How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Economy
2.2. Structural Upgrading of Cultural Industries
2.3. De and Structural Upgrading of Cultural Industries
3. Theoretical Analysis and Hypothesis
3.1. De and Structural Upgrading of the Cultural Industry
3.2. Mediating Effect of Technological Innovation
4. Model Construction and Variable Selection
4.1. Variable Description
4.1.1. Explained Variables
4.1.2. Core Explanatory Variables
4.1.3. Mediator Variable
4.1.4. Control Variables
4.2. Model Construction
4.3. Data Sources
5. Analysis of the Empirical Results
5.1. Spatial Autocorrelation Test
5.1.1. Global Spatial Autocorrelation Analysis
5.1.2. Local Spatial Autocorrelation Analysis
5.2. Model Selection
5.3. Benchmark Regression Analysis
5.4. Spatial Effect Decomposition
5.5. Robustness Test
5.6. Mechanism Test
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
6.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shan, S.-L. Chinese cultural policy and the cultural industries. City Cult. Soc. 2014, 5, 115–121. [Google Scholar] [CrossRef]
- Xing, X.; Ye, A. Consumption Upgrading and Industrial Structural Change: A General Equilibrium Analysis and Empirical Test with Low-Carbon Green Transition Constraints. Sustainability 2022, 14, 13645. [Google Scholar] [CrossRef]
- Jaikumar, S.; Sharma, Y. Consuming beyond means: Debt trap of conspicuous consumption in an emerging economy. J. Mark. Theory Pract. 2021, 29, 233–249. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Chen, T.; Li, V. Where will China’s real estate market go under the economy’s new normal? Cities 2016, 55, 42–48. [Google Scholar] [CrossRef]
- Sturgeon, T.J. Upgrading strategies for the digital economy. Glob. Strategy J. 2021, 11, 34–57. [Google Scholar] [CrossRef]
- Beutel, S.; Bendig, D.; Brettel, M. The intangible value of digitalization-assessing the relationship of digital orientation and intangible value drivers. In Proceedings of the International Conference on Interaction Sciences, Munich, Germany, 15–18 December 2019; Available online: https://aisel.aisnet.org/icis2019/governance_is/governance_is/24/ (accessed on 1 June 2023).
- Baryshnikova, N.A.; Glinkina, O.V.; Kozhina, V.O.; Nikolskaya, E.Y.; Kulgatchev, I.P. Digital Economy Development Issues in The Socio-Economic Environment. Rev. Incl. 2020, 7, 218–227. Available online: https://revistainclusiones.org/index.php/inclu/article/view/1157 (accessed on 1 June 2023).
- Greiffenhagen, C.; Li, R.Y.; Llewellyn, N. The Visibility of Digital Money: A Video Study of Mobile Payments Using WeChat Pay. Sociol. J. Br. Sociol. Assoc. 2023, 57, 493–515. [Google Scholar] [CrossRef]
- Wang, L.N. Evaluation of High-quality Development of Shaanxi’s Economy Based on Digital Economy Based on Machine Learning Algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 6327347. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y. Does intellectual property protection stimulate digital economy development? J. Appl. Econ. 2022, 25, 723–730. [Google Scholar] [CrossRef]
- Ma, J.H.; Li, Z.H. Measuring China’s urban digital economy. Natl. Account. Rev. 2022, 4, 329–361. [Google Scholar] [CrossRef]
- Wang, Z.H. Research on Digital Economy and Human Resources Based on Fuzzy Clustering and Edge Computing. Secur. Commun. Netw. 2021, 2021, 5583967. [Google Scholar] [CrossRef]
- Perflieva, A.; Siliutina, I.; Antypenko, N.; Vlasenko, D. Digital Economy as a Factor of Economic Development of the State. Financ. Credit Act. Probl. Theory Pract. 2021, 6, 329–338. [Google Scholar]
- Niu, F.J. The Role of the Digital Economy in Rebuilding and Maintaining Social Governance Mechanisms. Front. Public Health 2022, 9, 819727. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.Z.; Li, J.Y. Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China. Sustainability 2023, 15, 3. [Google Scholar] [CrossRef]
- Chen, P.Y. Is the digital economy driving clean energy development?—New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Yu, Z.X.; Liu, S.; Zhu, Z.C. Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 11814. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Simonetto, M.; Peron, M.; Fragapane, G.; Sgarbossa, F. Digital Assembly Assistance System in Industry 4.0 Era: A Case Study with Projected Augmented Reality. In Advanced Manufacturing and Automation X; Springer: Singapore, 2021; pp. 644–651. [Google Scholar]
- Ran, R.; Wang, X.; Wang, T.; Hua, L. The impact of the digital economy on the servitization of industrial structures: The moderating effect of human capital. Data Sci. Manag. 2023, 6, 174–182. [Google Scholar] [CrossRef]
- Guo, B.N.; Wang, Y.; Zhang, H.; Liang, C.Y.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Carlsson, B. The Digital Economy: What is new and what is not? Struct. Chang. Econ. Dyn. 2004, 15, 245–264. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, D.; Wen, H.; Song, H. Does the digital economy promote upgrading the industrial structure of Chinese cities? Sustainability 2022, 14, 10235. [Google Scholar] [CrossRef]
- Zhou, A. Digital infrastructure and economic growth-Evidence for China. J. Infrastruct. Policy Dev. 2022, 6, 1397. [Google Scholar] [CrossRef]
- Trusova, N. Government socio-economic policy under the digital economy in the foreign countries and Russia. Econ. Ann. XXI 2019, 180, 88–96. [Google Scholar] [CrossRef]
- Zhang, S.W. Digital Economy and Theoretical Expansion of Economic Law. Front. Law China 2022, 17, 334–351. [Google Scholar] [CrossRef]
- Voronin, E.A.; Yushin, I.V. Objectives and challenges of ensuring economic and information security in the digital economy. Dilemas Contemp. Educ. Polit. Valores 2019, 6. Available online: https://www.proquest.com/docview/2245647524?pq-origsite=gscholar&fromopenview=true (accessed on 1 June 2023).
- Medynska, T.; Sai, L.; Akimkin, O.; Kruchak, L.; Doroshenko, T. Characteristics of the Problems of Socio-Economic Development in the Conditions of Digital Economy. Int. J. Comput. Sci. Netw. Secur. 2022, 22, 297–303. [Google Scholar] [CrossRef]
- Timin, A.N.; Baybakova, T.V. The Issues of Economic Security of the Eurasian Economic Union Countries in View of Sustainable Development of Their Digital Economy. In Sustainable Development of Modern Digital Economy: Perspectives from Russian Experiences; Ragulina, J.V., Khachaturyan, A.A., Abdulkadyrov, A.S., Babaeva, Z.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 351–358. [Google Scholar]
- Boccella, N.; Salerno, I. Creative Economy, Cultural Industries and Local Development. Procedia Soc. Behav. Sci. 2016, 223, 291–296. [Google Scholar] [CrossRef]
- Pierre Johnson, M.; McHattie, L.-S.; Champion, K. Design Innovation for creative growth: Modelling relational exchange to support and evaluate creative enterprise in the Scottish Highlands and Islands. Artifact 2019, 6, 10.11–10.24. [Google Scholar] [CrossRef]
- Mazilu, S.; Incaltarau, C.; Kourtit, K. The Creative Economy Through the Lens of Urban Resilience. An Analysis of Romanian Cities. Transylv. Rev. Adm. Sci. 2020, 77–103. [Google Scholar] [CrossRef]
- Galloway, S.; Dunlop, S. A Critique of Definitions of the Cultural and Creative Industries in Public Policy. Int. J. Cult. Policy 2007, 13, 17–31. [Google Scholar] [CrossRef]
- Lee, Y.; Peng, C.; Lee, T.; Zhao, Z. Sustainable Development Assessment of Cultural and Creative Industries in Casino Cities: A Case Study of Macao. Sustainability 2022, 14, 4749. [Google Scholar] [CrossRef]
- Boggs, J. Cultural Industries and the Creative Economy—Vague but Useful Concepts. Geogr. Compass 2009, 3, 1483–1498. [Google Scholar] [CrossRef]
- Grodach, C. Cultural Economy Planning in Creative Cities: Discourse and Practice. Int. J. Urban Reg. Res. 2013, 37, 1747–1765. [Google Scholar] [CrossRef]
- Gonzalez, R.; Llopis, J.; Gasco, J. Social networks in cultural industries. J. Bus. Res. 2015, 68, 823–828. [Google Scholar] [CrossRef]
- Tian, X. An Empirical Study on the Coupling Relationship Between Cultural Industry and Transportation Industry. In Proceedings of the 2019 International Conference on Economic Management and Model Engineering (ICEMME), Malacca, Malaysia, 6–8 December 2019; pp. 199–202. [Google Scholar]
- Zhou, J.; Li, J.; Jiao, H.; Qiu, H.; Liu, Z. The more funding the better? The moderating role of knowledge stock on the effects of different government-funded research projects on firm innovation in Chinese cultural and creative industries. Technovation 2020, 92–93, 102059. [Google Scholar] [CrossRef]
- Boix Domenech, R.; De Miguel Molina, B.; Rausell Köster, P. The impact of cultural and creative industries on the wealth of countries, regions and municipalities. Eur. Plan. Stud. 2022, 30, 1777–1797. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Shi, R.; Zhang, K.; Wang, X. How the Digital Economy Enables Regional Sustainable Development Using Big Data Analytics. Sustainability 2023, 15, 13610. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Chen, X.; Lu, C.-C. Evaluation of innovation efficiency in China’s cultural industry: A meta-frontier with non-radial directional distance function approach. Sustain. Dev. 2023, 31, 3709–3720. [Google Scholar] [CrossRef]
- Zhu, B.; Ma, R.; Luo, M.; Wu, L.; Fu, W. An Identification Method of the Externality of Cultural Facilities from the Perspective of Spatial Distribution of Cultural Industry: A Case Study of Ningbo, China. Buildings 2023, 13, 692. [Google Scholar] [CrossRef]
- Honggang, C.; Kai, C.; Xu, Z. The linear regression method of the influencing factors of cultural industry based on the classification of structural data sources. Clust. Comput. 2019, 22, 6123–6132. [Google Scholar] [CrossRef]
- Klein, M.; Gutowski, P.; Gerlitz, L.; Gutowska, E. Creative and Culture Industry in Baltic Sea Region Condition and Future. Sustainability 2021, 13, 4239. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, M.; Su, B. Research on Investment Efficiency and Policy Recommendations for the Culture Industry of China Based on a Three-Stage DEA. Sustainability 2016, 8, 324. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X. The impact of China’s digital economy development on industrial structure upgrading. Econ. Manag. Res. 2021, 42, 15–29. [Google Scholar]
- Guo, B.; Wang, Y.; Zhang, H. Digital economy, green technology innovation and industrial structure upgrading-Empirical evidence from 282 cities in China. Lanzhou J. 2022, 2, 58–73. [Google Scholar]
- Wang, Y.M.; Sun, Y.T.; Gao, J.; Sun, Y.J. Analysis on the elements of innovation ability of intelligent service industry based on the knowledge mining of books and documents. In Proceedings of the 32nd 2020 Chinese Control and Decision Conference (CCDC 2020), Hefei, China, 22–24 August 2020; pp. 4246–4251. [Google Scholar]
- Lazzeretti, L.; Oliva, S.; Innocenti, N.; Capone, F. Introduction: Rethinking culture and creativity in the digital transformation. In Rethinking Culture and Creativity in the Digital Transformation; Routledge: Oxford, UK, 2023; pp. 1–9. [Google Scholar]
- Sanz, E.; Crosbie, T. The meaning of digital platforms: Open and closed television infrastructure. Poetics 2016, 55, 76–89. [Google Scholar] [CrossRef]
- Salanova, M.; Cifre, E.; Martin, P. Information technology implementation styles and their relation with workers’ subjective well-being. Int. J. Oper. Prod. Manag. 2004, 24, 42–54. [Google Scholar] [CrossRef]
- Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D. Does data-driven culture impact innovation and performance of a firm? An empirical examination. Ann. Oper. Res. 2021, 1, 26. [Google Scholar] [CrossRef]
- Lee, M.; Choi, H.S.; Cho, D.; Lee, H. Can digital consumption boost physical consumption? The effect of online music streaming on record sales. Decis. Support Syst. 2020, 135, 113337. [Google Scholar] [CrossRef]
- Costa, P. Valuing culture and creativity impacts in a global technological era: Reshaping the analytical framework. Eur. Plan. Stud. 2022, 30, 1656–1675. [Google Scholar] [CrossRef]
- Wang, X.Y.; Chen, J. An Empirical Study on the Indirect Empowerment of Economic Development by the Digital Economy-Based on the Perspective of China’s Domestic Economic Cycle. J. Knowl. Econ. 2023, 1, 27. [Google Scholar] [CrossRef]
- Chenery, H.B.; Robinson, S.; Syrquin, M.; Feder, S. Industrialization and Growth; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Lee, C.B. Cultural Policy and Governance: Reviewing Policies Related to Cultural and Creative Industries Implemented by the Central Government of Taiwan Between 2002 and 2012. Rev. Policy Res. 2015, 32, 465–484. [Google Scholar] [CrossRef]
- Li, F.; Butel, L.; Wang, P. Innovation policy configuration—A comparative study of Russia and China. Policy Stud. 2017, 38, 311–338. [Google Scholar] [CrossRef]
- Liu, Z. The Impact of Government Policy on Macro Dynamic Innovation of the Creative Industries: Studies of the UK’s and China’s Animation Sectors. J. Open Innov. Technol. Mark. Complex. 2021, 7, 168. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; He, Z. The impact of environmental pollution and green finance on the high-quality development of energy based on spatial Dubin model. Resour. Policy 2021, 74, 102451. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Tertiary Indicators | Indicator Attributes |
---|---|---|---|
De | Internet penetration rate | Number of Internet users per 100 people | + |
Number of Internet-related employees | Percentage of employees in computer services and software | + | |
Internet-related output | Total telecom services per capita | + | |
Number of mobile Internet users | Number of cell phone users per 100 people | + | |
Digital Financial Inclusive Development | China Digital Inclusive Financial Index | + |
Variable | Obs | Mean | Std.dev. | Min | Max |
---|---|---|---|---|---|
Csh | 248 | 1.876 | 1.496 | −1.321 | 6.678 |
De | 248 | 0.423 | 0.152 | 0.196 | 0.982 |
Rd | 248 | 8.190 | 1.579 | 3.466 | 11.166 |
Gdp | 248 | 10.747 | 0.416 | 9.690 | 11.955 |
Fin | 248 | 5.493 | 0.288 | 4.746 | 6.068 |
Gov | 248 | 8.437 | 0.589 | 6.827 | 9.766 |
Fdi | 248 | 11.308 | 1.508 | 7.179 | 14.825 |
Year | Csh | De | ||
---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | |
2013 | 0.233 *** | 0.004 | 0.211 *** | 0.004 |
2014 | 0.118 ** | 0.098 | 0.192 *** | 0.007 |
2015 | 0.241 *** | 0.003 | 0.168 ** | 0.015 |
2016 | 0.342 *** | 0.000 | 0.190 *** | 0.006 |
2017 | 0.211 *** | 0.007 | 0.161 ** | 0.019 |
2018 | 0.254 *** | 0.002 | 0.158 ** | 0.023 |
2019 | 0.354 *** | 0.000 | 0.170 ** | 0.015 |
2020 | 0.343 *** | 0.000 | 0.187 *** | 0.008 |
Test | Statistical Values |
---|---|
LM spatial lag | 41.508 *** |
Robust LM spatial lag | 13.007 *** |
LM spatial error | 68.027 *** |
Robust LM spatial error | 39.526 *** |
LR_ Spatial lag | 18.190 *** |
LR_ Spatial error | 23.780 *** |
Wald _Spatial lag | 16.470 *** |
Wald _Spatial error | 13.780 ** |
Hausman test | 24.440 ** |
SDM | Csh | |||
---|---|---|---|---|
Random Effect | Individual Fixed | Time Fixed | Two-Way Fixed Effect | |
ρ(rho) | 0.560 *** | 0.529 *** | 0.516 *** | 0.267 *** |
(7.35) | (6.79) | (6.03) | (2.48) | |
De | 7.915 *** | 5.027 * | 10.738 *** | 6.351 ** |
(4.22) | (1.88) | (11.19) | (2.42) | |
Ind | −0.172 | −0.316 | 0.412 | −0.300 |
(−0.3) | (−0.57) | (0.53) | (−0.56) | |
Gov | 0.062 | 0.061 | 0.087 | 0.074 |
(0.54) | (0.56) | (0.51) | (0.7) | |
Gdp | −0.134 | −0.110 | −0.242 | 0.079 |
(−0.83) | (−0.68) | (−1.55) | (0.45) | |
Fdi | −0.054 | −0.040 | −0.215 *** | −0.051 |
(−1.04) | (−0.8) | (−3.07) | (−1.06) | |
W × De | −8.164 *** | −4.277 | 1.484 | 17.905 *** |
(2.77) | (−1.6) | (0.69) | (2.77) | |
W × Ind | −1.012 | −0.651 | −1.253 | 0.625 |
(−0.73) | (−0.49) | (−0.65) | (0.47) | |
W × Gov | 0.446 * | 0.436 * | 1.028 ** | 0.573 ** |
(1.62) | (1.68) | (2.50) | (2.23) | |
W × Gdp | −0.370 | −0.259 | −1.456 *** | 0.541 |
(−0.90) | (−0.63) | (−3.15) | (1.03) | |
W × Fdi | −2.000 | −0.219 | −0.341 * | −0.301 ** |
(−1.41) | (−1.64) | (−1.70) | (−2.24) | |
sigma2_e | 0.402 *** | 0.351 *** | 0.902 *** | 0.331 *** |
(10.25) | (10.92) | (10.82) | (10.98) | |
time | No | No | Yes | Yes |
ind | No | Yes | No | Yes |
Variable | Direct | Indirect | Total |
---|---|---|---|
De | 7.371 *** | 26.201 *** | 33.572 *** |
(2.78) | (3.28) | (4.14) | |
Ind | −0.295 | 0.725 | 0.43 |
(−0.56) | (0.41) | (0.22) | |
Gov | 0.111 | 0.775 ** | 0.887 ** |
(1.10) | (2.28) | (2.48) | |
Gdp | 0.107 | 0.794 | 0.902 |
(0.59) | (1.12) | (1.09) | |
Fdi | −0.068 | −0.409 ** | 0.477 ** |
(−1.45) | (−2.11) | (−2.22) |
Regression Results of the Replacement Space Weight Matrix | Regression Results of the Original Model | |||
---|---|---|---|---|
Coefficient | Z-Statistic | Coefficient | Z-Statistic | |
De | 5.547 ** | 2.09 | 6.351 ** | 2.42 |
W × De | 12.095 ** | 2.42 | 17.905 *** | 2.77 |
Direct | 6.276 ** | 2.34 | 7.371 *** | 2.78 |
Indirect | 16.886 *** | 3.08 | 26.201 *** | 3.28 |
Total | 23.162 *** | 4.13 | 33.572 *** | 4.14 |
Regression Results with One Period Lag | Regression Results of the Original Model | |||
---|---|---|---|---|
Coefficient | Z-Statistic | Coefficient | Z-Statistic | |
De | 0.225 *** | 2.95 | 6.351 ** | 2.42 |
W × De | 0.485 *** | 3.26 | 17.905 *** | 2.77 |
Direct | 0.265 *** | 3.39 | 7.371 *** | 2.78 |
Indirect | 0.845 *** | 4.11 | 26.201 *** | 3.28 |
Total | 1.110 *** | 4.98 | 33.572 *** | 4.14 |
Variables | Csh | Rd | Csh | |
---|---|---|---|---|
X item | De | 6.351 ** | 1.996 *** | 6.125 ** |
(2.42) | (3.17) | (2.24) | ||
Rd | 0.667 ** | |||
(2.52) | ||||
W × X item | W × De | 17.905 *** | −4.874 *** | 18.094 *** |
(2.77) | (−3.17) | (2.63) | ||
W × Rd | 1.119 | |||
(1.45) | ||||
Direct | De | 7.371 *** | 2.110 *** | 7.108 *** |
(2.78) | (3.28) | (2.59) | ||
Rd | 0.714 *** | |||
(2.7) | ||||
Indirect | De | 26.201 *** | −4.676 *** | 25.611 *** |
(3.28) | (−3.2) | (2.85) | ||
Rd | 1.670 * | |||
(1.69) | ||||
Total | De | 33.572 *** | −2.566 * | 32.719 *** |
(4.14) | (−1.94) | (3.64) | ||
Rd | 2.384 ** | |||
(2.19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Song, Y.; Wang, X. How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model. Sustainability 2023, 15, 14613. https://doi.org/10.3390/su151914613
Yao F, Song Y, Wang X. How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model. Sustainability. 2023; 15(19):14613. https://doi.org/10.3390/su151914613
Chicago/Turabian StyleYao, Fengge, Ying Song, and Xiaomei Wang. 2023. "How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model" Sustainability 15, no. 19: 14613. https://doi.org/10.3390/su151914613