# An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Development of a GEP Model

- Selecting the terminal set, which consists of the same variables as the problem’s independent variables and the system’s state variables. This step involves the selection of the fit function, which typically employs the root-mean-square error (RMSE);
- Selecting a collection of functions, including mathematical operators, test functions, and Boolean functions;
- The model accuracy measurement index is used to determine the extent to which the model is capable of solving a specific problem;
- Control components, including the numerical component values and qualitative variables, are used to control the program’s execution;
- The number of data in the training section, the number of data in the test sections of the chromosomes, the size of the head, the number of genes, and the choice of the transplant operator, which can be adjusted with four options of addition, subtraction, multiplication, and division.

_{act}is the actual cost of energy, CoE(i)

_{for}is the forecasted cost of energy using GEP or the optimized model, and m is the total number of data.

#### 2.2. Optimization Method

_{s}) and the types of Candida (N)-generating units.

## 3. Results and Discussion

#### 3.1. Sensitivity Analysis

#### 3.2. The Results of Model

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## References

- Pilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S. Multi-Objective Optimisation Framework for Designing Office Windows: Quality of View, Daylight and Energy Efficiency. Appl. Energy
**2020**, 261, 114356. [Google Scholar] [CrossRef] - Sadick, A.-M.; Kamardeen, I. Enhancing Employees’ Performance and Well-Being with Nature Exposure Embedded Office Workplace Design. J. Build. Eng.
**2020**, 32, 101789. [Google Scholar] [CrossRef] - Anand, P.; Cheong, D.; Sekhar, C.; Santamouris, M.; Kondepudi, S. Energy Saving Estimation for Plug and Lighting Load Using Occupancy Analysis. Renew. Energy
**2019**, 143, 1143–1161. [Google Scholar] [CrossRef] - Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar Power Technology for Electricity Generation: A Critical Review. Energy Sci. Eng.
**2018**, 6, 340–361. [Google Scholar] [CrossRef][Green Version] - Azizi, H.; Nejatian, N. Evaluation of the Climate Change Impact on the Intensity and Return Period for Drought Indices of SPI and SPEI (Study Area: Varamin Plain). Water Supply
**2022**, 22, 4373–4386. [Google Scholar] [CrossRef] - Yavari, F.; Salehi Neyshabouri, S.A.; Yazdi, J.; Molajou, A.; Brysiewicz, A. A Novel Framework for Urban Flood Damage Assessment. Water Resour. Manag.
**2022**, 36, 1991–2011. [Google Scholar] [CrossRef] - Karimi, G.; Moradi, Y. Buffer Insertion for Delay Minimization in RLC Interconnects Using Cuckoo Optimization Algorithm. Analog Integr. Circuits Signal Process.
**2019**, 99, 111–121. [Google Scholar] [CrossRef] - Omrani, M.M. Techno-Economic and Environmental Analysis of Floating Photovoltaic Techno-Economic and Environmental Analysis of Floating Photovoltaic Power Plants: A Case Study of Iran. Renew. Energy Res. Appl.
**2022**, 4, 41–54. [Google Scholar] [CrossRef] - Jalali, Z.; Noorzai, E.; Heidari, S. Design and Optimization of Form and Facade of an Office Building Using the Genetic Algorithm. Sci. Technol. Built Environ.
**2020**, 26, 128–140. [Google Scholar] [CrossRef] - O’Brien, W.; Wagner, A.; Schweiker, M.; Mahdavi, A.; Day, J.; Kjærgaard, M.B.; Carlucci, S.; Dong, B.; Tahmasebi, F.; Yan, D.; et al. Introducing IEA EBC Annex 79: Key Challenges and Opportunities in the Field of Occupant-Centric Building Design and Operation. Build. Environ.
**2020**, 178, 106738. [Google Scholar] [CrossRef] - Elsheikh, A.H.; Shanmugan, S.; Sathyamurthy, R.; Kumar Thakur, A.; Issa, M.; Panchal, H.; Muthuramalingam, T.; Kumar, R.; Sharifpur, M. Low-Cost Bilayered Structure for Improving the Performance of Solar Stills: Performance/Cost Analysis and Water Yield Prediction Using Machine Learning. Sustain. Energy Technol. Assess.
**2022**, 49, 101783. [Google Scholar] [CrossRef] - Ahmadi, M.H.; Baghban, A.; Salwana, E.; Sadeghzadeh, M.; Zamen, M.; Shamshirband, S.; Kumar, R. Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Preprints
**2019**, 2019050033. [Google Scholar] [CrossRef][Green Version] - Sabbagh, O.; Fanaei, M.A.; Arjomand, A.; Hossein Ahmadi, M. Multi-Objective Optimization Assessment of a New Integrated Scheme for Co-Production of Natural Gas Liquids and Liquefied Natural Gas. Sustain. Energy Technol. Assess.
**2021**, 47, 101493. [Google Scholar] [CrossRef] - Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev.
**2019**, 24, 38–50. [Google Scholar] [CrossRef] - Ahmadi, M.H.; Açıkkalp, E. Exergetic Dimensions of Energy Systems and Processes. J. Therm. Anal. Calorim.
**2021**, 145, 631–634. [Google Scholar] [CrossRef] - Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable Energy Communities under the 2019 European Clean Energy Package—Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev.
**2020**, 122, 109489. [Google Scholar] [CrossRef] - Fessler, D.C. The Energy Disruption Triangle: Three Sectors That Will Change How We Generate, Use, and Store Energy; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781119347132. [Google Scholar]
- Li, Q.; Loy-Benitez, J.; Nam, K.; Hwangbo, S.; Rashidi, J.; Yoo, C. Sustainable and Reliable Design of Reverse Osmosis Desalination with Hybrid Renewable Energy Systems through Supply Chain Forecasting Using Recurrent Neural Networks. Energy
**2019**, 178, 277–292. [Google Scholar] [CrossRef] - Sudharshan, K.; Naveen, C.; Vishnuram, P.; Krishna Rao Kasagani, D.V.S.; Nastasi, B. Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction. Energies
**2022**, 15, 6267. [Google Scholar] [CrossRef] - Davoodi, A.; Abbasi, A.R.; Nejatian, S. Multi-Objective Techno-Economic Generation Expansion Planning to Increase the Penetration of Distributed Generation Resources Based on Demand Response Algorithms. Int. J. Electr. Power Energy Syst.
**2022**, 138, 107923. [Google Scholar] [CrossRef] - Dagoumas, A.S.; Koltsaklis, N.E. Review of Models for Integrating Renewable Energy in the Generation Expansion Planning. Appl. Energy
**2019**, 242, 1573–1587. [Google Scholar] [CrossRef] - Taherkhani, M.; Hosseini, S.H.; Javadi, M.S.; Catalão, J.P.S. Scenario-Based Probabilistic Multi-Stage Optimization for Transmission Expansion Planning Incorporating Wind Generation Integration. Electr. Power Syst. Res.
**2020**, 189, 106601. [Google Scholar] [CrossRef] - Pokhrel, S.; Amiri, L.; Zueter, A.; Poncet, S.; Hassani, F.P.; Sasmito, A.P.; Ghoreishi-Madiseh, S.A. Thermal Performance Evaluation of Integrated Solar-Geothermal System; a Semi-Conjugate Reduced Order Numerical Model. Appl. Energy
**2021**, 303, 117676. [Google Scholar] [CrossRef] - Paliwal, P.; Webber, J.L.; Mehbodniya, A.; Haq, M.A.; Kumar, A.; Chaurasiya, P.K. Multi-Agent-Based Approach for Generation Expansion Planning in Isolated Micro-Grid with Renewable Energy Sources and Battery Storage. J. Supercomput.
**2022**, 78, 18497–18523. [Google Scholar] [CrossRef] - Sweerts, B.; Pfenninger, S.; Yang, S.; Folini, D.; van der Zwaan, B.; Wild, M. Estimation of Losses in Solar Energy Production from Air Pollution in China since 1960 Using Surface Radiation Data. Nat. Energy
**2019**, 4, 657–663. [Google Scholar] [CrossRef] - Azimi, H.; Bonakdari, H.; Ebtehaj, I. Gene Expression Programming-Based Approach for Predicting the Roller Length of a Hydraulic Jump on a Rough Bed. ISH J. Hydraul. Eng.
**2021**, 27, 77–87. [Google Scholar] [CrossRef] - Pirzadeh Ashraf, B.; Mojtahedi, A.; Dadashzadeh, M. Prediction of dissolved oxygen in wetlands using FCM-ANFIS model—A Case Study: Choghakhor Wetland. J. Iran. Water Eng. Res.
**2022**, 2, 33–50. [Google Scholar] [CrossRef] - Han, T.; Ansari, N. Provisioning Green Energy for Base Stations in Heterogeneous Networks. IEEE Trans. Veh. Technol.
**2016**, 65, 5439–5448. [Google Scholar] [CrossRef][Green Version] - Drachal, K.; Pawłowski, M. A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities. Economies
**2021**, 9, 6. [Google Scholar] [CrossRef] - Tijani, I.A.; Zayed, T. Gene Expression Programming Based Mathematical Modeling for Leak Detection of Water Distribution Networks. Measurement
**2022**, 188, 110611. [Google Scholar] [CrossRef] - Mittal, H.; Tripathi, A.; Pandey, A.C.; Pal, R. Gravitational Search Algorithm: A Comprehensive Analysis of Recent Variants. Multimed. Tools Appl.
**2021**, 80, 7581–7608. [Google Scholar] [CrossRef] - Sabri, N.M.; Puteh, M.; Mahmood, M.R. An Overview of Gravitational Search Algorithm Utilization in Optimization Problems. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 61–66. [Google Scholar]
- Wang, Y.; Gao, S.; Yu, Y.; Cai, Z.; Wang, Z. A Gravitational Search Algorithm with Hierarchy and Distributed Framework. Knowl. -Based Syst.
**2021**, 218, 106877. [Google Scholar] [CrossRef] - Rashedi, E.; Rashedi, E.; Nezamabadi-pour, H. A Comprehensive Survey on Gravitational Search Algorithm. Swarm Evol. Comput.
**2018**, 41, 141–158. [Google Scholar] [CrossRef] - Younes, Z.; Alhamrouni, I.; Mekhilef, S.; Reyasudin, M. A Memory-Based Gravitational Search Algorithm for Solving Economic Dispatch Problem in Micro-Grid. Ain Shams Eng. J.
**2021**, 12, 1985–1994. [Google Scholar] [CrossRef] - Campbell, J.E.; Carmichael, G.R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D.R.; Blake, N.J.; Vay, S.A.; Collatz, G.J.; Baker, I.; et al. Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season. Science
**2008**, 322, 1085–1088. [Google Scholar] [CrossRef]

**Figure 6.**Comparative diagram of the validation results of the best GEP obtained for a number of different models.

**Figure 7.**Comparative diagram of the validation result of the best GEP trained in predicting energy consumption during operations per unit area (million rails per square meter).

Annual Values | Mumbai, |
---|---|

India | |

Daytime maximum temperature | 31.50 °C |

Daily low temperature | 18.30 °C |

Humidity | 53% |

Precipitation | 653 mm |

Rain days | 44.4 days |

Hours of sunshine | 2592 h |

Genetic Functions | General Settings | ||
---|---|---|---|

Mutation rate | 0.046 | Chromosome number | 32 |

Inversion rate | 0.2 | Vertex size | 8 |

Insertion frequency | 0.15 | Number of genes per chromosome | 4 |

Insertion rate | 0.1 | The number of productive populations | 1150 |

Compounding single point | 0.37 |

Model ID | Input Variables |
---|---|

Design Combo 1 (D1) | D_{t}, T_{t−1}, WWR_{t} |

Design Combo 2 (D2) | D_{t}, T_{t−3}, H_{t−1}, WWR_{t} |

Design Combo 3 (D3) | D_{t}, T_{t−1}, H_{t−1}, WWR_{t} |

Design Combo 4 (D4) | D_{t}, T_{t−2}, T_{t−3}, H_{t−2}, H_{t−1,} WWR_{t} |

Model ID | MAE | RMSE | R | MAE | RMSE | R |
---|---|---|---|---|---|---|

Training | Testing | |||||

D1 | 0.01818 | 0.14567 | 0.88776 | 0.01920 | 0.14567 | 0.86528 |

D2 | 0.01631 | 0.089646 | 0.92956 | 0.01812 | 0.09146 | 0.90825 |

D3 | 0.01762 | 0.09220 | 0.90319 | 0.01895 | 0.10220 | 0.88526 |

D4 | 0.01925 | 0.12134 | 0.91351 | 0.01735 | 0.12134 | 0.89543 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, K.-S.; Muda, I.; Lin, M.-H.; Dwijendra, N.K.A.; Carrillo Caballero, G.; Alviz-Meza, A.; Cárdenas-Escrocia, Y.
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room. *Sustainability* **2023**, *15*, 1728.
https://doi.org/10.3390/su15021728

**AMA Style**

Liu K-S, Muda I, Lin M-H, Dwijendra NKA, Carrillo Caballero G, Alviz-Meza A, Cárdenas-Escrocia Y.
An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room. *Sustainability*. 2023; 15(2):1728.
https://doi.org/10.3390/su15021728

**Chicago/Turabian Style**

Liu, Kuang-Sheng, Iskandar Muda, Ming-Hung Lin, Ngakan Ketut Acwin Dwijendra, Gaylord Carrillo Caballero, Aníbal Alviz-Meza, and Yulineth Cárdenas-Escrocia.
2023. "An Application of Machine Learning to Estimate and Evaluate the Energy Consumption in an Office Room" *Sustainability* 15, no. 2: 1728.
https://doi.org/10.3390/su15021728