Effect of Zero Water Exchange Systems for Litopenaeus vannamei Using Sponge Biocarriers to Control Inorganic Nitrogen and Suspended Solids Simultaneously
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Conditions and System Management of L. vannamei
2.2. Analytical Methods
2.2.1. Analysis of Water Physicochemical Parameters
2.2.2. Determination of SB Biofilm Nitrification Activity
2.2.3. Growth Performance of Shrimp
2.3. Statistics
3. Results
3.1. Water Quality
3.2. Morphological and Nitrification Activitychanges of SBs
3.3. Growth Performance of Shrimp
4. Discussion
5. Conclusions
- The lower concentrations of ammonia and nitrite and higher concentration of nitrate revealed a more dynamic nitrifying process in the SBBF treatments than in SBC treatments. Aeration is positive to the nitrification process of SBBFs.
- The SBBF treatments can maintain the low level of ammonia, nitrite and suspended solids for L. vannamei under the strict requirement of zero water change in the whole process of aquaculture. The suspended solids produced in the aquaculture process can be effectively controlled by adsorption/desorption progress and maintain turbidity within an acceptable range.
- The L. vannamei grown in the SBBF treatments exhibited higher mean final weight, survival and productivity than those grown in the SBC treatments. The feed conversion rate was lower in the SBC treatments than in the SBBF treatments.
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, L.; Wang, Z.; Chen, M.; Qu, Y.; Li, J.; Zhou, A.; Xie, S.; Zeng, F.; Zou, J. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci. Total Environ. 2019, 657, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Rani, A.M.B.; Verma, A.K.; Maqsood, M. Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2023, 226, 35–44. [Google Scholar] [CrossRef]
- Gutierrez-Wing, M.T.; Malone, R.F. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquac. Eng. 2006, 34, 163–171. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Chin, J.Y.; Harun, M.H.Z.M.; Low, S.C. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process Eng. 2022, 46, 102553. [Google Scholar] [CrossRef]
- Gaona, C.; Poersch, L.; Krummenauer, D.; Foes, G.; Wasielesky, W. The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquac. 2011, 11, 54–73. [Google Scholar] [CrossRef]
- Twarowska, J.G.; Westerman, P.W.; Losordo, T.M. Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquac. Eng. 1997, 16, 133–147. [Google Scholar] [CrossRef]
- Liu, W.; Tan, H.; Chen, W.; Luo, G.; Sun, D.; Hou, Z.; Zhang, N. Pilot study on water quality regulation in a recirculating aquaculture system with suspended growth bioreactors. Aquaculture 2019, 504, 396–403. [Google Scholar] [CrossRef]
- Lara, G.R.; Poersch, L.H.; Wasielesky, W. The quantity of artificial substrates influences the nitrogen cycle in the biofloc culture system of Litopenaeus vannamei. Aquac. Eng. 2021, 94, 102171. [Google Scholar] [CrossRef]
- Hannesson, S.; Jakobsdottir, A.; Begley, J.; Taylor, L.; Stefansson, G. Comparison of periphyton grown on different substrates as food for organic tilapia culture. Isr. J. Aquac. Bamidgeh 2008, 60, 243–252. [Google Scholar] [CrossRef]
- Ferreira, L.M.H.; Lara, G.; Wasielesky, W., Jr.; Abreu, P.C. Biofilm versus biofloc: Are artificial substrates for biofilm production necessary in the BFT system? Aquac. Int. 2016, 24, 921–930. [Google Scholar] [CrossRef]
- Audelo-Naranjo, J.M.; Martínez-Córdova, L.R.; Gómez-Jiménez, S.; Voltolina, D. Intensive culture of Litopenaeus vannamei without water exchange and with an artificial substrate. Hidrobiológica 2012, 22, 1–7. [Google Scholar]
- Oliveira, F.F.; Moreira, R.G.; Schneider, R.P. Evidence of improved water quality and biofilm control by slow sand filters in aquaculture-A case study. Aquac. Eng. 2019, 85, 80–89. [Google Scholar] [CrossRef]
- Thompson, F.L.; Abreu, P.C.; Wasielesky, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 2002, 203, 263–278. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Silva, V.F.; Martins, M.A.; Da Silva, A.C.C.P.; Machado, C.; Seiffert, W.Q.; Vieira, F.D.N. Strategies for ammonium and nitrite control in Litopenaeus vannamei nursery systems with bioflocs. Aquac. Eng. 2020, 88, 102040. [Google Scholar] [CrossRef]
- Filho, M.E.S.D.M.; Owatari, M.S.; Mouriño, J.L.P.; Lapa, K.R.; Soares, H.M. Application of nitrification and denitrification processes in a direct water reuse system for pacific white shrimp farmed in biofloc system. Aquac. Eng. 2020, 88, 102043. [Google Scholar] [CrossRef]
- Sesuk, T.; Powtongsook, S.; Nootong, K. Inorganic nitrogen control in a novel zerowater exchanged aquaculture system integrated with airlift-submerged fibrous nitrifying biofilters. Bioresour. Technol. 2009, 100, 2088–2094. [Google Scholar] [CrossRef]
- Satanwat, P.; Tran, T.P.; Hirakata, Y.; Watari, T.; Hatamoto, M.; Yamaguchi, T.; Pungrasmi, W.; Powtongsook, S. Use of an internal fibrous biofilter for intermittent nitrification and denitrification treatments in a zero-discharge shrimp culture tank. Aquac. Eng. 2020, 88, 102041. [Google Scholar] [CrossRef]
- Owatari, M.S.; Jesus, G.F.A.; Filho, M.E.S.D.M.; Lapa, K.R.; Martins, M.L.; Mouriño, J.L.P. Synthetic fibre as biological support in freshwater recirculating aquaculture systems (RAS). Aquac. Eng. 2018, 82, 56–62. [Google Scholar] [CrossRef]
- Schveitzer, R.; Arantes, R.; Baloi, M.F.; Costódio, P.F.S.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquac. Eng. 2013, 54, 93–103. [Google Scholar] [CrossRef]
- Shitu, A.; Zhu, S.; Qi, W.; Tadda, M.A.; Liu, D.; Ye, Z. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study. J. Environ. Manag. 2020, 275, 111264. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Tang, Y.; Xu, A.; Tang, J.; Song, Z. Efects of Haematococcus pluvialis on the water quality and performance of Litopenaeus vannamei using artifcial substrates and water exchange systems. Aquac. Int. 2022, 30, 1779–1797. [Google Scholar] [CrossRef]
- Chakravarty, M.S.; Ganesh, P.R.C.; Amarnath, D.; Sudha, B.S.; Babu, T.S. Spatial variation of water quality parameters of shrimp (Litopenaeus vannamei) culture ponds at Narsapurapupeta, Kajuluru and Kaikavolu villages of East Godavari district, Andhra Pradesh. Int. J. Fish. Aquat. Stud. 2016, 4, 390–395. [Google Scholar]
- Li, E.; Wang, X.; Chen, K.; Xu, C.; Qin, J.G.; Chen, L. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Rev. Aquac. 2017, 9, 57–75. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Castañeda, G.; Frías-Espericueta, M.G.; Vanegas-Pérez, R.C.; Pérez-Ramírez, J.A.; Chávez-Sánchez, M.C.; Páez-Osuna, F. Acute Toxicity of Ammonia, Nitrite and Nitrate to Shrimp Litopenaeus vannamei Postlarvae in Low-Salinity Water. Bull. Environ. Contam. Toxicol. 2018, 101, 229–234. [Google Scholar] [CrossRef]
- Hagopian, D.S.; Riley, J.G. A closer look at the bacteriology of nitrification. Aquac. Eng. 1998, 18, 223–244. [Google Scholar] [CrossRef]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [Green Version]
- Guisasola, A.; Jubany, I.; Baeza, J.A.; Lafuente, J. Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation. J. Chem. Technol. Biotechnol. 2005, 80, 388–396. [Google Scholar] [CrossRef]
- Rongsayamanont, C.; Khan, E.; Limpiyakorn, T. Dissolved oxygen/free ammonia (DO/FA) ratio manipulation to gain distinct proportions of nitrogen species in effluent of entrapped-cell-based reactors. J. Environ. Manag. 2019, 25, 109541. [Google Scholar] [CrossRef]
- Morais, A.P.M.; Abreu, P.C.; Wasielesky, W.; Krummenauer, D. Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture 2020, 514, 734516. [Google Scholar] [CrossRef]
- Arnold, S.J.; Coman, F.E.; Jackson, C.J.; Groves, S.A. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture 2009, 293, 42–48. [Google Scholar] [CrossRef]
- Bratvold, D.; Browdy, C.L. Effects of sand sediment and vertical surfaces (AquaMats) on production, water quality, and microbial ecology in an intensive Litopenaeus vannamei culture system. Aquaculture 2001, 195, 81–94. [Google Scholar] [CrossRef]
Parameters | Treatment | |||
---|---|---|---|---|
SBC | SBBF2.5a | SBBF5a | SBBF5 | |
Temperature (°C) | 28.6 ± 1.5 (26.9–30.1) | 28.3 ± 1.6 (26.2–29.5) | 28.5 ± 1.6 (27.0–30.1) | 28.1 ± 2.0 (26.0–30.1) |
DO (mg/L) | 7.35 ± 0.63 (6.71–7.98) | 7.32 ± 0.69 (6.62–8.01) | 7.45 ± 0.44 (7.01–7.89) | 7.39 ± 0.59 (6.41–7.59) |
pH | 8.09 ± 0.09 a (7.89–8.31) | 7.59 ± 0.40 b (6.98–8.30) | 7.54 ± 0.45 b (7.03–8.36) | 7.64 ± 0.35 b (6.89–8.23) |
Turbidity (NTU) | 0.98 ± 0.79 a (0.26–3.98) | 4.83 ± 2.80 b (0.60–15.43) | 2.11 ± 1.46 c (0.40–8.71) | 4.81 ± 3.17 b (0.43–13.14) |
Salinity | 14.6 ± 1.4 | 14.7 ± 1.2 | 14.8 ± 1.6 | 14.7 ± 1.3 |
P-PO4 (mg/L) | 0.046 ± 0.031 a (0.008–0.115) | 0.202 ± 0.110 b (0.005–0.359) | 0.198 ± 0.113 b (0.008–0366) | 0.204 ± 0.113 b (0.008–0.381) |
TAN (mg/L) | 0.07 ± 0.06 a (0.00–0.28) | 0.03 ± 0.03 c (0.00–0.14) | 0.01 ± 0.01 b (0.00–0.05) | 0.02 ± 0.03 c (0.00–0.14) |
NO2-N (mg/L) | 3.82 ± 3.36 a (0.01–12.44) | 1.17 ± 1.22 b (0.01–5.77) | 0.37 ± 0.16 c (0.01–0.84) | 0.99 ± 1.33 b (0.01–4.98) |
NO3-N (mg/L) | 5.26 ± 3.35 a (2.35–13.37) | 47.79 ± 23.46 b (2.28–82.25) | 60.56 ± 29.80 c (2.34–99.13) | 47.19 ± 21.74 b (2.29–83.56) |
Treatments | ||||
---|---|---|---|---|
SBC | SBBF2.5a | SBBF5a | SBBF5 | |
AOR (mg/g·h) | ||||
Initial value | - | 0.24 ± 0.002 | 0.24 ± 0.002 | 0.24 ± 0.002 |
30th Day | 0.22 ± 0.001 | 0.26 ± 0.001 | 0.24 ± 0.001 | 0.24 ± 0.002 |
60th Day | 0.23 ± 0.003 | 0.26 ± 0.002 | 0.24 ± 0.002 | 0.25 ± 0.001 |
NOR (mg/g·h) | ||||
Initial value | - | 1.56 ± 0.012 | 1.56 ± 0.012 | 1.56 ± 0.012 |
30th Day | 0.58 ± 0.002 c | 1.54 ± 0.030 a | 1.31 ± 0.017 b | 1.33 ± 0.014 b |
60th Day | 0.83 ± 0.008 c | 1.80 ± 0.032 a | 1.51 ± 0.033 b | 1.35 ± 0.015 b |
Treatments | ||||
---|---|---|---|---|
SBC | SBBF2.5a | SBBF5a | SBBF5 | |
Mean final weight (g) | 8.62 ± 0.21 b | 9.07 ± 0.18 a | 9.21 ± 0.13 a | 9.12 ± 0.24 a |
Survival (%) | 81.0% b | 87.6% a | 93.6% a | 91.7% a |
FCR (g/g) | 1.57 ± 0.19 | 1.49 ± 0.15 | 1.43 ± 0.11 | 1.45 ± 0.22 |
SGR (g/d) | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.02 | 0.14 ± 0.01 |
Productivity (kg/m3) | 5.59 ± 0.11 c | 6.36 ± 0.09 b | 6.90 ± 0.18 a | 6.69 ± 0.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Liu, C.; Luan, Y.; Qi, Y.; Xu, A. Effect of Zero Water Exchange Systems for Litopenaeus vannamei Using Sponge Biocarriers to Control Inorganic Nitrogen and Suspended Solids Simultaneously. Sustainability 2023, 15, 1271. https://doi.org/10.3390/su15021271
Song Z, Liu C, Luan Y, Qi Y, Xu A. Effect of Zero Water Exchange Systems for Litopenaeus vannamei Using Sponge Biocarriers to Control Inorganic Nitrogen and Suspended Solids Simultaneously. Sustainability. 2023; 15(2):1271. https://doi.org/10.3390/su15021271
Chicago/Turabian StyleSong, Zhiwen, Chao Liu, Yazhi Luan, Yapeng Qi, and Ailing Xu. 2023. "Effect of Zero Water Exchange Systems for Litopenaeus vannamei Using Sponge Biocarriers to Control Inorganic Nitrogen and Suspended Solids Simultaneously" Sustainability 15, no. 2: 1271. https://doi.org/10.3390/su15021271