Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment
Abstract
:1. Introduction
- The evaluation of different physicochemical parameters on domestic wastewater.
- The effectiveness of Chlorella vulgaris in enhancing dissolved oxygen (DO) concentrations on domestic wastewater.
- The ability of Chlorella vulgaris to reduce chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) in domestic wastewater.
- Chlorella vulgaris’ performance in the uptake and removal of ammonia and phosphate (P) nutrients in domestic wastewater.
2. Materials and Methods
2.1. Chlorella vulgaris Preparation
2.1.1. Selection of Algal Species
2.1.2. Culture Condition
2.2. Analysis and Sampling of Wastewater
2.3. Processing Methodology
Filtration System
3. Results and Discussion
3.1. Treatment of Wastewater
3.2. Treatment Result
3.2.1. COD Removal
3.2.2. Phosphate Removal
3.2.3. Removal of Ammonia
3.3. Performance of Removing Contaminants from Wastewater Using Microalgae
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, L. Bioaccumulation and Toxic Effect of Zinc on the Green Alga Chlorella Vulgaris. Master’s Thesis, University of Quebec, Montreal, QC, Canada, 2015. [Google Scholar]
- El Bakraoui, H.; Slaoui, M.; Mabrouki, J.; Hmouni, D.; Laroche, C. Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System. Appl. Sci. 2022, 13, 68. [Google Scholar] [CrossRef]
- Clus, O. Condenseurs Radiatifs de la Vapeur D’eau Atmospherique (Rosee) Comme Source Alternative D’eau Douce. Ph. D. Thesis, Université Pascal Paoli, Corte, France, 2007. [Google Scholar]
- Roshan, A.; Kumar, M. Water end-use estimation can support the urban water crisis management: A critical review. J. Environ. Manag. 2020, 268, 110663. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M. Réutilisation des Eaux Usées Epurées par Association de Procédés Biologiques et Membranaires; INSA: Toulouse, France, 2011. [Google Scholar]
- Benoit, G.; Dauphin, V.; Ducrocq, T.; Nougarol, S.; Salva, E. Valorisation des eaux usées épurées pour l’irrigation. Actes Sémin. Dév. Durable OIEau Engees 2011, 35, 12–13. [Google Scholar]
- Eme, C.; Boutin, C. Composition des Eaux Usées Domestiques par Source D’Émission à L’Échelle de L’Habitation. Publication Onema. 2015. Available online: https://www.assainissement-non-collectif.developpement-durable.gouv.fr/IMG/pdf/composition_eu_par_source-final_2015.pdf (accessed on 15 August 2023).
- Nassali, H.; Ben Bouih, H.; Srhiri, A.; Dhahbi, M. Influence des rejets des eaux usées sur la composition des eaux de surface et des sédiments superficiels du lac Merja Fouarate au Maroc. Afr. Sci. Rev. Int. Sci. Technol. 2005, 1, 35402. [Google Scholar] [CrossRef]
- Samaké, D. Traitement des Eaux Usées de Tanneries à L’aide de Matériaux à Base D’argile. Ph.D. Thesis, Université Joseph-Fourier-Grenoble I, Saint-Martin-d’Hères, France, 2008. [Google Scholar]
- Aries, F.Z.; Mellit, A.; Labiad, H.; Benhamada, O.E. Adptation des Microalgues aux Métaux: Techniques de Culture et Procédés de Bioremédiation. Ph.D. Thesis, Université de Jijel, Jijel, Algeria, 2020. [Google Scholar]
- Choumane, F.Z. Elimination des Métaux Lourds et Pesticides en Solution Aqueuse par des Matrices Argileuses. Ph.D. Thesis, Université de Tlemcen-Abou Bekr Belkaid, Chetouane, Algeria, 2015. [Google Scholar]
- Tomgouani, K.A.O.; El Mejahed, K.; Bouzidi, A. Evaluation de la Pollution Métallique dans les sols Agricoles Irrigués par les eaux Usées de la ville de Settat (Maroc). Bull. L’Inst. Sci. Rabat 2007, 29, 89–92. [Google Scholar]
- Baize, D. Teneurs totales en métaux lourds dans les sols français. Courr. Environ. INRA 1994, 22, 37–46. [Google Scholar]
- Kehal, M.; Mennour, A.; Reinert, L.; Fuzellier, H. Heavy Metals in Water of The Skikda Bay Les Metaux Lourds dans les Eaux de la Baie De Skikda. Environ. Technol. 2004, 25, 1059–1065. [Google Scholar] [CrossRef]
- Abdulredha, D.S.; AlMousawi, N.J.; Azeez, N.M. Using Blue-Green Algae Hapalosiphon sp. & Green Algae Scenedesmus spp. in Reducing Organic Pollutants from Wastewater. Ann. Rom. Soc. Cell Biol. 2021, 25, 8647–8653. [Google Scholar]
- Mathew, M.M.; Khatana, K.; Vats, V.; Dhanker, R.; Kumar, R.; Dahms, H.-U.; Hwang, J.-S. Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Front. Microbiol. 2022, 12, 801051. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2021.801051 (accessed on 15 August 2023). [CrossRef]
- Lassoui, A.; Soltani, S. Contribution a la Biorememdiation des eaux Usees par des Microalgues; Université of Eloued: El Oued, Algeria, 2021. [Google Scholar]
- Rath, B. Microalgal bioremediation: Current practices and perspectives. J. Biochem. Technol. 2012, 3, 299–304. [Google Scholar]
- Bouchentouf, M.; Abdarrahmane, M.; Dehmani, S. Traitement des Eaux Usées par les Microalgues. Ph.D. Thesis, Universite Ahmed Draia-Adrar, Adrar, Algeria, 2021. [Google Scholar]
- Olguín, E.J.; Sánchez-Galván, G. Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012, 30, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Ma, M.; Yu, Z.; Jiang, L.; Hou, Q.; Xie, Z.; Liu, M.; Yu, S.; Pei, H. Alga-based dairy wastewater treatment scheme: Candidates screening, process advancement, and economic analysis. J. Clean. Prod. 2023, 390, 136105. [Google Scholar] [CrossRef]
- Maneechote, W.; Cheirsilp, B.; Angelidaki, I.; Suyotha, W.; Boonsawang, P. Chitosan-coated oleaginous microalgae-fungal pellets for improved bioremediation of non-sterile secondary effluent and application in carbon dioxide sequestration in bubble column photobioreactors. Bioresour. Technol. 2023, 372, 128675. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Hong, Y. Microalgae-Based Wastewater Treatment and Recovery with Biomass and Value-Added Products: A Brief Review. Curr. Pollut. Rep. 2021, 7, 227–245. [Google Scholar] [CrossRef]
- Mantzorou, A.; Ververidis, F. Microalgal biofilms: A further step over current microalgal cultivation techniques. Sci. Total Environ. 2018, 651, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2010, 2, 012701. [Google Scholar] [CrossRef]
- Japar, A.S.; Takriff, M.S.; Yasin, N.H.M. Harvesting microalgal biomass and lipid extraction for potential biofuel production: A review. J. Environ. Chem. Eng. 2017, 5, 555–563. [Google Scholar] [CrossRef]
- Show, K.-Y.; Lee, D.-J.; Tay, J.-H.; Lee, T.-M.; Chang, J.-S. Microalgal drying and cell disruption—Recent advances. Bioresour. Technol. 2015, 184, 258–266. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Liu, T.; Yang, Z.; Xiao, Y.; Zeng, G.; Sun, X. Harvesting of Chlorella sp. using hollow fiber ultrafiltration. Environ. Sci. Pollut. Res. 2012, 19, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Petrusevski, B.; Bolier, G.; Van Breemen, A.; Alaerts, G. Tangential flow filtration: A method to concentrate freshwater algae. Water Res. 1995, 29, 1419–1424. [Google Scholar] [CrossRef]
- Rickman, M.; Pellegrino, J.; Davis, R. Fouling phenomena during membrane filtration of microalgae. J. Membr. Sci. 2012, 423-424, 33–42. [Google Scholar] [CrossRef]
- Gerardo, M.L.; Van Den Hende, S.; Vervaeren, H.; Coward, T.; Skill, S.C. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Res. 2015, 11, 248–262. [Google Scholar] [CrossRef]
- Rahman, A.; Jahanara, I.; Jolly, Y.N. Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Sci. Eng. 2021, 14, 139–148. [Google Scholar] [CrossRef]
- Lv, K.; Yuan, Q.; Li, H.; Li, T.; Ma, H.; Gao, C.; Zhang, S.; Liu, Y.; Zhao, L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Kim, J.; Lee, C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci. Rep. 2019, 9, 6123. [Google Scholar] [CrossRef]
- Moondra, N.; Jariwala, N.D.; Christian, R.A. Sustainable treatment of domestic wastewater through microalgae. Int. J. Phytoremediat. 2020, 22, 1480–1486. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Church, J.; Lee, S.-J.; Park, J.; Lee, W.H. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef]
- Delgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep. 2016, 11, 18–26. [Google Scholar] [CrossRef]
- Boutayeb, M.; Bouzidi, A.; Fekhaoui, M. Etude de la qualité physico-chimique des eaux usées brutes de cinq villes de la région de la Chaouia—Ouardigha (Maroc). Bull. L’Inst. Sci. 2012, 34, 145–150. [Google Scholar]
- Valeur Limites de Rejet à Respecter—Recherche Google. Available online: https://www.google.com/search?q=valeur+limites+de+rejet+%C3%A0+respecter&oq=valeur+limites+de+rejet+%C3%A0+respecter&aqs=chrome..69i57j33i160l2.17045j0j15&sourceid=chrome&ie=UTF-8 (accessed on 13 March 2023).
- Elaouani, H.; Haffad, H.; Jaafari, K.; Elbada, N.; Mailainine, S.; Benkhouja, K. Evaluation de la qualité physico-chimique des rejets liquides industriels de la zone industrielle d’elmarsa laayoune. Rev. L’Entrep. L’Innov. 2019, 2. [Google Scholar] [CrossRef]
- Makhoukh, M.; Sbaa, M.; Berrahou, A.; Van Clooster, M. Contribution a L’etude Physico-Chimique des Eaux Superficielles de L’oued Moulouya (Maroc Oriental). LARHYSS J. 2011. [Google Scholar]
- Legros, N. La Réutilisation des eaux Usées Traitées en Irrigation comme Incubateur d’un Processus de Pérennisation et de Bonne Gouvernance des Infrastructures D’assainissement: Cas Pratique de la Station D’épuration de Tidili au Maroc. Master’s Thesis, Université de Liège, Liège, Belgium, 2017. [Google Scholar]
- Hamid, C.; Elwatik, L.; Ramchoun, Y.; Fath-Allah, R.; Ayyach, A.; Fathallah, Z.; Midaoui, A.E.; Hbaiz, E.M. Étude des performances épuratoires de la technique du lagunage aéré appliquée à la station d’épuration de la ville d’Errachidia—Maroc. Afr. Sci. Rev. Int. Sci. Technol. 2014, 10. [Google Scholar]
- Dimane, F.; Haboubi, K.; Hanafi, I.; El Himri, A. Étude de la Performance du Dispositif de Traitement des Eaux UsÉes par Boues ActivÉes de la ville d’Al- Hoceima, Maroc. Eur. Sci. J. ESJ 2016, 12, 272. [Google Scholar] [CrossRef]
- Rassam, A.; Chaouch, A.; Bourkhiss, B.; Ouhssine, M.; Lakhlifi, T.; Bourkhiss, M.; El Watik, L. Caractéristiques Physico-Chimiques des Eaux Usées Brutes de la Ville D’oujda (Maroc). Technol. Lab. 2012, 7. [Google Scholar]
- Hamieh, M.T. Étude des Propriétés Physico-Chimiques et Colloïdales du Bassin de la Rivière LITANI, Liban. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2016. [Google Scholar]
- El Hammoumi, N.; Sinan, M.; Lekhlif, B.; El Mahjoub, L. Évaluation de la qualité des eaux souterraines pour l’utilisation dans l’eau potable et l’agriculture: Plaine de Tadla, Maroc. Afr. Sci. Rev. Int. Sci. Technol. 2012, 8. [Google Scholar]
- Biodiversité et Milieux. Available online: https://www.environnement.gov.ma/fr/lois-et-reglementations/textes-juridiques?id=940 (accessed on 13 March 2023).
- Valeurs Limites des Rejets. Available online: http://www.environnement.gov.ma/fr/78-cat1/1012-valeurs-limites-des-rejets (accessed on 13 March 2023).
- In BW. Available online: https://www.inbw.be/ (accessed on 13 March 2023).
- ONSSA. Code de Procédures. Available online: https://www.onssa.gov.ma/controle-des-produits-alimentaires/code-de-procedures/ (accessed on 14 March 2023).
- Benamar, A.; Mahjoubi, F.Z.; Kzaibe, F. Evaluation of water quality of Oum Er Rbia River (Morocco) using water quality index (WQI) method. J. Appl. Surf. Interfaces 2019, 5. [Google Scholar] [CrossRef]
- He, P.; Mao, B.; Lü, F.; Shao, L.; Lee, D.; Chang, J. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. Bioresour. Technol. 2013, 146, 562–568. [Google Scholar] [CrossRef]
- Marjakangas, J.M.; Chen, C.-Y.; Lakaniemi, A.-M.; Puhakka, J.A.; Whang, L.-M.; Chang, J.-S. Simultaneous nutrient removal and lipid production with Chlorella vulgaris on sterilized and non-sterilized anaerobically pretreated piggery wastewater. Biochem. Eng. J. 2015, 103, 177–184. [Google Scholar] [CrossRef]
- Lee, S.-A.; Kim, M.; Kim, H.-S.; Ahn, C.-Y. Extra benefit of microalgae in raw piggery wastewater treatment: Pathogen reduction. Microbiome 2022, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Burns, T. How to Reduce COD in Water| bioprocessH2O. Bioprocessh2o. 2021. Available online: https://www.bioprocessh2o.com/ (accessed on 15 August 2023).
- EPA. Aquatic Life Criteria—Ammonia. 20 August 2015. Available online: https://www.epa.gov/wqc/aquatic-life-criteria-ammonia (accessed on 15 August 2023).
- Kshirsagar, A.D. Bioremediation of wastewater by using microalgae: An experimental study. Pharm. Res. 2013, 2, 339–346. [Google Scholar]
- Li, G.; Park, S.; Kang, D.W.; Krajmalnik-Brown, R.; Rittmann, B.E. 2, 4, 5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: Roles of adsorption, photocatalysis, and biodegradation. Environ. Sci. Technol. 2011, 45, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Sousa, R.A.; Reis, R.L. A practical perspective on ulvan extracted from green algae. J. Appl. Phycol. 2012, 25, 407–424. [Google Scholar] [CrossRef]
- Aslan, S.; Kapdan, I.K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour. Technol. 2011, 102, 10861–10867. [Google Scholar] [CrossRef] [PubMed]
- Kube, M.; Jefferson, B.; Fan, L.; Roddick, F. The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal. Algal Res. 2018, 31, 478–488. [Google Scholar] [CrossRef]
- Schumacher, G.; Blume, T.; Sekoulov, I. Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm. Water Sci. Technol. 2003, 47, 195–202. [Google Scholar] [CrossRef]
- Moondra, N.; Jariwala, N.D.; Christian, R.A. Role of phycoremediation in domestic wastewater treatment. Water Conserv. Manag. 2020, 5, 53–57. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, J.C.M.; Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017, 24, 403–415. [Google Scholar] [CrossRef]
- Foladori, P.; Petrini, S.; Andreottola, G. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem. Eng. J. 2018, 345, 507–516. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Xue, G. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J. Hazard. Mater. 2010, 178, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.; Kumar, P.K.; Krishna, S.V.; Himabindu, V. Phycoremediation of Sewage-Contaminated Lake Water Using Microalgae–Bacteria Co-Culture. Water Air Soil Pollut. 2020, 231, 299. [Google Scholar] [CrossRef]
- Chawla, P.; Malik, A.; Sreekrishnan, T.R.; Dalvi, V.; Gola, D. Selection of optimum combination via comprehensive comparison of multiple algal cultures for treatment of diverse wastewaters. Environ. Technol. Innov. 2020, 18, 100758. [Google Scholar] [CrossRef]
- Almomani, F.; Judd, S.; Bhosale, R.R.; Shurair, M.; Aljaml, K.; Khraisheh, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process. Saf. Environ. Prot. 2019, 124, 240–250. [Google Scholar] [CrossRef]
- Baldev, E.; Ali, D.M.; Pugazhendhi, A.; Thajuddin, N. Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. Fuel 2021, 294, 120484. [Google Scholar] [CrossRef]
- Singh, P.K.; Bhattacharjya, R.; Saxena, A.; Mishra, B.; Tiwari, A. Utilization of wastewater as nutrient media and biomass valorization in marine Chrysophytes- Chaetoceros and Isochrysis. Energy Convers. Manag. X 2021, 10, 100062. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Yap, Y.J.; Zaid, H.F.M.; Lam, M.K.; Lim, J.W.; Ho, Y.-C.; Tao, Y. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 2020, 11, 61–69. [Google Scholar] [CrossRef]
Parameter | Sample ± SD | Moroccan Standard | References |
---|---|---|---|
pH | (7.62 ± 0.87) | 6.5–8.5 | [40,41,42,43] |
EC | (1.76 ± 0.91) | 2700 (mS/cm) | [3,44,45,46] |
TDS | (881.94 ± 96.45) | 500 (mg/L) | [47,48] |
TSS (mg/L) | (1331.11 ± 282.83) | - | |
TS (mg/L) | (2213.06 ± 351.31) | - | |
COD | (154.7 ± 46.70) | 25 (mg/L) | [49,50] |
Phosphate | (9.17 ± 0.60) | 1 (mg/L) | [47] |
Ammonia | (2.32 ± 0.97) | 0.5 (mg/L) | [51] |
Nitrate | (1.79 ± 0.39) | 50 (mg/L) | [52,53] |
DO (mg/L) | (0.14 ± 0.17) | - |
Beaker A | Beaker B | Duration (h) |
---|---|---|
10:00 a.m.–12:00 p.m. | 02 | |
10:00 a.m.–2:00 p.m. | 04 | |
1:00 p.m.–7:00 p.m. | 06 | |
3:00 p.m.–9:00 a.m. | 18 | |
8:00 p.m.–10:00 a.m. | 14 | |
10:00 a.m.–8:00 p.m. | 10 | |
11:00 a.m.–7:00 p.m. | 08 | |
9:00 p.m.–9:00 a.m. | 12 | |
8:00 p.m.–12:00 noon | 16 | |
10:00 a.m.–10:00 a.m. | 24 | |
1:00 p.m.–9:00 a.m. | 20 | |
11:00 a.m.–9:00 a.m. | 22 |
Type of Wastewater | Algae Strain | Efficiency of Removal | Ref. |
---|---|---|---|
Sewage-contaminated lake | Symbiotic co-culture of Microalgae | 93% of nitrogen and 99% of phosphorus | [73] |
Sewage wastewater; dairy processing industry | Chlorella vulgaris | 95% of nitrogen and 99% of phosphorus | [74] |
Water from WTTP and family septic tank | Spirulina platensis and mixed algal culture | 99.6% of nitrogen and 99.41% of phosphorus | [75] |
Domestic wastewater | Scenedesmus sp. | 80% of nitrogen and 66% of phosphorus | [76] |
Sewage discharge | Isochrysis sp. | 5.57% of nitrogen and 84–94% of phosphorus | [77] |
Palm oil mill effluent | Chlorella soroliniana | 98.6% of nitrogen and 96% of phosphorus | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Moustaqim, K.; El Bakraoui, H.; Mabrouki, J.; Fouad, Y.; Slaoui, M.; Hmouni, D.; Benyeogor, M.S.; Igbigbi, T.L. Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment. Sustainability 2023, 15, 16110. https://doi.org/10.3390/su152216110
El-Moustaqim K, El Bakraoui H, Mabrouki J, Fouad Y, Slaoui M, Hmouni D, Benyeogor MS, Igbigbi TL. Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment. Sustainability. 2023; 15(22):16110. https://doi.org/10.3390/su152216110
Chicago/Turabian StyleEl-Moustaqim, Khadija, Houria El Bakraoui, Jamal Mabrouki, Yasser Fouad, Miloudia Slaoui, Driss Hmouni, Mbadiwe S. Benyeogor, and Tobore Louis Igbigbi. 2023. "Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment" Sustainability 15, no. 22: 16110. https://doi.org/10.3390/su152216110
APA StyleEl-Moustaqim, K., El Bakraoui, H., Mabrouki, J., Fouad, Y., Slaoui, M., Hmouni, D., Benyeogor, M. S., & Igbigbi, T. L. (2023). Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment. Sustainability, 15(22), 16110. https://doi.org/10.3390/su152216110