Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture
Abstract
1. Introduction
2. Experimental Design and Procedures
2.1. Digested Biogas Slurry and Agricultural Residues
2.2. Initial Preparation of Varied Fresh Solid Wastes
2.3. Experimental Design for Vermicomposting
2.4. Physico-Chemical Analysis
2.5. Plant Growth
2.6. Tests of Significance
3. Results and Discussion
4. Conclusions
- One notable observation was the marked influence of worm density on the increase in zoomass. The most substantial growth occurred at a worm density of 125 animals/L, which outperformed densities of 62.5, 250, and 350 animals/L.
- The resultant NPK values ranged between 1.5 and 1.7% (N), 0.98 and 1.19% (P), and 1.1 and 1.49% (K) across various composted–vermicomposted wastes, underscoring the potential of the final vermicompost product as a marketable soil fertility enhancer.
- Exploring the effects of worm loading, a recovery of 64.4% was noted with E. fetida at 62.5 animals per liter, whereas E. eugeniae achieved 45.6%. Increasing the density to 125 animals per liter resulted in recoveries of 89.7% and 68.2% for E. fetida and E. eugeniae reactors, respectively on vermicast production.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, Z.U.; Ijaz, N.; Ye, W.; Ijaz, Z. Design optimization and statistical modeling of recycled waste-based additive for a variety of construction scenarios on heaving ground. Environ. Sci. Pollut. Res. 2023, 30, 39783–39802. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, K.K.; Kumar, V. A review on current status of municipal solid waste management in India. J. Environ. Sci. 2015, 37, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, R.B.; Suresh, S.; Sharma, A.K. Solid waste management in Bhopal (India): Present and future challenges. Ultra Chem. 2013, 9, 197–214. [Google Scholar]
- Benitez, E.; Nogales, R.; Elvira, C.; Masciandaro, G.; Ceccanti, B. Enzyme activities as indicators of the stabilization of sewage sludge composting with Eisenia foetida. Biores. Technol. 1999, 67, 297–303. [Google Scholar] [CrossRef]
- Yuvaraj, A.; Thangaraj, R.; Ravindran, B.; Chang, S.W.; Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 2021, 268, 1156882. [Google Scholar] [CrossRef]
- Soobhany, N.; Mohee, R.; Garg, V.K. Recovery of nutrient from municipal solid waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J. Environ. Chem. Eng. 2015, 3, 2931–2942. [Google Scholar] [CrossRef]
- Kulcu, R.; Yaldiz, O. Composting of goat manure and wheat straw using pine cones as a bulking agent. Bioresour. Technol. 2007, 98, 2700–2704. [Google Scholar] [CrossRef]
- Mishra, S.; Suresh, S.; Chauhan, M.S.; Subbaramaiah, V.; Gosu, V. Recent Progress in Carbonaceous Materials for the NitrateAdsorption. J. Hazardous Toxic. Radioact. Waste 2022, 26, 04022013. [Google Scholar] [CrossRef]
- Kumari, K.; Suresh, S.; Arisutha, S.; Sudhakar, K. Anaerobic Co-digestion of different wastes in a UASB. Waste Manag. 2018, 77, 545–554. [Google Scholar] [CrossRef]
- Colon, J.; Cadena, E.; Pognani, M.; Barrena, R.; Sanchez, A.; Font, X.; Artola, A. Determination of the energy and environmental burdens associated with the biological treatment of source-separated Municipal Solid Wastes. Energy Environ. Sci. 2012, 5, 5731–5741. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Thompson, S.A. Integrating composting and Vermicomposting in the treatment and bioconversion of biosolids. Bioresour. Technol. 2001, 76, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jain, A.; Sarma, B.K.; Abhilash, P.C.; Singh, H.B. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida. Waste Manag. 2013, 33, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Gajalakshmi, S.; Abbasi, S.A. Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour. Technol. 2002, 85, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xia, H.; Zhang, Y.; Li, J.; Cui, G.; Li, F.; Bai, W.; Jiang, Y.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomicanalysis. Bioresour. Technol. 2020, 297, 122451. [Google Scholar] [CrossRef] [PubMed]
- Khwairakpam, M.; Bhargava, R. Vermitechnology for sewage sludge recycling. J. Hazard. Mater. 2009, 161, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, P.S.; Gajalakshmi, S.; Abbasi, S.A. Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): Possible roles of reactor geometry, polyphenols, and lignin. Bioresour. Technol. 2009, 100, 1819–1827. [Google Scholar] [CrossRef]
- Clarke, W.P.; Taylor, M.; Cossins, R. Evaluation of respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge. Bioresour. Technol. 2017, 98, 2611–2618. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Thompson, S.A.; Das, K.C. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresour. Technol. 2000, 71, 512. [Google Scholar] [CrossRef]
- Suresh, S.; Keshav, A. Textbook of Separation Processes; Studium Press (India) Pvt. Ltd.: Delhi, India, 2012; pp. 1–459. ISBN 978-93-80012-32-2. [Google Scholar]
- Mishra, S.; Chauhan, M.S.; Sundaramurthy, S. Assessment of Groundwater Trends in Bhopal, Madhya Pradesh: A Statistical Approach. Sustainability 2023, 15, 11971. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. (Eds.) Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Pigatin, L.B.F.; Atoloye, I.A.; Obikoya, O.A.; Borsato, A.V.; Rezende, M.O.O. Chemical study of vermicomposted agro industrial wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 55–63. [Google Scholar] [CrossRef]
- Domínguez, J.; Edwards, C.A. Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil. Biol. Biochem. 1997, 29, 743–746. [Google Scholar] [CrossRef]
- Hussain, N.; Das, S.; Goswami, L.; Das, P.; Sahariah, B.; Bhattacharya, S.S. Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: Assessment of maturity time, microbial community structure, and economic benefit. J. Clean. Produc. 2018, 182, 414–426. [Google Scholar] [CrossRef]
- Ananthavalli, R.; Ramadas, V.; Paula, J.A.J.; Selvi, B.K.; Karmegam, N. Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Technol. 2019, 275, 394–401. [Google Scholar] [CrossRef]
- Deka, H.; Deka, S.; Baruah, C.K.; Das, J.; Hoque, S.; Sarma, H.; Sarma, N.S. Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of java citronella—An aromatic oil yielding plant. Bioresour. Technol. 2011, 102, 11212–11217. [Google Scholar] [CrossRef]
- Ramnarain, Y.I.; Ansari, A.A.; Ori, L. Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric. 2018, 8, 23–36. [Google Scholar] [CrossRef]
- Goh, K.M.; Haynes, R.J. Evaluation of potting media for commercial nursery production of container grown plants. N. Z. J. Agric. Res. 1977, 20, 363–370. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Thompson, S.A. Effects of C-to-N ratio on vermicomposting of biosolids. Bioresour. Technol. 2000, 75, 7–12. [Google Scholar] [CrossRef]
- Khatua, C.; Sengupta, S.; Krishna Balla, V.; Kundu, B.; Chakraborti, A.; Tripathi, S. Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Manag. 2018, 79, 287–295. [Google Scholar] [CrossRef]
- Rastogi, M.; Nandal, M.; Khosla, B. Microbes as vital additives for solid waste composting. Heliyon 2020, 6, e03343. [Google Scholar] [CrossRef]
- Wu, N.; Smith, J.E. Reducing pathogen and vector attraction for biosolids. Biocycle 1999, 40, 59–61. [Google Scholar]
- Donahue, D.W.; Chalmers, J.A.; Storey, J.A. Evaluation of in-vessel composting of university postconsumer food wastes. Comp. Sci. Util. 1998, 6, 75–81. [Google Scholar] [CrossRef]
- Deepthi, M.P.; Kathireswari, P.; Rini, J.; Saminathan, K.; Karmegam, N. Vermitransformation of monogastric Elephas maximus and ruminant Bos taurus excrements into vermicompost using Eudrilus eugeniae. Bioresour. Technol. 2021, 320 Pt A, 124302. [Google Scholar] [CrossRef]
- Bhiday, M.R. Earthworms in agriculture. Indian Farm. 1994, 43, 31–34. [Google Scholar]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springer Plus 2012, 1, 26. [Google Scholar] [CrossRef]
- Vuorinen, A.H.; Saharinen, M.H. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum com- posting system. Agric. Ecosyst. Environ. 1997, 66, 19–29. [Google Scholar] [CrossRef]
- Aynehband, A.; Gorooei, A.; Moezzi, A.A. Management in Organic Agriculture Vermicompost: An Eco-Friendly Technology for Crop Residue Management in Organic Agriculture. Energy Procedia 2017, 141, 667–671. [Google Scholar] [CrossRef]
- Ewulo, B.S.; Hassan, K.O.; Ojeniyi, S.O. Comparative effect of cowdung manure on soil and leaf nutrient and yield of pepper. Int. J. Agri. Res. 2007, 2, 1043–1048. [Google Scholar] [CrossRef][Green Version]
- Suthar, S. Bioconversion of post-harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol. Eng. 2008, 32, 206–214. [Google Scholar] [CrossRef]
- Nuntawut, C.-N.; Chuleemas, B.I.; Mongkon, T.-O. Vermicompost: Tool for agro-industrial waste management and sustainable agriculture. Int. J. Environ. Rural. Develop. 2010, 1, 38–43. [Google Scholar]
Parameter | Fresh DBS | Agricultural Residues | Composting | Vermicomposting (E. fetida) | Vermicomposting (E. eugeniae) | Control 3 | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Vf | Ve | Vf XC | VeXC | ||||||||
Moisture (%) | 76.3 e | 15.1 e | 63 e,a,b | 55 a,e,c | 58 b,e,d | 35.3 | 1.21 | <0.01 | <0.01 | 0.12 | 0.14 |
C:N ratio | 8.4 e | 6.2 e | 10.1 e,a,b | 8.1 a,e,c | 9.3 b,e,d | 8.31 | 1.43 | 0.02 | 0.07 | 0.21 | 0.12 |
pH | 0.94 e | 2.4 e | 7.5 e,a,b | 7.2 a,e,c | 8.0 b,e,d | 7.54 | 1.32 | 0.01 | 0.03 | 0.11 | 0.11 |
EC (dS/m) | 16.3 e | 27.3 e | 2.71 e,a,b | 1.62 a,e,c | 2.01 b,e,d | 3.21 | 0.93 | <0.01 | 0.01 | 0.24 | 0.21 |
N (%) | 1.98 e | 1.9 e | 12.2 e,a,b | 17.2 a,e,c | 11.3 b,e,d | 9.33 | 1.72 | 0.03 | 0.04 | 0.23 | 0.31 |
P (%) | 0.28 e | 0.6 e | 2.8 e,a,b | 9.3 a,e,c | 4.8 b,e,d | 3.82 | 1.77 | 0.01 | 0.05 | 0.10 | 0.21 |
K (%) | 1.3 e | 0.7 e | 2.41 e,a,b | 13.91 a,e,c | 6.8 b,e,d | 2.51 | 1.45 | 0.01 | 0.01 | 0.33 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katiyar, R.B.; Sundaramurthy, S.; Sharma, A.K.; Arisutha, S.; Pratap-Singh, A.; Mishra, S.; Ayub, R.; Jeon, B.-H.; Khan, M.A. Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability 2023, 15, 14701. https://doi.org/10.3390/su152014701
Katiyar RB, Sundaramurthy S, Sharma AK, Arisutha S, Pratap-Singh A, Mishra S, Ayub R, Jeon B-H, Khan MA. Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability. 2023; 15(20):14701. https://doi.org/10.3390/su152014701
Chicago/Turabian StyleKatiyar, Rajesh Babu, Suresh Sundaramurthy, Anil Kumar Sharma, Suresh Arisutha, Anubhav Pratap-Singh, Satyam Mishra, Rashid Ayub, Byong-Hun Jeon, and Moonis Ali Khan. 2023. "Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture" Sustainability 15, no. 20: 14701. https://doi.org/10.3390/su152014701
APA StyleKatiyar, R. B., Sundaramurthy, S., Sharma, A. K., Arisutha, S., Pratap-Singh, A., Mishra, S., Ayub, R., Jeon, B.-H., & Khan, M. A. (2023). Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability, 15(20), 14701. https://doi.org/10.3390/su152014701