1eede.pdf (accessed on 18 January 2023).
- Evans, G.W. The Built Environment and Mental Health. J. Urban Health 2003, 80, 536–555. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M.; Fossati, S.; Maitre, L.; Márquez, S.; Roumeliotaki, T.; Agier, L.; Andrusaityte, S.; Cadiou, S.; Casas, M.; De Castro, M.; et al. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. Environ. Health Perspect. 2020, 128, 067009. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, C.; Sohn, W. Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods. Int. J. Environ. Res. Public Health 2016, 13, 121. [Google Scholar] [CrossRef] [Green Version]
- Reuben, A.; Rutherford, G.W.; James, J.; Razani, N. Association of neighborhood parks with child health in the United States. Prev. Med. 2020, 141, 106265. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Silver, R.C.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Nathan, A.; George, P.; Ng, M.; Wenden, E.; Bai, P.; Phiri, Z.; Christian, H. Impact of COVID-19 Restrictions on Western Australian Children’s Physical Activity and Screen Time. Int. J. Environ. Res. Public Health 2021, 18, 2583. [Google Scholar] [CrossRef]
- Quinn, A.; Russo, A. Adaptive school grounds design in response to COVID-19: Findings from six primary schools in South East England. Build. Environ. 2022, 215, 108946. [Google Scholar] [CrossRef]
- Evaluation of UNICEF Work for Children in Urban Settings- Evaluation Report; UNICEF: New York, NY, USA, 2020.
- Dadvand, P.; Gascon, M.; Markevych, I. Green Spaces and Child Health and Development. In Biodiversity and Health in the Face of Climate Change; Marselle, M.R., Stadler, J., Korn, H., Irvine, K.N., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 121–130. ISBN 978-3-030-02318-8. [Google Scholar]
- World Cities Report 2020: The Value of Sustainable Urbanization; United Nations Human Settlements Programme: Nairobi, Kenya, 2020.
- Mandeli, K. Public space and the challenge of urban transformation in cities of emerging economies: Jeddah case study. Cities 2019, 95, 102409. [Google Scholar] [CrossRef]
- Clear the Air for Children; UNICEF: New York, NY, USA, 2016.
- Landrigan, P.J.; Fuller, R.; Fisher, S.; Suk, W.A.; Sly, P.; Chiles, T.C.; Bose-O’Reilly, S. Pollution and children’s health. Sci. Total. Environ. 2019, 650, 2389–2394. [Google Scholar] [CrossRef]
- Yao, N.; Konijnendijk van den Bosch, C.C.; Yang, J.; Devisscher, T.; Wirtz, Z.; Jia, L.; Duan, J.; Ma, L. Beijing’s 50 million new urban trees: Strategic governance for large-scale urban afforestation. Urban For. Urban Green. 2019, 44, 126392. [Google Scholar] [CrossRef]
- Russo, A.; Chan, W.; Cirella, G. Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications. Land 2021, 10, 788. [Google Scholar] [CrossRef]
- Skounti, M.; Philalithis, A.; Galanakis, E. Variations in prevalence of attention deficit hyperactivity disorder worldwide. Eur. J. Pediatr. 2007, 166, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.G.; Higgins, J.; Brayne, C. Systematic review of prevalence studies of autism spectrum disorders. Arch. Dis. Child. 2006, 91, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNESCO School Closures Caused by Coronavirus (COVID-19). Available online: https://en.unesco.org/covid19/educationresponse (accessed on 12 October 2020).
- Viner, R.M.; Russell, S.J.; Croker, H.; Packer, J.; Ward, J.; Stansfield, C.; Mytton, O.; Bonell, C.; Booy, R. School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc. Health 2020, 4, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barrés, S.; Robinson, O.; Fossati, S.; Márquez, S.; Basagaña, X.; de Bont, J.; de Castro, M.; Donaire-Gonzalez, D.; Maitre, L.; Nieuwenhuijsen, M.; et al. Urban environment and health behaviours in children from six European countries. Environ. Int. 2022, 165, 107319. [Google Scholar] [CrossRef]
- Jansson, M.; Sundevall, E.; Wales, M. The role of green spaces and their management in a child-friendly urban village. Urban For. Urban Green. 2016, 18, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Friman, M.; Olsson, L.E.; Waygood, E.O.D.; Mitra, R. Transport and Children’s Wellbeing: Future Directions. In Transportation and Children’s Well-Being; Elsevier: Amsterdam, The Netherlands, 2020; pp. 361–373. [Google Scholar]
- Broberg, A.; Kyttä, M.; Fagerholm, N. Child-friendly urban structures: Bullerby revisited. J. Environ. Psychol. 2013, 35, 110–120. [Google Scholar] [CrossRef]
- Yanez, R.E.; Fees, B.S.; Torquati, J. Preschool Children’s Biophilia and Attitudes toward Nature: The Effect of Personal Experiences. Int. J. Early Child. Environ. Educ. 2017, 5, 57. [Google Scholar]
- Hand, K.L.; Freeman, C.; Seddon, P.J.; Recio, M.R.; Stein, A.; Van Heezik, Y. The importance of urban gardens in supporting children’s biophilia. Proc. Natl. Acad. Sci. USA 2017, 114, 274–279. [Google Scholar]
- Park, S.J.; Lee, H.C. Spatial Design of Childcare Facilities Based on Biophilic Design Patterns. Sustainability 2019, 11, 2851. [Google Scholar] [CrossRef] [Green Version]
- Ghaziani, R.; Lemon, M.; Atmodiwirjo, P. Biophilic Design Patterns for Primary Schools. Sustainability 2021, 13, 12207. [Google Scholar] [CrossRef]
- Stephen, R. Kellert Kinship to Mastery: Biophilia in Human Evolution and Development; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Kellert, S.R.; Wilson, E.O. The Biophilia Hypothesis; Island Press: Washington, DC, USA, 1993; Volume 4. [Google Scholar]
- Davis, Z.; Guhn, M.; Jarvis, I.; Jerrett, M.; Nesbitt, L.; Oberlander, T.; Sbihi, H.; Su, J.; Bosch, M.V.D. The association between natural environments and childhood mental health and development: A systematic review and assessment of different exposure measurements. Int. J. Hyg. Environ. Health 2021, 235, 113767. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.; DeVille, N.; Elliott, E.; Schiff, J.; Wilt, G.; Hart, J.; James, P. Associations between Nature Exposure and Health: A Review of the Evidence. Int. J. Environ. Res. Public Health 2021, 18, 4790. [Google Scholar] [CrossRef]
- Fyfe-Johnson, A.L.; Hazlehurst, M.F.; Perrins, S.P.; Bratman, G.N.; Thomas, R.; Garrett, K.A.; Hafferty, K.R.; Cullaz, T.M.; Marcuse, E.K.; Tandon, P.S. Nature and Children’s Health: A Systematic Review. Pediatrics 2021, 148. [Google Scholar] [CrossRef]
- Vanaken, G.-J.; Danckaerts, M. Impact of Green Space Exposure on Children’s and Adolescents’ Mental Health: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2668. [Google Scholar] [CrossRef] [Green Version]
- Dzhambov, A.M.; Markevych, I.; Lercher, P. Associations of residential greenness, traffic noise, and air pollution with birth outcomes across Alpine areas. Sci. Total. Environ. 2019, 678, 399–408. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Rigolon, A. School Green Space and Its Impact on Academic Performance: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2019, 16, 429. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R. Does Access to Green Space Impact the Mental Well-being of Children: A Systematic Review. J. Pediatr. Nurs. 2017, 37, 3–7. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.; Gibbons, R.; Larouche, R.; Sandseter, E.B.H.; Bienenstock, A.; Brussoni, M.; Chabot, G.; Herrington, S.; Janssen, I.; Pickett, W.; et al. What Is the Relationship between Outdoor Time and Physical Activity, Sedentary Behaviour, and Physical Fitness in Children? A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 6455–6474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Scott, J.G.; Mihalopoulos, C.; Erskine, H.E.; Roberts, J.; Rahman, A. Childhood Mental and Developmental Disorders. In Disease Control Priorities, Third Edition (Volume 4): Mental, Neurological, and Substance Use Disorders; The World Bank: Washington, DC, USA, 2016; pp. 145–161. [Google Scholar]
- Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have lower prevalence of asthma. J. Epidemiology Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Benefits of Green Infrastructure; Report by Forest Research; Forest Research: Farnham, UK, 2010.
- Flouri, E.; Papachristou, E.; Midouhas, E. The role of neighbourhood greenspace in children’s spatial working memory. Br. J. Educ. Psychol. 2019, 89, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagaña, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; De Castro Pascual, M.; Su, J.; et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Sullivan, W.C. Impact of views to school landscapes on recovery from stress and mental fatigue. Landsc. Urban Plan. 2016, 148, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Engemann, K.; Pedersen, C.B.; Arge, L.; Tsirogiannis, C.; Mortensen, P.B.; Svenning, J.-C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 116, 5188–5193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrusaityte, S.; Grazuleviciene, R.; Dedele, A.; Balseviciene, B. The effect of residential greenness and city park visiting habits on preschool Children’s mental and general health in Lithuania: A cross-sectional study. Int. J. Hyg. Environ. Health 2020, 223, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, A. Urban green spaces for children: A cross-sectional study of associations with distance, physical activity, screen time, general health, and overweight. Urban For. Urban Green. 2017, 25, 66–73. [Google Scholar] [CrossRef]
- Janssen, I.; Rosu, A. Undeveloped green space and free-time physical activity in 11 to 13-year-old children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.V.; Wood, R.A.; Boushey, H.; Bacharier, L.B.; Bloomberg, G.R.; Kattan, M.; O’Connor, G.T.; Sandel, M.T.; Calatroni, A.; Matsui, E.; et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J. Allergy Clin. Immunol. 2014, 134, 593–601.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadvand, P.; Villanueva, C.; Font-Ribera, L.; Martinez, D.; Basagaña, X.; Belmonte, J.; Vrijheid, M.; Grazuleviciene, R.; Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and Benefits of Green Spaces for Children: A Cross-Sectional Study of Associations with Sedentary Behavior, Obesity, Asthma, and Allergy. Environ. Health Perspect. 2014, 122, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.A.; Bowatte, G.; Tham, R.; Lodge, C.J.; Prendergast, L.A.; Heinrich, J.; Abramson, M.J.; Dharmage, S.C.; Erbas, B. Greenspace and Atopic Sensitization in Children and Adolescents—A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2539. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, G.; Asta, F.; Cilluffo, G.; De Sario, M.; Michelozzi, P.; La Grutta, S. The effect of residential urban greenness on allergic respiratory diseases in youth: A narrative review. World Allergy Organ. J. 2020, 13, 100096. [Google Scholar] [CrossRef] [Green Version]
- Evenson, K.R.; Jones, S.A.; Holliday, K.M.; Cohen, D.A.; McKenzie, T.L. Park characteristics, use, and physical activity: A review of studies using SOPARC (System for Observing Play and Recreation in Communities). Prev. Med. 2016, 86, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Jákli, E. Environmental educational potentials on school grounds in Budapest. Landsc. Environ. 2018, 12, 23–30. [Google Scholar] [CrossRef]
- Committee on Physical Activity and Physical Education in the School Environment; Food and Nutrition Board; Institute of Medicine; Kohl, H.W., III; Cook, H.D. Approaches to Physical Education in Schools. In Educating the Student Body: Taking Physical Activity and Physical Education to School; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Gardsjord, H.S.; Tveit, M.S.; Nordh, H. Promoting Youth’s Physical Activity through Park Design: Linking Theory and Practice in a Public Health Perspective. Landsc. Res. 2014, 39, 70–81. [Google Scholar] [CrossRef]
- Jirout, J.; LoCasale-Crouch, J.; Turnbull, K.; Gu, Y.; Cubides, M.; Garzione, S.; Evans, T.M.; Weltman, A.L.; Kranz, S. How Lifestyle Factors Affect Cognitive and Executive Function and the Ability to Learn in Children. Nutrients 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Cree, J.; McCree, M. A Brief History of Forest School in the UK—Part 2. Horiz. Mag. 2013, 1, 26–31. [Google Scholar]
- O’Brien, L.; Murray, R. Forest School and its impacts on young children: Case studies in Britain. Urban For. Urban Green. 2007, 6, 249–265. [Google Scholar] [CrossRef]
- Lovell, R.; Roe, J. Physical and Mental Health Benefits of Participation in Forest School. Countrys. Recreat. 2009, 17, 20–23. [Google Scholar]
- Askerlund, P.; Almers, E. Forest gardens—New opportunities for urban children to understand and develop relationships with other organisms. Urban For. Urban Green. 2016, 20, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Fischer, L.K.; Brinkmeyer, D.; Karle, S.J.; Cremer, K.; Huttner, E.; Seebauer, M.; Nowikow, U.; Schütze, B.; Voigt, P.; Völker, S.; et al. Biodiverse edible schools: Linking healthy food, school gardens and local urban biodiversity. Urban For. Urban Green. 2019, 40, 35–43. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Edible urbanism 5.0. Palgrave Commun. 2019, 5, 163. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Cirella, G.T. Modern Compact Cities: How Much Greenery Do We Need? Int. J. Environ. Res. Public Health 2018, 15, 2180. [Google Scholar] [CrossRef]
- Rupprecht, C.D.D.; Byrne, J. Informal Urban Green-Space: Comparison of Quantity and Characteristics in Brisbane, Australia and Sapporo, Japan. PLoS ONE 2014, 9, e99784. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, E.; Okyere, S.; Frimpong, L.; Diko, S.; Commodore, T.; Kita, M. Planning for Informal Urban Green Spaces in African Cities: Children’s Perception and Use in Peri-Urban Areas of Luanda, Angola. Urban Sci. 2021, 5, 50. [Google Scholar] [CrossRef]
- Rupprecht, C.D.; Byrne, J.A. Informal urban greenspace: A typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green. 2014, 13, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Herman, K.; Ciechanowski, L.; Przegalińska, A. Emotional Well-Being in Urban Wilderness: Assessing States of Calmness and Alertness in Informal Green Spaces (IGSs) with Muse—Portable EEG Headband. Sustainability 2021, 13, 2212. [Google Scholar] [CrossRef]
- Sikorska, D.; Łaszkiewicz, E.; Krauze, K.; Sikorski, P. The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environ. Sci. Policy 2020, 108, 144–154. [Google Scholar] [CrossRef]
- Souter-Brown, G. Landscape and Urban Design for Health and Well-Being: Using Healing, Sensory and Therapeutic Gardens; Routledge: Oxfordshire, UK, 2004. [Google Scholar]
- Hussein, H. Using the sensory garden as a tool to enhance the educational development and social interaction of children with special needs. Support Learn. 2010, 25, 25–31. [Google Scholar] [CrossRef]
- De La Motte, P. Therapeutic garden designs in special needs facilities in Victoria, Australia. Acta Hortic. 2016, 47–50. [Google Scholar] [CrossRef]
- Reeve, A.; Nieberler-Walker, K.; Desha, C. Healing gardens in children’s hospitals: Reflections on benefits, preferences and design from visitors’ books. Urban For. Urban Green. 2017, 26, 48–56. [Google Scholar] [CrossRef]
- Reimers, A.K.; Knapp, G. Playground usage and physical activity levels of children based on playground spatial features. J. Public Health 2017, 25, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Bohn-Goldbaum, E.E.; Phongsavan, P.; Merom, D.; Rogers, K.; Kamalesh, V.; Bauman, A.E. Does Playground Improvement Increase Physical Activity among Children? A Quasi-Experimental Study of a Natural Experiment. J. Environ. Public Health 2013, 2013, 109841. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.P.; Timperio, A.; Hesketh, K.D.; Veitch, J. Examining the Features of Parks That Children Visit During Three Stages of Childhood. Int. J. Environ. Res. Public Health 2019, 16, 1658. [Google Scholar] [CrossRef] [Green Version]
- Veitch, J.; Bagley, S.; Ball, K.; Salmon, J. Where do children usually play? A qualitative study of parents’ perceptions of influences on children’s active free-play. Health Place 2006, 12, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Luo, W.; Li, H.; Zhang, D.; Kang, N.; Yang, X.; Xia, Y. Impact of Perception of Green Space for Health Promotion on Willingness to Use Parks and Actual Use among Young Urban Residents. Int. J. Environ. Res. Public Health 2020, 17, 5560. [Google Scholar] [CrossRef]
- Mecanoo Nelson Mandela Park. Available online: https://www.mecanoo.nl/Projects/project/40/Nelson-Mandela-Park?d=4&t=0 (accessed on 8 November 2020).
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984; ISBN 0674074424. [Google Scholar]
- Russo, A.; Cirella, G.T. Biophilic Cities: Planning for Sustainable and Smart Urban Environments. In Smart Cities Movement in BRICS; Aijaz, R., Ed.; Observer Research Foundation and Global Policy Journal; Global Policy and Observer Research Foundation: London, UK, 2017; pp. 153–159. ISBN 978-81-86818-29-9. [Google Scholar]
- Andreucci, M.B.; Loder, A.; Brown, M.; Brajković, J. Exploring Challenges and Opportunities of Biophilic Urban Design: Evidence from Research and Experimentation. Sustainability 2021, 13, 4323. [Google Scholar] [CrossRef]
- Kellert, S.R. Dimensions, Elements, and Attributes of Biophilic Design. In Biophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life; Kellert, S.R., Heerwagen, J., Mador, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 3–19. [Google Scholar]
- Kellert, S.R.; Calabrese, E.F. The Practice of Biophilic Design. 2015. Available online: https://biophilicdesign.umn.edu/sites/biophilic-net-positive.umn.edu/files/2021-09/2015_Kellert%20_The_Practice_of_Biophilic_Design.pdf (accessed on 3 March 2020).
- Andreucci, M.B. Mainstreaming Salutogenic Urban Design for People and the Environment. In Activating Public Space: An Approach for Climate Change Mitigation; Alessandra, B., Daniele, S., Eds.; Technische Universität München, Fakultät für Architektur: Munich, Germany, 2020; pp. 117–128. ISBN 978-3-948278-08-3. [Google Scholar]
- Barbiero, G.; Berto, R.; Venturella, A.; Maculan, N. Bracing Biophilia: When biophilic design promotes pupil’s attentional performance, perceived restorativeness and affiliation with Nature. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Urbistat Maps, Analysis and Statistics about the Resident Population. Available online: https://ugeo.urbistat.com/AdminStat/en/dk/demografia/eta/copenhagen/20368667/4?Export=2&MasterType=1 (accessed on 22 December 2022).
- Cobe Kids’ City Christianshavn. Available online: https://cobe.dk/place/kids-city-christianshavn (accessed on 22 December 2022).
- Biophilic Cities Birmingham, United Kingdom. Available online: https://www.biophiliccities.org/birmingham-uk (accessed on 23 December 2022).
- Novosadová, L.; van der Knaap, W. The Role of Biophilic Agents in Building a Green Resilient City; the Case of Birmingham, UK. Sustainability 2021, 13, 5033. [Google Scholar] [CrossRef]
- BOSF Future Parks Accelerator—Project Proposals. Available online: https://bosf.org.uk/projects/future-parks-accelerator-project-proposals/ (accessed on 23 December 2022).
- Birmingham Museums Trust Science Garden. Available online: https://www.birminghammuseums.org.uk/thinktank/highlights/science-garden%20 (accessed on 23 December 2022).
- The Necessity of Urban Green Space for Children’s Optimal Development; UNICEF: New York, NY, USA, 2021.
- Wernham, M. Mapping the Global Goals for Sustainable Development and the Convention on the Rights of the Child; UNICEF: New York, NY, USA, 2016. [Google Scholar]
- Transforming Our World: The 2030 Agenda for Sustainable Development; UN General Assembly: New York, NY, USA, 2015.
- Freeman, C.; Cook, A. Children and Planning; Lund Humphries: Chicago, IL, USA, 2019; ISBN 9781848223158. [Google Scholar]
- Designing Cities with Children and Young People; Bishop, K.; Corkery, L. (Eds.) Routledge: Oxfordshire, UK, 2017; ISBN 9781315710044. [Google Scholar]
- The United Nations Convention on the Rights of the Child; UNICEF: New York, NY, USA, 2016.
- Wood, J.; Bornat, D.; Bicquelet-Lock, A.; Peacock, S.; Galway, N.; Karelse, C.; Whittaker, M.; Hennessey, J.; Khan, M.; Gaffney, A. Child Friendly Planning in the UK: A Review; 2019. Available online: https://www.rtpi.org.uk/media/1568/childfriendlyplanningintheukareview2019.pdf (accessed on 22 December 2022).
- Mayor of London. Shaping Neighbourhoods: Play and Informal Recreation. Supplementary Planning Guidance; Greater London Authority: London, UK, 2012. [Google Scholar]
- How to Design for Inclusivity; Inclusive Play: Edinburgh, Scotland, 2012.
- Moore, A.; Boyle, B.; Lynch, H. Designing public playgrounds for inclusion: A scoping review of grey literature guidelines for Universal Design. Child. Geogr. 2022, 1–17. [Google Scholar] [CrossRef]
- PiPA. PiPA (Plan Inclusive Play Area): The Complete Checklist. 2015. Available online: https://jupiterplay.co.uk/wp-content/uploads/pipa-inclusive.pdf (accessed on 22 December 2022).
- White, M.P.; Alcock, I.; Grellier, J.; Wheeler, B.W.; Hartig, T.; Warber, S.L.; Bone, A.; Depledge, M.H.; Fleming, L.E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, K.L.; Measells, M.K.; Grado, S.C.; Robbins, A.S. Economic values of metro nature health benefits: A life course approach. Urban For. Urban Green. 2015, 14, 694–701. [Google Scholar] [CrossRef]
- Frumkin, H.; Gregory, N.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H., Jr.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; et al. Nature Contact and Human Health: A Research Agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef]
- Lyle, J.T. Regenerative Design for Sustainable Development; Professional Series; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 9780471178439. [Google Scholar]
- Start with the Park: Creating Sustainable Urban Green Spaces; CABE Space: London, UK, 2005.
- Cities Alive: Designing for Urban Childhoods; Arup: London, UK, 2017.
- White, R.; Stoecklin, V.L. Nurturing Children’s Biophilia: Developmentally Appropriate Environmental Education for Young Children. Available online: https://www.communityplaythings.co.uk/learning-library/articles/nurturing-childrens-biophilia (accessed on 12 January 2022).
Direct Experience of Nature | Indirect Experience of Nature | Experience of Space and Place |
---|---|---|
Light | Images of nature | Prospect and refuge |
Water | Natural materials | Organized complexity |
Vegetation | Natural colors | Integration of parts to wholes |
Animals | Simulated natural light and air | Transitional spaces |
Weather conditions | Naturalistic shapes and forms | Mobility and wayfinding |
Natural landscape and ecosystems | Evoking nature | Cultural and ecological attachment to place |
Fire | Information richness | |
Age, change, and patina of time | ||
Natural geometries | ||
Biomimicry |
London, UK | Sydney, Australia | Toronto, Canada | Vancouver, Canada | |
---|---|---|---|---|
Communal Outdoor Space | Dependent on local development plans. | Communal open space has a minimum area equal to 25% of the site. | Minimum 40 m2 of outdoor amenity space. | As per the ‘Play Space Provision’ requirements. |
Play Space Provision | A minimum of 10 m2 of dedicated outdoor play space per child. | No minimum play space requirements. | 25% of allocated indoor and outdoor amenities should be child-focused. | The total outdoor play area should range in size from 130 m2 to 280 m2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, A.; Andreucci, M.B. Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design. Sustainability 2023, 15, 1982. https://doi.org/10.3390/su15031982
Russo A, Andreucci MB. Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design. Sustainability. 2023; 15(3):1982. https://doi.org/10.3390/su15031982
Chicago/Turabian StyleRusso, Alessio, and Maria Beatrice Andreucci. 2023. "Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design" Sustainability 15, no. 3: 1982. https://doi.org/10.3390/su15031982
APA StyleRusso, A., & Andreucci, M. B. (2023). Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design. Sustainability, 15(3), 1982. https://doi.org/10.3390/su15031982