Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection
Abstract
:1. Introduction
2. Related Works
2.1. Image Datasets
2.1.1. The Making and Processing of the Fuel Image Datasets
2.1.2. Setup of Experimental Platform
2.1.3. Model Training
2.1.4. Evaluation Metrics
- FN (False-Negative): The number of actual positive samples that are missed and incorrectly detected as negative by the model.
- TP (True-Positive): The number of actual positive samples that are correctly detected as positive by the model.
- FP (False-Positive): The number of actual negative samples that are mistakenly detected as positive by the model [21].
2.2. Methodologies
2.2.1. YoloX-S Network
2.2.2. Contextual Transformer Network
2.2.3. Convolutional Neural Network
2.2.4. CoT Block in the Improved YoloX-s Network
3. Experimental Analysis
3.1. Comparative Experiment
3.2. Ablation Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Li, Y.; Novoselov, K.S.; Liang, F.; Meng, J.; Ho, S.H.; Zhao, T.; Zhou, H.; Ahmad, A.; Zhu, Y.; et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nanomicro Lett. 2023, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Shokri Kalan, A.; Heidarabadi, S.; Khaleghi, M.; Ghiasirad, H.; Skorek-Osikowska, A. Biomass-to-energy integrated trigeneration system using supercritical CO2 and modified Kalina cycles: Energy and exergy analysis. Energy 2023, 270, 126845. [Google Scholar] [CrossRef]
- Hu, B.-B.; Lin, Z.-L.; Chen, Y.; Zhao, G.-K.; Su, J.-E.; Ou, Y.-J.; Liu, R.; Wang, T.; Yu, Y.-B.; Zou, C.-M. Evaluation of biomass briquettes from agricultural waste on industrial application of flue-curing of tobacco. Energy Source Part A 2020, 1–12. [Google Scholar] [CrossRef]
- Codina Gironès, V.; Moret, S.; Peduzzi, E.; Nasato, M.; Maréchal, F. Optimal use of biomass in large-scale energy systems: Insights for energy policy. Energy 2017, 137, 789–797. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of ashes from biomass combustion. Energies 2022, 15, 9653. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Bai, L.; Wu, C.; Shen, L.; Sippula, O.; Yang, J.; Zhou, L.; He, C.; Liu, J.; et al. Should industrial bagasse-fired boilers be phased out in China? J. Clean. Prod. 2020, 265, 121716. [Google Scholar] [CrossRef]
- Güler, B. Investigation of efficiency of pellet burning methods in a full scale rotary dryer. Biomass Convers. Bior. 2022, 1–13. [Google Scholar] [CrossRef]
- Zhao, F.; Bai, F.; Liu, X.; Liu, Z. A review on renewable energy transition under China’s carbon neutrality target. Sustainability 2022, 14, 15006. [Google Scholar] [CrossRef]
- Ito, H.; Tokunaga, R.; Nogami, S.; Miura, M. Influence of biomass raw materials on combustion behavior of highly densified single cylindrical biomass briquette. Combust. Sci. Technol. 2020, 194, 2072–2086. [Google Scholar] [CrossRef]
- Olugbade, T.; Ojo, O.; Mohammed, T. Influence of Binders on Combustion Properties of Biomass Briquettes: A Recent Review. Bioenergy Res. 2019, 12, 241–259. [Google Scholar] [CrossRef]
- Kpalo, S.Y.; Zainuddin, M.F.; Manaf, L.A.; Roslan, A.M. A review of technical and economic aspects of biomass briquetting. Sustainability 2020, 12, 4609. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Zhang, Y.; Wang, Y.; Yu, Y.; Ji, F.; Ahmad, R.; Dong, R. A comprehensive review on densified solid biofuel industry in China. Renew. Sustain. Energy Rev. 2016, 54, 1412–1428. [Google Scholar] [CrossRef]
- IEA. A Circular of the National Energy Administration on Heating with Renewable Energy Based on Local Conditions (No. 000019705/2021-00020); IEA: Paris, France, 2021. [Google Scholar]
- Velusamy, S.; Subbaiyan, A.; Murugesan, S.R.; Shanmugamoorthy, M.; Sivakumar, V.; Velusamy, P.; Veerasamy, S.; Mani, K.; Sundararaj, P.; Periyasamy, S.; et al. Comparative analysis of agro waste material solid biomass briquette for environmental sustainability. Adv. Mater. Sci. Eng. 2022, 2022, 3906256. [Google Scholar] [CrossRef]
- Dinesha, P.; Kumar, S.; Rosen, M.A. Biomass briquettes as an alternative fuel: A comprehensive review. Energy Technol. 2019, 7, 1801011. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.; Hao, Y.; Yang, T.; Li, L.; Luo, Z.; Xie, L.; Zhao, N.; Liu, C.; Sun, C.; et al. CO2 and air pollutant emissions from bio-coal briquettes. Environ. Technol. Innov. 2023, 29, 102975. [Google Scholar] [CrossRef]
- Li, X.; Wu, M.; Lu, G.; Yan, Y.; Liu, S. On-line identification of biomass fuels based on flame radical imaging and application of radical basis function neural network techniques. IET Renew. Power Gener. 2015, 9, 323–330. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Y.; Tang, Q.; Lu, G.; Yan, Y. Combining flame monitoring techniques and support vector machine for the online identification of coal blends. J. Zhejiang Univ.-Sci. A 2017, 18, 677–689. [Google Scholar] [CrossRef]
- Ge, H.; Li, X.; Li, Y.; Lu, G.; Yan, Y. Biomass fuel identification using flame spectroscopy and tree model algorithms. Combust. Sci. Technol. 2019, 193, 1055–1072. [Google Scholar] [CrossRef]
- Tian, C.; Hao, D.; Ma, M.; Zhuang, J.; Mu, Y.; Zhang, Z.; Zhao, X.; Lu, Y.; Zuo, X.; Li, W. Graded diagnosis of Helicobacter pylori infection using hyperspectral images of gastric juice. J. Biophotonics 2023, e202300254. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, K.; Yang, X.; Cheng, X.; Li, C. Infrared dim and small target detection based on U-Transformer. J. Vis. Commun. Image Represent. 2022, 89, 103684. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, Z.; Yu, Y. Study of YOLOX target detection method based on stand-alone self-attention. Acad. J. Comput. Inf. Sci. 2022, 5, 29–37. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Hua, X.; Ren, D.; Li, Y.; Mu, Z.; Xu, W.; Wei, Y.; Zhang, T.; Jiang, Y. Biological characters identification for hard clam larva based on the improved YOLOX-s. Comput. Electron. Agric. 2023, 212, 108103. [Google Scholar] [CrossRef]
- Mamalis, M.; Kalampokis, E.; Kalfas, I.; Tarabanis, K. deep learning for detecting verticillium fungus in olive trees: Using YOLO in UAV imagery. Algorithms 2023, 16, 343. [Google Scholar] [CrossRef]
- Luo, M.; Xu, L.; Yang, Y.; Cao, M.; Yang, J. Laboratory flame smoke detection based on an improved YOLOX algorithm. Appl. Sci. 2022, 12, 12876. [Google Scholar] [CrossRef]
- Cui, G.; He, H.; Zhou, Q.; Jiang, J.; Li, S. Research on camera-based target detection enhancement method in complex environment. In Proceedings of the 2022 5th International Conference on Robotics, Control and Automation Engineering (RCAE), Changchun, China, 28–30 October 2022. [Google Scholar]
- Liu, Y.; Duan, M.; Ding, G.; Ding, H.; Hu, P.; Zhao, H. HE-YOLOv5s: Efficient Road Defect Detection Network. Entropy 2023, 25, 1280. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Y.; Tong, M.; Yao, Y.; Qian, W.; Qi, S. CoT-XNet: Contextual transformer with Xception network for diabetic retinopathy grading. Phys. Med. Biol. 2022, 67, 245003. [Google Scholar] [CrossRef]
- Li, Y.; Yao, T.; Pan, Y.; Mei, T. Contextual transformer networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1489–1500. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, C.; Li, X. Pedestrian detection method in infrared image based on improved YOLOv7. In Proceedings of the 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 26–28 May 2023. [Google Scholar]
- Li, T.; Yin, Y.; Yi, Z.; Guo, Z.; Guo, Z.; Chen, S. Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs. J. Hand Surg. (Eur. Vol.) 2023, 48, 445–450. [Google Scholar] [CrossRef]
- Ye, M.; Tan, G.; Tang, J.; Feng, J.; Huang, X.; Sun, W.F. Detection & tracking of multi-scenic lane based on segnet-LSTM semantic split network. SAE Int. J. Adv. Curr. Pract. Mobil. 2021, 3, 2494–2500. [Google Scholar]
- Bandy, A.D.; Spyridis, Y.; Villarini, B.; Argyriou, V. Intraclass clustering-based CNN approach for detection of malignant melanoma. Sensors 2023, 23, 926. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Peng, X.; Wang, W.; Li, R. Continuous learning deraining network based on residual FFT convolution and contextual transformer module. IET Image Process. 2023, 17, 747–760. [Google Scholar] [CrossRef]
- Ji, Z.; Wu, Y.; Zeng, X.; An, Y.; Zhao, L.; Wang, Z.; Ganchev, I. Lung nodule detection in medical images based on improved YOLOv5s. IEEE Access 2023, 11, 76371–76387. [Google Scholar] [CrossRef]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of tricks for image classification with convolutional neural networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Jiang, K.; Xie, T.; Yan, R.; Wen, X.; Li, D.; Jiang, H.; Jiang, N.; Feng, L.; Duan, X.; Wang, J. An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation. Agriculture 2022, 12, 1659. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, H.; Ruan, Y.; Weng, X. Tea tree pest detection algorithm based on improved Yolov7-Tiny. Agriculture 2023, 13, 1031. [Google Scholar] [CrossRef]
- Santos, J.; Peixinho, N.; Barata, T.; Pereira, C.; Coimbra, A.P.; Crisostomo, M.M.; Mendes, M. Sunspot detection using YOLOv5 in spectroheliograph H-alpha images. Appl. Sci. 2023, 13, 5833. [Google Scholar] [CrossRef]
- Jia, F.; Tan, J.; Lu, X.; Qian, J. Radar timing range-doppler spectral target detection based on attention ConvLSTM in traffic scenes. Remote Sens. 2023, 15, 4150. [Google Scholar] [CrossRef]
- Chi, S.; Liang, Y.; Chen, W.; Hou, Z.; Luan, T. Numerical simulation of tail over-fire air supply of a grate biomass boiler. Energies 2022, 15, 7664. [Google Scholar] [CrossRef]
Models | Backbone | mAP/% | Loss | FPS/(f/s) |
---|---|---|---|---|
YoloX-L | CSPDarknet53 | 94.28 | 2.73 | 36 |
Yolov7 | ELAN | 94.32 | 3.11 | 75 |
Yolov8 | CSPDarknet | 93.96 | 2.27 | 76 |
Yolov5 | Darknet53 | 83.79 | 5.20 | 22 |
YoloX-S | CSPDarknet53 | 95.40 | 2.67 | 29 |
Improved YoloX-S | CSPDarknet53 + COT | 96.60 | 2.25 | 73 |
Experiment | Module | mAP/% | Recall/% (Straw Pellets) | FPS/(f/s) |
---|---|---|---|---|
1 | — | 94.28 | 89.10 | 83 |
2 | Focal loss | 83.79 | 87.35 | 82 |
3 | CSPDarknet53 + CoT | 94.32 | 89.37 | 80 |
4 | CSPDarknet53 + SE + Focal loss | 95.40 | 90.53 | 75 |
5 | CSPDarknet53 + CBAM + Focal loss | 95.54 | 90.64 | 75 |
6 | CSPDarknet53 + COT + Focal loss | 96.60 | 93.52 | 73 |
AP | without CoT Block | with Cot Block | |
---|---|---|---|
Class | |||
wood block | 0.97 | 0.98 | |
wood pellets | 0.95 | 0.97 | |
coal | 0.96 | 0.97 | |
straw pellet | 0.95 | 0.96 | |
straw block | 0.94 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, X.; Wang, F.; Ren, D.; Li, Y.; Mu, Z.; Li, S.; Jiang, Y. Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection. Sustainability 2023, 15, 14437. https://doi.org/10.3390/su151914437
Wang Y, Liu X, Wang F, Ren D, Li Y, Mu Z, Li S, Jiang Y. Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection. Sustainability. 2023; 15(19):14437. https://doi.org/10.3390/su151914437
Chicago/Turabian StyleWang, Yaxin, Xinyuan Liu, Fanzhen Wang, Dongyue Ren, Yang Li, Zhimin Mu, Shide Li, and Yongcheng Jiang. 2023. "Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection" Sustainability 15, no. 19: 14437. https://doi.org/10.3390/su151914437
APA StyleWang, Y., Liu, X., Wang, F., Ren, D., Li, Y., Mu, Z., Li, S., & Jiang, Y. (2023). Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection. Sustainability, 15(19), 14437. https://doi.org/10.3390/su151914437