Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6
Abstract
:1. Introduction
2. Study Area Description, Data Collection and Methods
2.1. Study Area Description
2.2. Data Collection
2.3. Methodology
2.3.1. Bias Correction of GCMs
2.3.2. Description of SWAT Model
- SWt = final soil moisture content, mm;
- SWo = initial soil moisture content of the i-th day, mm;
- t = time, d; Rday = precipitation of the i-th day, mm;
- Qsurf = surface runoff of day i, mm;
- Ea = amount of evapotranspiration on day i, mm;
- Wseep = value of seepage of water from the soil into deeper layers i, mm;
- Qgw = return flow amount on day i, mm.
2.3.3. SWAT Model Calibration and Validation
2.3.4. Climate Change Forecasting
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Temporal Patterns of Precipitation
3.3. Temporal Patterns of Temperature
3.4. Temporal Patterns of Streamflow
4. Discussion
4.1. Climate Change Impacts on Streamflow in URIB
4.2. Importance of Watershed Management
5. Conclusions
- (1)
- The SWAT model delivers statistically significant outcomes during calibration (NSE = 0.77, R2 = 0.82, RSR = 0.48, and PBIAS = 13.5) and validation (NSE = 0.68, R2 = 0.71, RSR = 0.57, and PBIAS = 14.2).
- (2)
- Under the SSP245 scenario, the SWAT model was used to figure out how climate change would affect streamflow. It has been found that streamflow could rise by 19–30% under different scenarios.
- (3)
- Upper regions of the Indus Basin are very susceptible to temperature, and future changes are expected to be drastic, with maximum and minimum temperatures intensifying by almost 18%.
- (4)
- Precipitation has an increasing pattern through the period, which might contribute very little to streamflow, and precipitation will increase by 11–17%.
- (5)
- GCMs based on CMIP6 under SSP245 scenarios have been illustrated to be effective in predicting future climate change in the study area. A calibrated model has been used for the simulations of the (1974–1993), (1994–2013), (2014–2033), and (2074–2094) periods and all of them exhibited an increase in average annual streamflow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mwangu, A.R. Climate Change: Land Use and Water Management Practices by Small Holding Farmers in Kayunga District, Uganda. In Handbook of Climate Change Management: Research, Leadership, Transformation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1815–1841. [Google Scholar]
- Gao, C.; Kuklane, K.; Östergren, P.-O.; Kjellstrom, T. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 2018, 62, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci. Total Environ. 2023, 878, 162559. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.J.; Noguer, M. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 2002, 57, 267–269. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Ban, Y.; Liu, X.; Yin, Z.; Li, X.; Yin, L.; Zheng, W. Effect of urbanization on aerosol optical depth over Beijing: Land use and surface temperature analysis. Urban Clim. 2023, 51, 101655. [Google Scholar] [CrossRef]
- Nilawar, A.P.; Waikar, M.L. Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Sci. Total Environ. 2019, 650, 2685–2696. [Google Scholar] [CrossRef]
- Gong, S.; Bai, X.; Luo, G.; Li, C.; Wu, L.; Chen, F.; Ran, C.; Xi, H.; Zhang, S. Climate change has enhanced the positive contribution of rock weathering to the major ions in riverine transport. Glob. Planet. Change 2023, 228, 104203. [Google Scholar] [CrossRef]
- Shrestha, S.; Bach, T.V.; Pandey, V.P. Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environ. Sci. Policy 2016, 61, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178, 521–534. [Google Scholar] [CrossRef]
- Pandey, A.; Palmate, S.S. Assessing future water–sediment interaction and critical area prioritization at sub-watershed level for sustainable management. Paddy Water Environ. 2019, 17, 373–382. [Google Scholar] [CrossRef]
- Meehl, G.A.; Moss, R.; Taylor, K.E.; Eyring, V.; Stouffer, R.J.; Bony, S.; Stevens, B. Climate model intercomparisons: Preparing for the next phase. Eos Trans. Am. Geophys. Union 2014, 95, 77–78. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S. Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor. Appl. Climatol. 2013, 113, 27–44. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Li, G.; Xie, S.-P.; He, C.; Chen, Z. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 2017, 7, 708–712. [Google Scholar] [CrossRef]
- Saha, A.; Ghosh, S.; Sahana, A.; Rao, E. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys. Res. Lett. 2014, 41, 7323–7330. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Clim. Change 2017, 144, 535–548. [Google Scholar] [CrossRef]
- Long, S.-M.; Li, G. Model uncertainty in the projected Indian summer monsoon precipitation change under low-emission scenarios. Atmosphere 2021, 12, 248. [Google Scholar] [CrossRef]
- Ashfaq, M.; Rastogi, D.; Mei, R.; Touma, D.; Leung, L.R. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim. Dyn. 2017, 49, 193–223. [Google Scholar] [CrossRef]
- Sabeerali, C.; Rao, S.A.; Dhakate, A.; Salunke, K.; Goswami, B. Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim. Dyn. 2015, 45, 161–174. [Google Scholar] [CrossRef]
- Gusain, A.; Ghosh, S.; Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 2020, 232, 104680. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Change Res. 2019, 15, 445–456. [Google Scholar]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Swain, J.B.; Patra, K.C. Streamflow estimation in ungauged catchments using regionalization techniques. J. Hydrol. 2017, 554, 420–433. [Google Scholar] [CrossRef]
- Liang, J.; Liu, Q.; Zhang, H.; Li, X.; Qian, Z.; Lei, M.; Li, X.; Peng, Y.; Li, S.; Zeng, G. Interactive effects of climate variability and human activities on blue and green water scarcity in rapidly developing watershed. J. Clean. Prod. 2020, 265, 121834. [Google Scholar] [CrossRef]
- Yan, T.; Bai, J.; Lee Zhi Yi, A.; Shen, Z. SWAT-simulated streamflow responses to climate variability and human activities in the Miyun Reservoir Basin by considering streamflow components. Sustainability 2018, 10, 941. [Google Scholar] [CrossRef]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 2010, 14, 1669–1680. [Google Scholar] [CrossRef]
- Syed, Z.; Ahmad, S.; Dahri, Z.H.; Azmat, M.; Shoaib, M.; Inam, A.; Qamar, M.U.; Hussain, S.Z.; Ahmad, S. Hydroclimatology of the Chitral River in the Indus Basin under changing climate. Atmosphere 2022, 13, 295. [Google Scholar] [CrossRef]
- Williams, S.E.; Bolitho, E.E.; Fox, S. Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Immerzeel, W.; Shrestha, A.; Bierkens, M. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Archer, D. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 2003, 274, 198–210. [Google Scholar] [CrossRef]
- Elalem, S.; Pal, I. Mapping the vulnerability hotspots over Hindu-Kush Himalaya region to flooding disasters. Weather Clim. Extrem. 2015, 8, 46–58. [Google Scholar] [CrossRef]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.; Vellore, R.; Xu, Y.; You, Q. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–97. [Google Scholar]
- Adnan, M.; Nabi, G.; Kang, S.; Zhang, G.; Adnan, R.M.; Anjum, M.N.; Iqbal, M.; Ali, A.F. Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan. Pol. J. Environ. Stud. 2017, 26, 525–542. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Nguyen, H.; Mehrotra, R.; Sharma, A. Assessment of Climate Change Impacts on Reservoir Storage Reliability, Resilience, and Vulnerability Using a Multivariate Frequency Bias Correction Approach. Water Resour. Res. 2020, 56, e2019WR026022. [Google Scholar] [CrossRef]
- Rathjens, H.; Bieger, K.; Srinivasan, R.; Chaubey, I.; Arnold, J. CMhyd User Manual: Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies; SWAT: Garland, TX, USA, 2016. [Google Scholar]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Statistical bias correction of regional climate model simulations for climate change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia. Theor. Appl. Climatol. 2020, 139, 1569–1588. [Google Scholar] [CrossRef]
- Yi, L.; Sophocleous, M. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. J. Arid. Land 2011, 3, 164–173. [Google Scholar]
- Yu, W.; Zhao, Y.; Nan, Z.; Li, S. Improvement of snowmelt implementation in the SWAT hydrologic model. Acta Ecol. Sin 2013, 33, 6992–7001. [Google Scholar]
- Ficklin, D.L.; Barnhart, B.L. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol. 2014, 519, 2081–2090. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Liu, S.; Yang, B.; Zheng, W. Spatiotemporal analysis of haze in Beijing based on the multi-convolution model. Atmosphere 2021, 12, 1408. [Google Scholar] [CrossRef]
- Shang, X.; Jiang, X.; Jia, R.; Wei, C. Land Use and Climate Change Effects on Surface Runoff Variations in the Upper Heihe River Basin. Water 2019, 11, 344. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Di Bucchianico, A. Coefficient of determination (R 2). Encyclopedia of Statistics in Quality and Reliability; Wiley: Hoboken, NJ, USA, 2008; p. 1. [Google Scholar]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. A comparison of streamflow and baseflow responses to land-use change and the variation in climate parameters using SWAT. Water 2020, 12, 191. [Google Scholar] [CrossRef]
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef]
- Martínez-Salvador, A.; Millares, A.; Eekhout, J.P.; Conesa-García, C. Assessment of Streamflow from EURO-CORDEX Regional Climate Simulations in Semi-Arid Catchments Using the SWAT Model. Sustainability 2021, 13, 7120. [Google Scholar] [CrossRef]
- Neupane, R.P.; Yao, J.; White, J.D. Estimating the effects of climate change on the intensification of monsoonal-driven stream discharge in a Himalayan watershed. Hydrol. Process. 2014, 28, 6236–6250. [Google Scholar] [CrossRef]
- Haleem, K.; Khan, A.U.; Ahmad, S.; Khan, M.; Khan, F.A.; Khan, W.; Khan, J. Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. J. Water Clim. Change 2022, 13, 758–770. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; De Jong, S.; Bierkens, M. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef]
- Forsythe, N.; Fowler, H.; Blenkinsop, S.; Burton, A.; Kilsby, C.; Archer, D.; Harpham, C.; Hashmi, M. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin. J. Hydrol. 2014, 517, 1019–1034. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Dutta, A. A stream water availability model of Upper Indus Basin based on a topologic model and global climatic datasets. Water Resour. Manag. 2010, 24, 4403–4443. [Google Scholar] [CrossRef]
- Khattak, M.S.; Babel, M.; Sharif, M. Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Bocchiola, D.; Diolaiuti, G. Recent (1980–2009) evidence of climate change in the upper Karakoram, Pakistan. Theor. Appl. Climatol. 2013, 113, 611–641. [Google Scholar] [CrossRef]
- Farhan, S.B.; Zhang, Y.; Ma, Y.; Guo, Y.; Ma, N. Hydrological regimes under the conjunction of westerly and monsoon climates: A case investigation in the Astore Basin, Northwestern Himalaya. Clim. Dyn. 2015, 44, 3015–3032. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Quaranta, E. State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology. J. Catal. 2016, 343, 2–45. [Google Scholar] [CrossRef]
- Islam, S.; Rehman, N.; Sheikh, M.; Khan, A. Assessment of Future Changes in Temperature Related Extreme Indices over Pakistan Using Regional Climate Model PRECIS; Global Change Impact Study Centre: Islamabad, Pakistan, 2009. [Google Scholar]
- Rajbhandari, R.; Shrestha, A.; Kulkarni, A.; Patwardhan, S.; Bajracharya, S. Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim. Dyn. 2015, 44, 339–357. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Khan, S.; Khan, A.U.; Khan, M.; Khan, F.A.; Khan, S.; Khan, J. Intercomparison of SWAT and ANN techniques in simulating streamflows in the Astore Basin of the Upper Indus. Water Sci. Technol. 2023, 88, 1847–1862. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, A.U.; Khan, F.A.; Farooq, M.; Baig, A.A.; Shah, L.A.; Khan, J. How vegetation spatially alters the response of precipitation and air temperature? Evidence from Pakistan. Asian J. Atmos. Environ. 2020, 14, 133–145. [Google Scholar] [CrossRef]
- Wisal, K.; Asif, K.; Ullah, K.A.; Mujahid, K. Evaluation of hydrological modeling using climatic station and gridded precipitation dataset. Mausam 2020, 71, 717–728. [Google Scholar] [CrossRef]
- Hamidov, A.; Daedlow, K.; Webber, H.; Hussein, H.; Abdurahmanov, I.; Dolidudko, A.; Seerat, A.Y.; Solieva, U.; Woldeyohanes, T.; Helming, K. Operationalizing water-energy-food nexus research for sustainable development in social-ecological systems: An interdisciplinary learning case in Central Asia. Ecol. Soc. 2022, 27. [Google Scholar] [CrossRef]
- Hussein, H.; Campbell, Z.; Leather, J.; Ryce, P. Putting diplomacy at the forefront of Water Diplomacy. PLoS Water 2023, 2, e0000173. [Google Scholar] [CrossRef]
Station Name | Latitude | Longitude | Elevation (m) |
---|---|---|---|
Bunji | 35.6667 | 74.6333 | 1372 |
Gilgit (P.B.O) | 35.9167 | 74.3333 | 1460 |
Chilas | 35.4167 | 74.1 | 1250 |
Hunza | 36.3167 | 74.65 | 2156 |
Astore | 35.3333 | 74.9 | 2168 |
Performance Rating | NSE | R2 | RSR | PBIAS (%) |
---|---|---|---|---|
Very good | 0.75 < NSE ≤ 1 | 0.75 < R2 ≤ 1 | 0 ≤ RSR ≤ 0.5 | −10 < PBIAS < 10 |
Good | 0.65 < NSE ≤ 0.75 | 0.65 < R2 ≤ 0.75 | 0.5 < RSR ≤ 0.6 | ±10 ≤ PBIAS < ±15 |
Satisfactory | 0.5 < NSE ≤ 0.65 | 0.5 < R2 ≤ 0.65 | 0.6 < RSR ≤ 0.7 | ±15 ≤ PBIAS < ±25 |
Unsatisfactory | NSE ≤ 0.5 | R2 ≤ 0.5 | RSR > 0.7 | PBIAS ≥ 25 |
Modeling Center | Model Institute | ID | Resolution (km) |
---|---|---|---|
Commonwealth Scientific and Industrial Research Organization, Australian Research Council Centre of Excellence for Climate System Science, Australia | ACCESS-CM2 | ACCESS | 192 × 144 |
Centro Euro-Mediterraneo per i Cambiamenti, Italy | CMCC-CM2-SR5 | CMCC | 288 × 192 |
Geophysical Fluid Dynamics Laboratory, United States | GFDL-ESM4 | GFDL | 288 × 180 |
Geophysical Fluid Dynamics Laboratory, United States | GFDL-CM4 | GFDL | 360 × 180 |
Institute for Numerical Mathematics, Russia | INM-CM4-8 | INM | 180 × 120 |
Institute for Numerical Mathematics, Russia | INM-CM5-0 | INM | 180 × 120 |
Norwegian Climate Centre, Norway | NorESM2-LM | NorESM2 | 144 × 90 |
Norwegian Climate Centre, Norway | NorESM2-MM | NorESM2 | 288 × 192 |
The Taiwan Earth System Model version 1 | TaiESM1 | TaiESM1 | 100 × 138 |
Met Office Hadley Centre, United Kingdom | UKESM1-0-LL | UKESM1 | 192 × 144 |
Parameter | Description | Fitted Value | Ranges |
---|---|---|---|
CN2.mgt | SCS runoff curve number. | 63.1 | (35, 98) |
ALPHA_BF.gw | Baseflow alpha factor (days). | 0.83 | (0, 1) |
GW_DELAY.gw | Groundwater delay (days). | 409.12 | (0, 500) |
GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm). | 2118.01 | (0, 5000) |
SURLAG.hru | Surface runoff lag time. | 12.52 | (0.05, 24) |
SLSOIL.hru | Slope length for lateral subsurface flow. | 84.69 | (0, 150) |
EPCO.hru | Plant uptake compensation factor. | 0.45 | (0, 1) |
SOL_K(..).sol | Saturated hydraulic conductivity. | 666.74 | (0, 2000) |
SFTMP.bsn | Snowfall temperature. | 7.12 | (−20, 20) |
SMTMP.bsn | Snow melt base temperature. | 17.60 | (−20, 20) |
SNO50COV.bsn | Snow water equivalent that corresponds to 50% snow cover. | 0.79 | (0, 1) |
CH_K2.rte | Effective hydraulic conductivity in main channel alluvium. | 76.36 | (−0.01, 500) |
ESCO.hru | Soil evaporation compensation factor. | 0.94 | (0, 1) |
LAT_TTIME.hru | Lateral flow travel time. | 34.14 | (0, 180) |
CNOP{…mgt | SCS runoff curve number for moisture condition. | 16.84 | (0, 100) |
SNO_SUB.sub | Initial snow water content. | 92.63 | (0, 150) |
Calibration (1985–1999) | Validation (2000–2010) | ||||||
---|---|---|---|---|---|---|---|
R2 | NSE | PBIAS | RSR | R2 | NSE | PBIAS | RSR |
0.82 | 0.77 | 13.5 | 0.48 | 0.71 | 0.68 | 14.2 | 0.57 |
Statistics | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Min. | 0 | 0.01 | 0.07 | 0 |
1st Quartile | 0.42 | 1.14 | 0.495 | 0.165 |
Median | 1.08 | 1.92 | 0.77 | 0.38 |
Mean | 1.4 | 2.4 | 0.89 | 0.69 |
3rd Quartile | 1.96 | 3.31 | 1.14 | 0.64 |
Max. | 5.6 | 7.37 | 3.55 | 5.74 |
Standard Deviation | 0.65 | 1.08 | 0.5 | 0.29 |
Data Set | Historical 1974–1993 | Baseline 1994–2013 | 20’s 2014–2033 | 80’s 2074–2094 |
---|---|---|---|---|
Observed | - | 1.32 | - | - |
ACCESS-CM2 | 1.39 (+4%) | 1.34 | 1.35 (+1%) | 1.57 (+17%) |
CMCC-CM2-SR5 | 1.3 (2%) | 1.27 | 1.32 (+4%) | 1.44 (+13%) |
GFDL-ESM4 | 1.32 (3%) | 1.28 | 1.31 (+2%) | 1.51 (+18%) |
INM-CM4-8 | 1.35 (−4%) | 1.41 | 1.44 (+2%) | 1.57 (+11%) |
INM-CM5-0 | 1.4 (+4%) | 1.35 | 1.38 (+2%) | 1.51 (+12%) |
NorESM2-LM | 1.4 (3%) | 1.36 | 1.43 (+5%) | 1.51 (+11%) |
NorESM2-MM | 1.38 (+7%) | 1.29 | 1.34 (+4%) | 1.51 (+17%) |
TaiESM1 | 1.35 (−1%) | 1.37 | 1.39 (+1%) | 1.52 (+11%) |
UKESM1-0-LL | 1.37 (+1%) | 1.35 | 1.38 (+2%) | 1.55 (+15%) |
GFDL-CM4 | 1.4 (+4%) | 1.35 | 1.4 (+4%) | 1.53 (+13%) |
Statistics | Winter | Spring | Summer | Autumn | ||||
---|---|---|---|---|---|---|---|---|
Max | Min | Max | Min | Max | Min | Max | Min | |
Min. | 7.7 | −6.7 | 14.8 | 2.5 | 30.7 | 10.6 | 10.6 | −1.5 |
1st Quartile | 10.5 | −2.9 | 20 | 6.1 | 33.8 | 14.4 | 14.4 | 1.3 |
Median | 12 | −1.5 | 24 | 9.2 | 35.2 | 16.3 | 16.3 | 5.9 |
Mean | 11.8 | −1.4 | 24.2 | 8.7 | 35.1 | 16.2 | 16.2 | 6.1 |
3rd Quartile | 13 | 0.4 | 27.3 | 11.2 | 36.2 | 17.8 | 17.8 | 11.7 |
Max. | 19.1 | 4.1 | 34.9 | 13.5 | 39.7 | 20.4 | 20.4 | 14.2 |
Standard Deviation | 2.0 | 2.4 | 5.1 | 2.8 | 3.5 | 2.4 | 3.0 | 5.0 |
Data Set | Historical 1974–1993 | Baseline 1994–2013 | 20’s 2014–2033 | 80’s 2074–2094 | ||||
---|---|---|---|---|---|---|---|---|
Max | Min | Max | Min | Max | Min | Max | Min | |
Observed | - | - | 23.5 | 17.8 | - | - | - | - |
ACCESS-CM2 | 21.8 | 14.9 | 23.4 | 16.3 | 24.5 | 19.8 | 26.7 | 20.4 |
CMCC-CM2-SR5 | 21.7 | 15.4 | 23.2 | 17.8 | 23.9 | 19.2 | 26.9 | 21 |
GFDL-ESM4 | 22 | 16.2 | 23 | 16.9 | 24.4 | 18.2 | 26.7 | 19.3 |
INM-CM4-8 | 22.1 | 15.6 | 22.8 | 16.3 | 23.5 | 17.5 | 27.8 | 19.5 |
INM-CM5-0 | 22.1 | 15.7 | 22.7 | 17.2 | 24.1 | 18.6 | 26.1 | 20.9 |
NorESM2-LM | 21.7 | 15.8 | 22.9 | 16.6 | 24.2 | 18.1 | 27.6 | 19.1 |
NorESM2-MM | 21.7 | 15.9 | 22.7 | 17.3 | 23.9 | 17.9 | 27.7 | 20.1 |
TaiESM1 | 21.6 | 15.5 | 23.2 | 17.5 | 24.5 | 18.5 | 26.9 | 20.7 |
UKESM1-0-LL | 22 | 15.9 | 21.6 | 17.7 | 23.2 | 18.9 | 25.5 | 20.5 |
GFDL-CM4 | 21.8 | 15.4 | 22.3 | 16.9 | 24.5 | 18.8 | 26.3 | 19.6 |
Statistics | Winter (m3/s) | Spring (m3/s) | Summer (m3/s) | Autumn (m3/s) |
---|---|---|---|---|
Min. | 19.4 | 19.9 | 137.8 | 31.2 |
1st Quartile | 30.1 | 33.6 | 258.2 | 52 |
Median | 33.7 | 60 | 345.5 | 67.27 |
Mean | 34.5 | 103.6 | 361.7 | 87.6 |
3rd Quartile | 38.27 | 164.8 | 446.7 | 105.4 |
Max. | 55.9 | 389.4 | 738.4 | 348.6 |
Standard Deviation | 6.7 | 112.2 | 220.6 | 85.8 |
Data Set | Historical 1974–1993 | Baseline 1994–2013 | 20’s 2014–2033 | 80’s 2074–2094 |
---|---|---|---|---|
Observed | - | 146.5 | - | - |
ACCESS-CM2 | 135.7 (−8%) | 147.5 | 160.2 (+9%) | 174.8 (+19%) |
CMCC-CM2-SR5 | 133.3 (−7%) | 143.7 | 161.2 (+12%) | 177.1 (+23%) |
GFDL-ESM4 | 134.1 (−5%) | 139.9 | 159.4 (+14%) | 181.5 (+30%) |
INM-CM4-8 | 132.5 (−9%) | 145.5 | 156.9 (+8%) | 173.6 (+19%) |
INM-CM5-0 | 129.9 (−12%) | 147.3 | 160.8 (+9%) | 179.4 (+22%) |
NorESM2-LM | 135.1 (−6%) | 142.6 | 162.3 (+14%) | 183.1 (+28%) |
NorESM2-MM | 128.5 (−12%) | 146.1 | 159.6 (+9%) | 179.9 (+23%) |
TaiESM1 | 133.9 (−7%) | 141.3 | 163.5 (+16%) | 181.3 (+28%) |
UKESM1-0-LL | 131.7 (−11%) | 148.3 | 160.1 (+8%) | 180.7 (+22%) |
GFDL-CM4 | 134.6 (−6%) | 143.7 | 157.3 (+9%) | 179.6 (+25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haleem, K.; Khan, A.U.; Khan, J.; Ghanim, A.A.J.; Al-Areeq, A.M. Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6. Sustainability 2023, 15, 16117. https://doi.org/10.3390/su152216117
Haleem K, Khan AU, Khan J, Ghanim AAJ, Al-Areeq AM. Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6. Sustainability. 2023; 15(22):16117. https://doi.org/10.3390/su152216117
Chicago/Turabian StyleHaleem, Kashif, Afed Ullah Khan, Jehanzeb Khan, Abdulnoor A. J. Ghanim, and Ahmed M. Al-Areeq. 2023. "Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6" Sustainability 15, no. 22: 16117. https://doi.org/10.3390/su152216117