Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baia Mare Area
2.2. Site Location and Sample Collection
2.3. Sample Preparation and Analysis
3. Results and Discussions
3.1. Physical and Chemical Properties of Samples
3.2. Trace Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minut, M.; Rosca, M.; Cozma, P.; Gavrilescu, M. Potential of plants for the bioremediation of soils contaminated with persistent pollutants. ECOTERRA J. Environ. Res. Prot. 2019, 16, 17–28. [Google Scholar]
- Žibret, G.; Gosar, M.; Miler, M.; Alijagić, J. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 2018, 29, 4457–4470. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tao, Y.; Su, B.; Wang, L.; Liu, P. Environmental and Health Risks Posed by Heavy Metal Contamination of Groundwater in the Sunan Coal Mine, China. Toxics 2022, 10, 390. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Alfonso, P.; Anticoi, H.; Yubero, T.; Bascompta, M.; Henao, L.; Garcia-Valles, M.; Palacios, S.; Yáñez, J. The Importance of Mineralogical Knowledge in the Sustainability of Artisanal Gold Mining: A Mid-South Peru Case. Minerals 2019, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Cacciuttolo, C.; Cano, D. Environmental Impact Assessment of Mine Tailings Spill Considering Metallurgical Processes of Gold and Copper Mining: Case Studies in the Andean Countries of Chile and Peru. Water 2022, 14, 3057. [Google Scholar] [CrossRef]
- Capuana, M. A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. Ifor. Biogeosci. For. 2020, 13, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Boros, M.N.; Micle, V. Copper influence on germination and growth of sunflower (Helianthus annuus). Stud. UBB Ambient 2015, LX, 23–30. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Rakete, S.; Moonga, G.; Wahl, A.-M.; Mambrey, V.; Shoko, D.; Moyo, D.; Muteti-Fana, S.; Tobollik, M.; Steckling-Muschack, N.; Bose-O’Reilly, S. Biomonitoring of arsenic, cadmium and lead in two artisanal and small-scale gold mining areas in Zimbabwe. Environ. Sci. Pollut. Res. 2022, 29, 4762–4768. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Cameselle, C.; Reddy, K.R. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev. Environ. Sci. Biotechnol. 2016, 15, 299–326. [Google Scholar] [CrossRef]
- Dabonne, S.; Koffi, B.; Kouadio, E.; Koffi, A.; Due, E.; Kouame, L. Traditional utensils: Potential sources of poisoning by heavy metals. Br. J. Pharmacol. Toxicol. 2010, 1, 90–92. [Google Scholar]
- Sandeep, G.; Vijayalatha, K.; Anitha, T. Heavy metals and its impact in vegetable crops. Int. J. Chem. Stud. 2019, 7, 1612–1621. [Google Scholar]
- Vizuete, J.; Pérez-López, M.; Míguez-Santiyán, M.P.; Hernández-Moreno, D. Mercury (Hg), Lead (Pb), Cadmium (Cd), Selenium (Se), and Arsenic (As) in Liver, Kidney, and Feathers of Gulls: A Review. Rev. Environ. Contam. Toxicol. 2019, 247, 85–146. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Thakare, M.; Sarma, H.; Datar, S.; Roy, A.; Pawar, P.; Gupta, K.; Pandit, S.; Prasad, R. Understanding the holistic approach to plant-microbe remediation. Curr. Res. Biotechnol. 2021, 3, 84–98. [Google Scholar] [CrossRef]
- Kolipinski, M.; Subramanian, M.; Kristen, K.; Borish, S.; Ditta, S. Sources and Toxicity of Mercury in the San Francisco Bay Area, Spanning California and Beyond. J. Environ. Public Health 2020, 2020, 8184614. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, H.; Cao, W.J.; Liu, W.; Lan, S.T. Seasonal Distribution Characteristics and Health Risk Assessment of Heavy Metals in Surface Water of Qingjiang River. Huan Jing Ke Xue 2021, 42, 175–183. [Google Scholar]
- Tutic, A.; Novakovic, S.; Lutovac, M.; Biocanin, R.; Ketin, S.; Omerovic, N. The Heavy Metals in Agrosystems and Impact on Health and Quality of Life. Open Access Maced. J. Med. Sci. 2015, 3, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Liu, L.; Zheng, N.; Liu, H.; Wu, L.; Yue, W. Application of Different Indices for Soil Heavy Metal Pollution Risk Assessment Comparison and Uncertainty: A Case Study of a Copper Mine Tailing Site. Minerals 2022, 12, 1074. [Google Scholar] [CrossRef]
- Tchernitchin, A.; Herrera, L. Mining Tailings and their Effects on Health, Environment and Economic Development. Example of Mining Tailings in the Chacabuco-Polpaico Valley. Cuad. Med. Soc. 2006, 46, 22–43. [Google Scholar]
- Yohannessen, K.; Alvarado, S.; Mesías, S.; Klarián, J.; Silva, C.; Vidal, D.; Cáceres, D.D. Exposure to Fine Particles by Mine Tailing and Lung Function Effects in a Panel of Schoolchildren, Chañaral, Chile. J. Environ. Prot. 2015, 6, 118–128. [Google Scholar]
- Brink, H.G.; Lategan, M.; Naudé, K.; Chirwa, E. Lead removal using industrially sourced consortia: Influence of lead and glucose concentrations. Chem. Eng. Trans. 2017, 57, 409–414. [Google Scholar]
- Mtimunye, P.J.; Chirwa, E.M. Bioremediation of radiotoxic elements under natural environmental conditions. In Applied Bioremediation—Active and Passive Approaches; InTech Open: London, UK, 2013; pp. 181–208. [Google Scholar]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Filipoiu, D.C.; Bungau, S.G.; Endres, L.; Negru, P.A.; Bungau, A.F.; Pasca, B.; Radu, A.-F.; Tarce, A.G.; Bogdan, M.A.; Behl, T.; et al. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. Toxics 2022, 10, 716. [Google Scholar] [CrossRef]
- Wilk, A.; Kalisińska, E.; Kosik-Bogacka, D.I.; Romanowski, M.; Różański, J.; Ciechanowski, K.; Słojewski, M.; Łanocha-Arendarczyk, N. Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ. Geochem. Health 2017, 39, 889–899. [Google Scholar] [CrossRef]
- Hon, K.; Fung, C.; Leung, A.K. Childhood lead poisoning: An overview. Hong Kong Med. J. 2017, 23, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Machoń-Grecka, A.; Dobrakowski, M.; Kasperczyk, A.; Birkner, E.; Kasperczyk, S. Angiogenesis and lead (Pb): Is there a connection? Drug Chem. Toxicol. 2022, 45, 589–593. [Google Scholar] [CrossRef]
- Maret, W. The Bioinorganic Chemistry of Lead in the Context of Its Toxicity. In Metal Ions in Life Sciences Book 17; Walter de Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Chanpiwat, P.; Himeno, S.; Sthiannopkao, S. Arsenic and other metals’ presence in biomarkers of Cambodians in arsenic contaminated areas. Int. J. Environ. Res. Public Health 2015, 12, 14285–14300. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P. An insight of environmental contamination of arsenic on animal health. Emerg. Contam. 2017, 3, 17–22. [Google Scholar] [CrossRef]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Ali, I.; Gupta, V.; Khan, T.A.; Asim, M. Removal of arsenate by electrocoagulation method using Al-Fe electrodes. Int. J. Electrochem. Sci. 2012, 7, 1898–1907. [Google Scholar]
- Rao, C.V.; Pal, S.; Mohammed, A.; Farooqui, M.; Doescher, M.P.; Asch, A.S.; Yamada, H.Y. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 2017, 8, 57605–57621. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, M.T.; Aziz, R.; Yang, X.; Xiao, W.; Ali, B.; Li, T. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol. Environ. Saf. 2014, 103, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Basta, N.; Raun, W.; Gavi, F. Wheat grain cadmium under long-term fertilization and continuous winter wheat production. Better Crops 1998, 82, 14–15. [Google Scholar]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Lin, H.C.; Hao, W.M.; Chu, P.H. Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev. Port. Cardiol. 2021, 40, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Mezynska, M.; Brzóska, M.M. Environmental exposure to cadmium—A risk for health of the general population in industrialized countries and preventive strategies. Environ. Sci. Pollut. Res. 2018, 25, 3211–3232. [Google Scholar] [CrossRef]
- Pepłońska, B.; Janasik, B.; McCormack, V.; Bukowska-Damska, A.; Kałuzny, P. Cadmium and volumetric mammographic density: A cross-sectional study in Polish women. PLoS ONE 2020, 15, e0233369. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, K.M.; White, A.J.; Jackson, B.P.; Karagas, M.R.; Sandler, D.P.; Weinberg, C. Toenail-Based Metal Concentrations and Young-Onset Breast Cancer. Am. J. Epidemiol. 2019, 188, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yan, J.; Xie, Y.; Chang, X.; Li, J.; Ren, C.; Zhu, J.; Ren, L.; Qi, K.; Bai, Z.; et al. Dual role of cadmium in rat liver: Inducing liver injury and inhibiting the progression of early liver cancer. Toxicol. Lett. 2022, 355, 62–81. [Google Scholar] [CrossRef]
- Neilson, S.; Rajakaruna, N. Phytoremediation of agricultural soils: Using plants to clean metal contaminated arable land. In Phytoremediation: Management of Environmental Contaminants; Ansari, A.A., Gill, S.S., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 159–168. [Google Scholar]
- Liu, X.; Tian, F.; Xie, Y.; Ji, X. Control effects of Tianshifu soil conditioners on Cd contamination in paddy fields of Hunan Province. Agric. Sci. Technol. 2015, 16, 1447. [Google Scholar]
- Chaoua, S.; Boussaa, S.; El Gharmali, A.; Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 429–436. [Google Scholar] [CrossRef]
- Rankin, W. Towards zero waste. AusIMM Bull. 2015, 2015, 32–37. [Google Scholar]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.; Macklin, M.; Hudson-Edwards, K. Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.B.; Sun, L.B. Status and control countermeasures of heavy metal pollution in urban soil. Environ. Prot. Sci. 2009, 35, 79–81. [Google Scholar]
- Chao, S.; LiQin, J.; WenJun, Z. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Y.; Lan, X.; Yang, Y.; Wu, X.; Du, L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Sci. Rep. 2022, 12, 3552. [Google Scholar] [CrossRef] [PubMed]
- Interministerial Commission for National Inventory of Waste Dumps and Tailings Ponds on the Territory of Romania. Report: Inventory and Visual Inspection of the Tailings Dumps and Tailings Ponds on the Territory of Romania. 2017. Available online: https://www.economie.gov.ro/images/resurse-minerale/Raport%20Halde%20Iazuri%2012%20sept%202017.pdf (accessed on 20 December 2020). (In Romanian)
- Baron, M. Aspects regarding the functioning of the State Metalifer Mining complex in the Baia Mare region during the interwar period. Maramur. Arch. Mag. 2011, 4, 162–185. (In Romanian) [Google Scholar]
- Rădulescu, C.; Toader, R.; Boca, G.; Abrudan, M.; Anghel, C.; Toader, D.C. Sustainable Development in Maramures County. Sustainability 2015, 7, 7622–7643. [Google Scholar] [CrossRef] [Green Version]
- Manoiu, V.M.; Spiridon, R.M. A deep dive into the chronic air pollution reality in Baia Mare: Part I: Sources of historical environmental pollution in Baia Mare and their contribution to air pollution. IJASOS Int. E J. Adv. Soc. Sci. 2017, 3, 734–743. [Google Scholar] [CrossRef]
- Sousa, R.; Futuro, A.; Fiúza, A.; Leite, M.M. Pre-concentration at crushing sizes for low-grade ores processing—Ore macro texture characterization and liberation assessment. Miner. Eng. 2020, 147, 106156. [Google Scholar] [CrossRef]
- Martínez, J.; Mendoza, R.; Rey, J.; Sandoval, S.; Hidalgo, M.C. Characterization of Tailings Dams by Electrical Geophysical Methods (ERT, IP): Federico Mine (La Carolina, Southeastern Spain). Minerals 2021, 11, 145. [Google Scholar] [CrossRef]
- Modoi, O.C. The Integrated Management of Waste Resulting from the Valorization of Ores Associated with the Metallogenetic Province of Baia Mare. Ph.D. Thesis, Babeş-Bolyai University, Cluj-Napoca, Romania, 2010. (In Romanian). [Google Scholar]
- Chopard, A.; Marion, P.; Mermillod-Blondin, R.; Plante, B.; Benzaazoua, M. Environmental Impact of Mine Exploitation: An Early Predictive Methodology Based on Ore Mineralogy and Contaminant Speciation. Minerals 2019, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Agboola, O.; Babatunde, D.E.; Fayomi, O.S.I.; Sadiku, E.R.; Popoola, P.; Moropeng, L.; Yahaya, A.; Mamudu, O.A. A review on the impact of mining operation: Monitoring, assessment and management. Results Eng. 2020, 8, 100181. [Google Scholar] [CrossRef]
- Zaharia, C.S.; Mostiș, D.M.; Dinescu, S.; Istvan, D. Mining risk factors in Baia Mare. Constr. Mag. 2019, 160, 60–65. (In Romanian) [Google Scholar]
- Petrean, I.A.; Micle, V. Study regarding polluted soils with heavy metals from Maramures mining basin, Romania, in view for the remediation of affected areas. Sci. Papers. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2021, X, 241–250. [Google Scholar]
- Fodor, D. The influence of the mining industry on the environment. AGIR Bull. 2006, 3, 2–13. (In Romanian) [Google Scholar]
- Fernández-Caliani, J.C.; Giráldez, M.I.; Waken, W.H.; Del Río, Z.M.; Córdoba, F. Soil quality changes in an Iberian pyrite mine site 15 years after land reclamation. Catena 2021, 206, 105538. [Google Scholar] [CrossRef]
- Environmental Protection Agency Maramures. Critical Areas in Terms of Soil Deterioration; Environmental Protection Agency Maramures: Baia Mare, Romania, 2012. (In Romanian) [Google Scholar]
- Dorotan, D.; Ozunu, A.; Costin, D. Accumulation of heavy metals in soils and alluvial deposits of Lăpuş river, Maramures county, Romania. Carpathian J. Earth Environ. Sci. 2015, 10, 181–190. [Google Scholar]
- Martínez-López, S.; Martínez-Sánchez, M.J.; Pérez-Sirvent, C. Do Old Mining Areas Represent an Environmental Problem and Health Risk? A Critical Discussion through a Particular Case. Minerals 2021, 11, 594. [Google Scholar] [CrossRef]
- Sharma, I. ICP-OES: An advance tool in biological research. Open J. Environ. Biol. 2020, 5, 27–33. [Google Scholar]
- Novaes, C.G.; Bezerra, M.A.; da Silva, E.G.P.; dos Santos, A.M.P.; da Silva Romao, I.L.; Neto, J.H.S. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem. J. 2016, 128, 331–346. [Google Scholar] [CrossRef]
- Mourinha, C.; Palma, P.; Alexandre, C.; Cruz, N.; Rodrigues, S.M.; Alvarenga, P. Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments 2022, 9, 11. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Abdullah, S.R.S.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.K.; Prasad, R. Strategies for soil management. In Environmental Technology and Sustainability: Physical, Chemical and Biological Technologies for Clean Environmental Management; Behera, B.K., Prasad, R., Eds.; Elsevier MPS Limited: New Delhi, India, 2020; pp. 143–167. [Google Scholar]
- Dhingra, N.; Sharma, R.; Singh, N.S. Phytoremediation of Heavy Metal Contaminated Soil and Water. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer Nature: Singapore, 2022; pp. 47–70. [Google Scholar]
- Atanes, E.; Cuesta-García, B.; Nieto-Márquez, A.; Fernández-Martínez, F. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. J. Environ. Manag. 2019, 240, 359–367. [Google Scholar] [CrossRef]
- Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 2004, 132, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, G.P.S. Heavy metal toxicity in soils: Sources, remediation technologies and challenges. Adv. Plants Agric. Res. 2016, 5, 445–446. [Google Scholar]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Chen, X.; Achal, V. Biostimulation of carbonate precipitation process in soil for copper immobilization. J. Hazard. Mater. 2019, 368, 705–713. [Google Scholar] [CrossRef]
- Damian, G.; Damian, F.; Năsui, D.; Pop, C.; Cornel, P. The soils quality from the Southern-Eastern part of Baia Mare zone affected by metallurgical industry. Carpathian J. Earth Environ. Sci. 2010, 5, 139–147. [Google Scholar]
- Bora, F.D.; Bunea, C.I.; Chira, R.; Bunea, A. Assessment of the Quality of Polluted Areas in Northwest Romania Based on the Content of Elements in Different Organs of Grapevine (Vitis vinifera L.). Molecules 2020, 25, 750. [Google Scholar] [CrossRef] [Green Version]
- Jurje, M.; Ionescu, C.; Hoeck, V.; Kovacs, M. Geochemistry of Neogene quartz andesites from the Oaş and Gutâi Mountains, Eastern Carpathians (Romania): A complex magma genesis. Min. Pet. 2014, 108, 13–32. [Google Scholar] [CrossRef]
- Damian, G.; Buzatu, A.; Apopei, A.I.; Damian, F.; Maftei, A.E. Hydrothermal Sphalerites from Ore Deposits of Baia Mare Area. Minerals 2021, 11, 1323. [Google Scholar] [CrossRef]
- Fülöp, A.; Kovacs, M. Managing the geodiversity in Baia Mare region: From the scientific to the public interest. Stud. Univ. Babeş-Bolyai Geol. 2010, 55, 5–8. [Google Scholar] [CrossRef]
- Kacsó, C. Archaeological Repertoire of Maramureş County, 2nd ed.; Publishing House Ethnological: Baia Mare, Romania, 2015; Volume 1. (In Romanian) [Google Scholar]
- Milu, V. Preliminary Assessment of the Geological and Mining Heritage of the Golden Quadrilateral (Metaliferi Mountains, Romania) as a Potential Geotourism Destination. Sustainability 2021, 13, 10114. [Google Scholar] [CrossRef]
- Damian, F.; Damian, G.; Lacătușu, R.; Macovei, G.; Iepure, G.; Năprădean, I.; Chira, R.; Kollar, L.; Raţă, L.; Zaharia, D.C. Soils from the Baia Mare zone and the heavy metals pollution. Carpathian J. Earth Environ. Sci. 2008, 3, 85–98. [Google Scholar]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.R.; Cioca, L.I. Proposed Environmental Risk Management Elements in a Carpathian Valley Basin, within the Roşia Montană European Historical Mining Area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef]
- Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. [Google Scholar] [CrossRef]
- Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- STAS 7184/1-75; Soils—Collection of Samples for Pedological and Agrochemical Studies. Standards Association from Romania, ASRO: Bucharest, Romania, 2002. (In Romanian)
- STAS 1913/5; Foundation Ground. Determination of Grain Size. Standards Association from Romania, ASRO: Bucharest, Romania, 1985. (In Romanian)
- STAS 7184/13; Soils. Determination of pH. Standards Association from Romania, ASRO: Bucharest, Romania, 1988. (In Romanian)
- ISO 10390; Soil, Treated Biowaste and Sludge—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2021. (In Romanian)
- Rusu, T.; Paulette, L.; Cacovean, H.; Turcu, V. Physics, Hydrophysics, Chemistry and Soil Respiration—Research Methods; Risoprint: Cluj-Napoca, Romania, 2007. (In Romanian) [Google Scholar]
- Micle, V.; Sur, I.M. Soil Science. Laboratory Guide; U.T. Press: Cluj-Napoca, Romania, 2012; pp. 46–47. (In Romanian) [Google Scholar]
- ISO 10930; Soil Quality—Measurement of the Stability of Soil Aggregates Subjected to the Action of Water. International Organization for Standardization: Geneva, Switzerland, 2012. (In Romanian)
- ISO 11464; Soil Quality—Pre-Treatment of Samples for Physico-Chemical Analyzes. International Organization for Standardization: Geneva, Switzerland, 2006. (In Romanian)
- ISO 22036; Determination of Trace Elements in Soil Samples by Atomic Emission Spectrometry Due to Inductive Plasma Coupling (ICP—ES). International Organization for Standardization: Geneva, Switzerland, 2008. (In Romanian)
- Bud, I.; Duma, S. Mechanics of Rocks; North University Publishing House: Baia Mare, Romania, 2007. (In Romanian) [Google Scholar]
- Birlica, R.; Voinea, E.; Nicolau, M.; Petrescu, M.; Cuciureanu, A.; Vidrighin, M.; Lucaciu, I.; Ciurcanu, I. Adverse effects caused by pyrites and sterile dump from Central Pond area on environmental factors quality—Groundwater and surface water. J. Environ. Prot. Ecol. 2007, 8, 85–93. [Google Scholar]
- Order of the Ministry of Waters, Forests and Environment Protection No. 756 for the Approval of the Regulation on Environmental Pollution Assessment. 1997. Available online: https://stratos.ro/wp-content/uploads/2020/03/ordinul-nr-756-1997.pdf (accessed on 25 March 2020). (In Romanian).
- Sarsby, R.W. Environmental Geotechnics; Thomas Telford: London, UK, 2000. [Google Scholar]
- Gligor, V.; Fonogea, S.F. Environmental shortcomings and geo-ecological reballancing of the mining sites without activity in Maramureş county. Stud. Univ. Babeş-Bolyai Geogr. 2010, LV, 189–198. [Google Scholar]
- Chen, L.; Zhou, M.; Wang, J.; Zhang, Z.; Duan, C.; Wang, X.; Zhao, S.; Bai, X.; Li, Z.; Li, Z.; et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef] [PubMed]
- Iacoban, C.; Risca, I.M.; Roibu, C.; Ciornea, E.T.; Necula, R.; Ilieva, D.; Sandu, I.; Drochioiu, G. Tarnita Polluted Area: Accumulation of Heavy Metals and Nutrients from the Soil by Woody Species. Chem. Mag. 2019, 70, 753–758. [Google Scholar] [CrossRef]
- Mihali, C.; Oprea, G.; Michnea, A.; Jelea, S.-G.; Jelea, M.; Man, C.; Şenilă, M.; Grigor, L. Assessment of heavy metals content and pollution level in soil and plants in Baia Mare area, NW Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 143–152. [Google Scholar]
- Rojas, D.; Hidalgo, M.; Kohfahl, C.; Rey, J.; Martínez, J.; Benavente, J. Oxidation Dynamics and Composition of the Flotation Plant Derived Tailing Impoundment Aquisgrana (Spain). Water Air Soil Pollut. 2019, 230, 158. [Google Scholar] [CrossRef]
- Al-Boghdady, A.A.; Hassanein, K.M.A. Chemical Analysis and Environmental Impact of Heavy Metals in Soil of Wadi Jazan Area, Southwest of Saudi Arabia. Appl. Ecol. Environ. Res. 2019, 17, 7067–7084. [Google Scholar] [CrossRef]
- Bempah, C.K.; Ewusi, A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Env. Monit. Assess. 2016, 188, 261. [Google Scholar] [CrossRef]
- Aendo, P.; De Garine-Wichatitsky, M.; Mingkhwan, R.; Senachai, K.; Santativongchai, P.; Krajanglikit, P.; Tulayakul, P. Potential Health Effects of Heavy Metals and Carcinogenic Health Risk Estimation of Pb and Cd Contaminated Eggs from a Closed Gold Mine Area in Northern Thailand. Foods 2022, 11, 2791. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, X.F.; Ave, M.T.; Mallah, N.; Caamaño-Isorna, F.; Jiménez, A.N.G.; Vieira, D.N.; Bianchini, F.; Muñoz-Barús, J.I. Heavy metal contamination in Peru: Implications on children’s health. Sci. Rep. 2021, 11, 22729. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, S.M.; Mahmud, A.A.; Abdu, N. Heavy Metals Source Apportionment and Human Health Risk Assessment of Contaminated Soils of Zamfara State, Nigeria. Agro Bali Agric. J. 2022, 5, 199–218. [Google Scholar] [CrossRef]
Sample | Metal Concentration [mg kg−1] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Zn | Cu | Mn | Pb | Fe | Ni | Co | |
1A | 274 | 14.2 | 733 | 1126 | 53.0 | 492 | 7710 | 12.0 | 9.93 |
1B | 339 | 12.4 | 743 | 1241 | 50.2 | 942 | 7887 | 36.6 | 11.6 |
1C | 327 | 11.0 | 1273 | 1913 | 179 | 305 | 7593 | 17.7 | 15.9 |
2A | 144 | 6.67 | 759 | 849 | 51.5 | 1073 | 7327 | 8.73 | 9.10 |
2B | 128 | 16.7 | 615 | 543 | 95.7 | 1364 | 7067 | 10.8 | 6.13 |
2C | 5.77 | 17.3 | 735 | 64.5 | 212 | 109 | 6733 | 14.3 | 13.5 |
3A | 95.8 | 11.5 | 617 | 463 | 87.3 | 280 | 7637 | 9.70 | 7.23 |
3B | 7.77 | 24.5 | 489 | 211 | 168 | 165 | 6483 | 12.9 | 5.07 |
3C | 7.00 | 20.4 | 251 | 48.1 | 262 | 165 | 6837 | 10.4 | 5.70 |
4A | 130 | 2.07 | 587 | 444.7 | 28.6 | 268 | 8090 | 9.77 | 10.9 |
4B | 349 | 7.27 | 593 | 1036 | 37.5 | 200 | 7720 | 11.3 | 11.2 |
4C | 353 | 12.7 | 973 | 1973 | 120 | 331 | 7650 | 16.1 | 16.2 |
5A | 166 | 1.70 | 426 | 242 | 14.0 | 243 | 79,167 | 10.2 | 13.5 |
5B | 429 | 19.6 | 572 | 335 | 21.2 | 267 | 76,307 | 17.2 | 11.9 |
5C | 568 | 8.23 | 614 | 535 | 30.0 | 266 | 79,907 | 12.4 | 13.4 |
6A | 165 | 18.1 | 644 | 479 | 43.2 | 185 | 78,407 | 11.9 | 8.07 |
6B | 270 | 20.0 | 934 | 2228 | 178 | 275 | 74,700 | 13.4 | 12.1 |
6C | 183 | 21.6 | 1365 | 2537 | 483 | 211 | 7406 | 17.5 | 14.8 |
7A | 495 | 92.2 | 962 | 4203 | 38.5 | 362 | 7650 | 20.4 | 12.6 |
7B | 438 | 51.8 | 846 | 4576 | 32.8 | 453 | 7740 | 18.1 | 12.6 |
7C | 323 | 23.1 | 1106 | 4217 | 141 | 368 | 7907 | 18.9 | 14.9 |
8A | 277 | 122.2 | 953 | 4683 | 51.8 | 95.5 | 7790 | 35.4 | 12.7 |
8B | 465 | 139.3 | 1281 | 5067 | 63.7 | 76.4 | 7670 | 26.1 | 13.8 |
8C | 146 | 49.7 | 1035 | 8883 | 148 | 2068 | 7076 | 27.7 | 11.7 |
9A | 285 | 126.1 | 923 | 4540 | 53.5 | 586 | 7943 | 29.3 | 8.57 |
9B | 309 | 154.4 | 1203 | 6883 | 81.8 | 269 | 7673 | 38.2 | 15.2 |
9C | 86.8 | 79.1 | 1033 | 6700 | 233 | 1818 | 7393 | 29.2 | 10.4 |
SOIL | 2.13 | 25.6 | 269 | 301 | 74.5 | 393 | 6437 | 10.2 | 3.40 |
Element | Mean | Minimum | Maximum | Median | Standard Deviation |
---|---|---|---|---|---|
Cd | 250.65 | 5.77 | 568.33 | 274.10 | 154.31 |
Cr | 40.13 | 1.70 | 154.37 | 19.57 | 46.04 |
Zn | 824.76 | 250.90 | 1365 | 759.33 | 281.17 |
Cu | 2445.32 | 48.07 | 8883.33 | 1241.00 | 2475.62 |
Mn | 109.60 | 13.97 | 482.67 | 63.67 | 102.70 |
Pb | 490.41 | 76.37 | 2067.67 | 275.17 | 516.98 |
Fe | 7549.26 | 6483.33 | 8090.00 | 7650.00 | 401.21 |
Ni | 13.78 | 8.73 | 38.20 | 16.07 | 8.94 |
Co | 11.44 | 5.07 | 16.17 | 11.93 | 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrean, I.A.; Micle, V.; Sur, I.M.; Șenilă, M. Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability 2023, 15, 1158. https://doi.org/10.3390/su15021158
Petrean IA, Micle V, Sur IM, Șenilă M. Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability. 2023; 15(2):1158. https://doi.org/10.3390/su15021158
Chicago/Turabian StylePetrean, Ioana Andreea, Valer Micle, Ioana Monica Sur, and Marin Șenilă. 2023. "Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania)" Sustainability 15, no. 2: 1158. https://doi.org/10.3390/su15021158
APA StylePetrean, I. A., Micle, V., Sur, I. M., & Șenilă, M. (2023). Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability, 15(2), 1158. https://doi.org/10.3390/su15021158