The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity
Abstract
:1. Introduction
2. Development of Hypothesis
Impact of Industrial Intelligence on High-Quality Green Industrial Development
3. Methodology
3.1. Variables
3.1.1. High-Quality Green Industrial Development
3.1.2. Industrial Intelligence
3.1.3. Environmental Regulation
3.1.4. Carbon Intensity
3.1.5. Control Variable
3.2. Research Model
3.2.1. Direct Impact Model
3.2.2. Model of Spatial Econometrics
3.2.3. Mediating Effect Model
3.3. Data
4. Results and Discussions
4.1. Direct Effect Test
4.2. Spatial Empirical Results Analysis
4.2.1. Spatial Correlation Test
4.2.2. Spatial Econometric Model Regression
4.2.3. Heterogeneity Analysis
4.3. Mediating Effect
4.4. Robustness Test
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Industrial social benefits | |
1. Employment Benefits | The unemployment rate in urban areas |
2. Consumer Expenditure | Consumption expenditure per capita |
3. Benefits Social Security | The proportion of expenditures from the Social Security Fund to GDP |
4. Benefits of Income | Per capita disposable income |
Industry Ecology Environment Benefits | |
1. Pollution Emission Rate | emissions of solid waste and exhaust gases from 10,000 of GDP |
2. Consumption of energy | Regional energy consumption and electricity consumption elasticity |
3. The intensity of Environmental Pollution Control | The percentage of investment used in industrial pollution control in industrial value-added |
4. Effectiveness of Environmental Pollution Control | The total rate of solid waste utilization |
Industry Economy Benefits | |
1. Effect of global competition | The ratio of industrial export and import to regional output |
2. Impact of Science and Technology innovation | (a) Total patents application (b) R&D expenditure/GDP |
3. Industry spatial agglomeration | Location entropy |
Appendix B
Main Indicators | Measurement Indicators |
---|---|
Investment in intelligent equipment | The ratio of electronic information industry revenue to GDP |
Competence in software maintenance and data processing | The proportion of information technology service’s sales revenue to GDP |
Capability to collect information | Internet access for customers to broadband |
Intelligent software’s growing popularity | The ratio of revenue from the sale of the software product to GDP |
Innovation capability | Granted patent application/R&D personnel’s full-time equivalent |
References
- Wu, H.; Hao, Y.; Ren, S.; Yang, X.; Xie, G. Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy 2021, 153, 112247. [Google Scholar] [CrossRef]
- Hao, C.; Shao, C.F.; Dong, Z.F.; Zhao, Y.H. Global Environmental Performance Index Report. Environment 2020, 48, 68–72. [Google Scholar]
- Lai, X.; Liu, J.; Shi, Q.; Georgiev, G.; Wu, G. Driving forces for low carbon technology innovation in the building industry: A critical review. Sustain. Energy Rev. 2017, 74, 299–315. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Jin, M.; Mao, J. Decisions and coordination of retailer-led low-carbon supply chain under altruistic preference. Eur. J. Oper. Res. 2021, 293, 910–925. [Google Scholar] [CrossRef]
- Su, C.W.; Naqvi, B.; Shao, X.F.; Li, J.P.; Jiao, Z. Trade and technological innovation: The catalysts for climate change and way forward for COP21. J. Environ. Manag. 2020, 269, 110774. [Google Scholar] [CrossRef]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do innovation, financial development, and transportation infrastructure matter for environmental sustainability in China? J. Environ. Manag. 2020, 271, 111026. [Google Scholar] [CrossRef]
- Hao, L.N.; Umar, M.; Khan, Z.; Ali, W. Green growth and low carbon emission in G7 countries: How critical the network of environmental taxes, renewable energy and human capital is? Sci. Total Environ. 2021, 752, 141853. [Google Scholar] [CrossRef]
- Costanza, R. What is ecological economics. Ecol. Econ. 1989, 1–7. [Google Scholar] [CrossRef]
- Pearce, D.; Markandya, A.; Barbier, E.B. Blueprint for a Green Economy; Earths Can Publications Limited: London, UK, 1989. [Google Scholar]
- Zhao, P.; Gao, Y.; Sun, X. How does artificial intelligence affect green economic growth? —Evidence from China. Sci. Total. Environ. 2022, 834, 155306. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Fossen, F.M.; Sorgner, A. Digitalization of work and entry into entrepreneurship. J. Bus. Res. 2019, 125, 548–563. [Google Scholar] [CrossRef]
- Sun, X.; Song, Y.; Zhao, P. The influence of artificial intelligence on the employment of heterogeneous labor force—Based on the perspective of labor supply. Inq. Econ. 2022, 171–190. (In Chinese) [Google Scholar]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hou, Y. How does industrial intelligence reshape the employment structure of Chinese labor force. China Ind. Econ. 2019, 5, 61–79. [Google Scholar]
- Miao, Z. Digital economy value chain: Concept, model structure, and mechanism. Appl. Econ. 2021, 53, 4342–4357. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Pol. 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Savchenko, A.B.; Borodina, T.L. Green and Digital Economy for Sustainable Development of Urban Areas. Reg. Res. Russ. 2020, 10, 583–592. [Google Scholar] [CrossRef]
- Tang, L.; Lu, B.; Tian, T. Spatial Correlation Network and Regional Differences for the Development of Digital Economy in China. Entropy 2021, 23, 1575. [Google Scholar] [CrossRef]
- Chinese Institute of Electronics. New Generation Artificial Intelligence White Paper—Intelligent Upgrading of Industries; Chinese Institute of Electronics: Beijing, China, 2020. [Google Scholar]
- Liu, X.; Fan, S.; Cao, F.; Peng, S.; Huang, H. Study on the Drivers of Inclusive Green Growth in China Based on the Digital Economy Represented by the Internet of Things (IoT). Comput. Intell. Neurosci. 2022, 2022, 8340371. [Google Scholar] [CrossRef]
- Li, K.; Kim, D.J.; Lang, K.R.; Kauffman, R.J.; Naldi, M. How should we understand the digital economy in Asia? Critical assessment and research agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef]
- Sorescu, A.; Schreier, M. Innovation in the digital economy: A broader view of its scope, antecedents, and consequences. J. Acad. Mark. Sci. 2021, 49, 627–631. [Google Scholar] [CrossRef]
- Giusti, J.D.; Alberti, F.G.; Belfanti, F. Makers and clusters. Knowledge leaks in open innovation networks. J. Innov. Knowl. 2020, 5, 20–28. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2020, 288, 125624. [Google Scholar] [CrossRef]
- Blut, M.; Wang, C.; Wünderlich, N.V.; Brock, C. Understanding anthropomorphism in service provision: A meta-analysis of physical robots, chatbots, and other AI. J. Acad Mark. Sci. 2021, 49, 632–658. [Google Scholar] [CrossRef]
- Wielgos, D.M.; Homburg, C.; Kuehnl, C. Digital business capability: Its impact on firm and customer performance. J. Acad. Mark. Sci. 2021, 49, 762–789. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Ozcan, K. Offerings as Digitalized Interactive Platforms: A Conceptual Framework and Implications. J. Mark. 2018, 82, 19–31. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Q. City size and urban labor productivity in China: New evidence from spatial city-level panel data analysis. Econ. Syst. 2017, 41, 165–178. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Meng, X.; Xu, S.; Zhang, J. How does industrial intelligence affect carbon intensity in China? Empirical analysis based on Chinese provincial panel data. J. Clean. Prod. 2022, 376, 134273. [Google Scholar] [CrossRef]
- Chen, C.; Ye, A. Heterogeneous Effects of ICT across Multiple Economic Development in Chinese Cities: A Spatial Quantile Regression Model. Sustainability 2021, 13, 954. [Google Scholar] [CrossRef]
- Anttiroiko, A.-V.; Laine, M.; Lönnqvist, H. City as a Growth Platform: Responses of the Cities of Helsinki Metropolitan Area to Global Digital Economy. Urban Sci. 2020, 4, 67. [Google Scholar] [CrossRef]
- Moretti, F.; Biancardi, D. Inbound open innovation and firm performance. J. Innov. Knowl. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Ribeiro-Navarrete, S.; Botella-Carrubi, D.; Palacios-Marqués, D.; Orero-Blat, M. The effect of digitalization on business performance: An applied study of KIBS. J. Bus. Res. 2021, 126, 319–326. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 2020, 162, 120343. [Google Scholar] [CrossRef]
- Woodward, R. The Organisation for Economic Co-operation and Development (OECD), 1st ed.Routledge Taylor & Francis Group: London, UK, 2009. [Google Scholar] [CrossRef]
- Wiebe, K.S.; Yamano, N. Estimating CO2 Emissions Embodied in Final Demand and Trade Using the OECD ICIO 2015; OECD iLibrary: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Dong, K.; Ren, X.; Zhao, J. How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis. Energy Econ. 2021, 103, 105620. [Google Scholar] [CrossRef]
- Xu, B.; Chen, W.; Zhang, G.; Wang, J.; Ping, W.; Luo, L.; Chen, J. How to achieve green growth in China’s agricultural sector. J. Clean. Prod. 2020, 271, 122770. [Google Scholar] [CrossRef]
- Xu, S.C.; He, Z.X.; Long, R.Y.; Chen, H. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 2016, 115, 139–148. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2018, 10, 152–161. [Google Scholar] [CrossRef]
- Gan, C.H.; Zheng, R.; Yu, S. The impact of industrial structure change on economic growth and volatility in China. Econ. Res. 2011, 5, 126–137. [Google Scholar]
- Liu, L.; Ding, T.; Wang, H. Digital Economy, Technological Innovation and Green High-Quality Development of Industry: A Study Case of China. Sustainability 2022, 14, 11078. [Google Scholar] [CrossRef]
- Mustapha, N.H.N.; Hashim, N.M.H.; Yacob, R. Technical Components of Total Factor Productivity Growth in Malaysian Manufacturing Industry. Appl. Math. 2013, 4, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, M. Does industrial intelligence improve resource misallocation? An empirical test based on China. Environ. Sci. Pollut. Res. 2022, 29, 77973–77991. [Google Scholar] [CrossRef]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, W. Environmental regulation, green innovation, and industrial green development: An empirical analysis based on the spatial Durbin model. Sustainability 2018, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.N.; Xu, S.C. Can industrial collaborative agglomeration reduce carbon intensity? Empirical evidence based on Chinese provincial panel data. Environ. Sci. Pollut. Res. 2022, 29, 61012–61026. [Google Scholar] [CrossRef] [PubMed]
- Mikayilov, J.I.; Galeotti, M.; Hasanov, F.J. The impact of economic growth on CO2 emissions in Azerbaijan. J. Clean. Prod. 2018, 197, 1558–1572. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Geng, S. How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef]
- Zhang, W.; Xuan, Y. The spatial effect of industrial intelligence on industrial structure upgrading: The role of labor structure and income inequality. Bus. Manafenent 2020, 42, 77–110. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Hou, S.; Song, L. The impact of intelligentization on the quality of regional economic growth and its internal mechanism:based on 2012–2018 provincial panel data in China. J. Guangdong Univ. Financ. Econ. 2021, 36, 4–16. (In Chinese) [Google Scholar]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
Variables | Symbols | Interpretation | N | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|---|---|
Explained variable | Ghd | high-quality Green development of industry | 2025 | 0.533 | 0.427 | −0.417 | 1.850 |
Explanatory variable | II | Industrial Intelligence | 2025 | 0.857 | 0.612 | 1.011 | 2.5990 |
Mediating variables | ER | Environmental Regulations | 2025 | 0.614 | 0.345 | 0.132 | 2.140 |
CI | Carbon intensity | 2025 | 0.420 | 0.527 | 0.012 | 2.106 | |
Urb | Urbanization | 2025 | 4.997 | 1.137 | 1.553 | 7.901 | |
ED | Economic development | 2025 | 9.661 | 0.542 | 6.993 | 12.542 | |
Control variables | GI | Government intervention | 2025 | 2.109 | 1.824 | 1.147 | 15.001 |
FD | Financial development | 2025 | 2.813 | 1.990 | 0.619 | 31.622 | |
Ope | Openness | 2025 | 0.516 | 0.718 | 0.1001 | 26.229 |
Variables | lnGhd | lnGhd | lnGhd | lnGhd | lnGhd | lnGhd |
---|---|---|---|---|---|---|
lnII | 0.4421 *** (0.0533) | 0.1371 *** 0.0144) | 0.1547 *** (0.0272) | 0.1338 ** (0.0227) | 0.0421 *** (0.0470) | 0.0212 *** (0.0368) |
lnUrb | 0.0531 *** (0.0439) | 0.0262 *** (0.0556) | 0.0701 * (0.0173) | 0.0336 ** (0.0535) | 0.0672 *** (0.0981) | |
lnED | 0.0237 *** (0.0529) | −0.2610 (−0.3421) | −0.5711 ** (−0.2290) | −0.5457 *** (0.3671) | ||
lnGI | −0.7201 ** (0.0347) | −0.5512 *** (−0.0912) | −0.7551 * (−0.3141) | |||
lnFD | −0.0336 (−0.0021) | 0.0725 *** (0.0044) | ||||
lnOpe | 0.6635 ** (0.0561) | |||||
Constant | 1.2271 *** | 0.5443 *** | −2.0112 * | 4.3443 *** | 3.3391 | 4.5644 ** |
R2 | 0.2331 | 0.6549 | 0.7710 | 0.2344 | 0.1090 | 0.2231 |
observations | 2025 | 2025 | 2025 | 2025 | 2025 | 2025 |
Year | II | Ghd | ||||||
---|---|---|---|---|---|---|---|---|
W1 | W2 | W1 | W2 | |||||
MI | Z values | MI | Z values | MI | Z values | M I | Z values | |
2010 | 0.153 *** | 10.442 | 0.013 ** | 5.339 | 0.022 ** | 3.343 | 0.231 ** | 0.762 |
2011 | 0.197 ** | 9.017 | 0.044 *** | 5.761 | 0.034 *** | 3.351 | 0.242 *** | 0.339 |
2012 | 0.227 *** | 10.361 | 0.024 *** | 6.092 | 0.071 ** | 3.440 | 0.206 *** | 0.251 |
2013 | 0.176 *** | 10.220 | 0.028 ** | 5.772 | 0.101 *** | 4.360 | 0.198 * | 1.362 |
2014 | 0.244 *** | 11.392 | 0.031 *** | 5.322 | 0.021 *** | 4.324 | 0.265 *** | 1.356 |
2015 | 0.253 *** | 10.001 | 0.029 *** | 5.656 | 0.043 *** | 3.291 | 0.190 *** | 0.212 |
2016 | 0.141 *** | 9.910 | 0.034 *** | 6.721 | 0.051 *** | 4.268 | 0.203 *** | 1.462 |
2017 | 0.210 ** | 11.326 | 0.041 * | 7.390 | 0.121 * | 4.341 | 0.218 ** | 1.247 |
2018 | 0.137 *** | 12.431 | 0.037 *** | 7.251 | 0.055 *** | 3.411 | 0.229 *** | 1.391 |
2019 | 0.210 *** | 10.732 | 0.022 *** | 6.109 | 0.024 *** | 2.406 | 0.241 *** | 0.971 |
2020 | 0.264 *** | 11.441 | 0.029 *** | 5.365 | 0.041 *** | 3.387 | 0.188 *** | 0.543 |
Variables | lnGhd SDM (W1) | lnGhd SDM (W2) | lnGhd SAR (W1) | lnGhd SAR (W2) |
---|---|---|---|---|
lnII | 0.1341 ** (0.0241) | 0.1421 *** (0.0341) | 0.2522 *** (0.02325) | 0.2370 ** (0.0355) |
W*lnII | 0.6332 ** (0.3911) | 0.4722 *** (0.1991) | ||
DE | 0.1341 ** (0.0441) | 0.1421 *** (0.0357) | 0.2415 *** (0.0447) | 0.2413 ** (0.0565) |
IE | 0.2215 ** (0.4140) | 0.4211 ** (0.6122) | −0.0141 ** (0.0341) | −0.0161 *** (0.0512) |
TE | 0.3556 ** (0.5103) | 0.5632 *** (0.6575) | 0.2274 * (0.4671) | 0.2252 ** (0.5219) |
Control variables | yes | yes | yes | yes |
observation | 2025 | 2025 | 2025 | 2025 |
Log-pseudolikelihood | 101.2478 | 198.3317 | 317.0016 | 315.4207 |
R2 | 0.5093 | 0.4412 | 0.7132 | 0.8682 |
Variables | Western | Central | Eastern |
---|---|---|---|
lnII | 0.0405 (1.523) | 0.0646 *** (3.0217) | 0.1477 *** (5.1632) |
Direct effect | 0.0437(1.6630) | 0.0651 *** (4.872) | 0.1481 *** (6.2203) |
Indirect effect | 0.0221 * (2.1045) | 0.0391 *** (4.3451) | 0.1127 *** (4.1263) |
Total effect | 0.0658 * (3.4413) | 0.1042 *** (5.2281) | 0.2608 *** (6.1705) |
Control variables | yes | yes | yes |
R2 | 0.8521 | 0.9371 | 0.8931 |
observation | 2025 | 2025 | 2025 |
Variables | (1) lnGhd | Med = MER | Med = AER | Med = PER | |||
---|---|---|---|---|---|---|---|
(2) lnMER | (3) lnGhd | (4) lnAER | (5) lnGhd | (6) lnPER | (7) lnGhd | ||
lnII | 0.6247 *** (6.2610) | 0.2019 *** (2.3135) | 0.5521 (4.1091) | 0.3130 ** (2.3317) | 0.5211 ** (4.601) | 0.2720 *** (3.2910) | 0.5742 ** (5.3013) |
lnMER | 0.0431 ** (1.1053) | ||||||
lnAER | 0.0552 (2.7102) | ||||||
lnPER | 0.0463 ** (2.2261) | ||||||
constant | 4.2201 *** | 2.3443 ** | 5.1091 *** | 3.6121 *** | 5.001 ** | 3.9121 ** | 6.2218 *** |
Control v | yes | yes | yes | yes | yes | yes | yes |
R2 | 0.5231 | 0.533 | 0.6101 | 0.4281 | 0.592 | 0.591 | 0.6103 |
Fixed effect | yes | yes | yes | yes | yes | yes | yes |
observation | 2025 | 2025 | 2025 | 2025 | 2025 | 2025 | 2025 |
Variables | (8) lnGhd | (9) lnCI | (10) lnGhd |
---|---|---|---|
lnII | 0.6247 *** (6.2610) | −0.0547 *** (−2.4120) | 0.4309 ** (4.1263) |
lnCI | 0.2105 *** (2.4437) | ||
Control v | yes | yes | yes |
Fixed effect | yes | yes | yes |
Constant | 3.5517 *** | −2.0344 *** | 3.2566 *** |
Observation | 2025 | 2025 | 2025 |
R2 | 0.831 | 0.7844 | 0.8520 |
Variables | (11) lnGhd | (12) lnGhd r = 0.5 | (13) lnGhd r = 0.8 | (14) lnGhd SDM (0–1 Matrix) | (15) lnGhd SDM (Nested Matrix) |
---|---|---|---|---|---|
lnII | 0.0735 *** (0.0441) | 0.0541 ** (0.2124) | 0.0342 ** (0.1011) | 0.5291 *** (2.002) | 0.2411 *** (2.191) |
constant | 4.0331 ** | 3.0542 ** | 5.0361 | 1.4281 * | 1.2991 ** |
Control variables | yes | yes | yes | yes | yes |
rho | 0.3131 *** (4.112) | 0.2911 *** (3.362) | |||
Direct effect | 0.5289 *** (2.201) | 0.2432 *** (4.253) | |||
Indirect effect | 0.0421 **(5.021) | 0.0212 *** (4.261) | |||
Total effect | 0.571 **(7.298) | 0.2644 *** (5.236) | |||
observations | 2025 | 2025 | 2025 | 2025 | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, T.; Li, B.; Malik, S.A.; Zhang, D. The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity. Sustainability 2023, 15, 1903. https://doi.org/10.3390/su15031903
Fatima T, Li B, Malik SA, Zhang D. The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity. Sustainability. 2023; 15(3):1903. https://doi.org/10.3390/su15031903
Chicago/Turabian StyleFatima, Taqdees, Bingxiang Li, Shahab Alam Malik, and Dan Zhang. 2023. "The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity" Sustainability 15, no. 3: 1903. https://doi.org/10.3390/su15031903
APA StyleFatima, T., Li, B., Malik, S. A., & Zhang, D. (2023). The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity. Sustainability, 15(3), 1903. https://doi.org/10.3390/su15031903