Exploring the Transport Infrastructure Sustainability Performance: An Investigation of the Transportation Projects in Saudi Arabia
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainability Factors of Transportation Infrastructure Project
2.2. Sustainability Performance of Infrastructure Projects
2.3. Existing Research Gap and Research Opportunities
3. Methodology
3.1. Questionnaire Design
3.2. Data Collection
3.3. Respondent Demographics
3.4. Data Analysis
3.4.1. Relative Important Index (RII)
3.4.2. Data Validation Test
3.4.3. Spearman Correlation Test
4. Results and Discussion
4.1. Reliability Assessment
4.2. Spearman Correlation Assessment
4.3. Overall Ranking of Factors
4.3.1. Promoting the Decrease of Carbon Emissions (RII = 0.714)
4.3.2. Minimize Pollution and Environmental Impacts (RII = 0.709)
4.3.3. Encourage the Use of Energy-Efficient Clean Technology (RII = 0.692)
4.3.4. Promoting Financial and Investment Opportunities (RII = 0.688)
4.3.5. Noise and Vibration Minimization (RII = 0.687)
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al Zohbi, G. Sustainable Transport Strategies: A Case Study of Riyad, Saudi Arabia. In Proceedings of the E3S Web of Conferences, Khabarovsk, Russia, 7–9 September 2021; p. 02007. [Google Scholar]
- Prytherch, D.; Cidell, J. Introduction: Transportation, mobilities, and rethinking urban geographies of flow. In Transport, Mobility, and the Production of Urban Space; Routledge: Oxford, UK, 2015; pp. 19–42. [Google Scholar]
- Shah, K.J.; Pan, S.-Y.; Lee, I.; Kim, H.; You, Z.; Zheng, J.-M.; Chiang, P.-C. Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. J. Clean. Prod. 2021, 326, 129392. [Google Scholar] [CrossRef]
- Richter, A.; Löwner, M.-O.; Ebendt, R.; Scholz, M. Towards an integrated urban development considering novel intelligent transportation systems: Urban Development Considering Novel Transport. Technol. Forecast. Social Change 2020, 155, 119970. [Google Scholar] [CrossRef]
- Ma, S.S. A review of prevalence of obesity in Saudi Arabia. J. Obes. Eat. Disord. 2016, 2, 1–6. [Google Scholar]
- Belloumi, M.; Alshehry, A.S. The impact of urbanization on energy intensity in Saudi Arabia. Sustainability 2016, 8, 375. [Google Scholar] [CrossRef]
- Al-Douri, Y.; Waheeb, S.; Voon, C. Review of the renewable energy outlook in Saudi Arabia. J. Renew. Sustain. Energy 2019, 11, 015906. [Google Scholar] [CrossRef]
- Zhao, X.; Ke, Y.; Zuo, J.; Xiong, W.; Wu, P. Evaluation of sustainable transport research in 2000–2019. J. Clean. Prod. 2020, 256, 120404. [Google Scholar] [CrossRef]
- Alotaibi, A.; Edum-Fotwe, F.; Price, A.D. Critical barriers to social responsibility implementation within mega-construction projects: The case of the Kingdom of Saudi Arabia. Sustainability 2019, 11, 1755. [Google Scholar] [CrossRef]
- Ferme, L.; Zuo, J.; Rameezdeen, R. Improving collaboration among stakeholders in green building projects: Role of early contractor involvement. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2018, 10, 04518020. [Google Scholar] [CrossRef]
- Balabel, A.; Alwetaishi, M. Towards sustainable residential buildings in Saudi Arabia According to the conceptual framework of “Mostadam” rating system and vision 2030. Sustainability 2021, 13, 793. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Lim, S.K. Framework and Processes for Enhancing Sustainability Deliverables in Australian Road Infrastructure Projects. Ph.D. Thesis, Queensland University of Technology, Brisbane, QL, USA, 2009. [Google Scholar]
- Lingegård, S.; Olsson, J.A.; Kadefors, A.; Uppenberg, S. Sustainable public procurement in large infrastructure projects—Policy implementation for carbon emission reductions. Sustainability 2021, 13, 11182. [Google Scholar] [CrossRef]
- Carr, V.J.; Harris, F.; Raudino, A.; Luo, L.; Kariuki, M.; Liu, E.; Tzoumakis, S.; Smith, M.; Holbrook, A.; Bore, M. New South Wales Child Development Study (NSW-CDS): An Australian multiagency, multigenerational, longitudinal record linkage study. BMJ Open 2016, 6, e009023. [Google Scholar] [CrossRef] [PubMed]
- Martens, K. Transport Justice: Designing Fair Transportation Systems; Routledge: Oxford, UK, 2016. [Google Scholar]
- Gharehbaghi, K.; McManus, K.; Robson, K. Minimizing the environmental impacts of mega infrastructure projects: Australian public transport perspective. J. Eng. Des. Technol. 2019, 17, 736–746. [Google Scholar] [CrossRef]
- Adzar, J.A.; Zakaria, R.; Aminudin, E.; Rashid, M.H.S.A.; Munikanan, V.; Shamsudin, S.M.; Rahman, M.F.A.; Wah, C.K. Development of operation and maintenance sustainability index for penarafan hijau jabatan kerja raya (pHJKR) green road rating system. IOP Conf. Ser. Mater. Sci. Eng. 2019, 527, 012058. [Google Scholar] [CrossRef]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- McBrien, R.S. Wichita Area Metropolitan Planning Organization Scenario Planning Workshop: Sponsored by the Federal Highway Administration; No. FHWA-HEP-19-018; Federal Highway Administration: Washington, DC, USA, 2018.
- Karunasena, G.; Rathnayake, U.; Senarathne, D. Integrating sustainability concepts and value planning for sustainable construction. Built Environ. Proj. Asset Manag. 2016, 6. [Google Scholar] [CrossRef]
- Amiril, A.; Nawawi, A.H.; Takim, R.; Latif, S.N.F.A. Sustainability factors and performance. Asian J. Qual. Life 2018, 3, 151–160. [Google Scholar] [CrossRef]
- Sobuz, M.H.R.; Datta, S.D.; Akid, A.S.M.; Tam, V.W.; Islam, S.; Rana, M.J.; Aslani, F.; Yalçınkaya, Ç.; Sutan, N.M. Evaluating the effects of recycled concrete aggregate size and concentration on properties of high-strength sustainable concrete. J. King. Saud. Univ. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Sobuz, M.H.R.; Datta, S.D.; Akid, A.S.M. Investigating the combined effect of aggregate size and sulphate attack on producing sustainable recycled aggregate concrete. Aust. J. Civil Eng. 2022, 1–25. [Google Scholar] [CrossRef]
- Litman, T. Developing indicators for comprehensive and sustainable transport planning. Transp. Res. Rec. 2007, 2017, 10–15. [Google Scholar] [CrossRef]
- Datta, S.D.; Sobuz, M.H.R.; Akid, A.S.M.; Islam, S. Influence of coarse aggregate size and content on the properties of recycled aggregate concrete using non-destructive testing methods. J. Build. Eng. 2022, 61, 105249. [Google Scholar] [CrossRef]
- Datta, S.D.; Sobuz, M.H.R.; Islam, S. Evaluation of Sustainable Recycled Aggregate Concrete Quality Using Non-Destructive Testing Technique. In Proceedings of the 7th International Conference on Integrated Solid Waste & Faecal Sludge Management: Blue Appropriate Social Oriented Solutions, Khulna, Bangladesh, 27–28 February 2021. [Google Scholar]
- Datta, S.D.; Rana, M.J.; Assafi, M.N.; Mim, N.J.; Ahmed, S. Investigation on the generation of construction wastes in Bangladesh. Int. J. Constr. Manag. 2022, 23, 2260–2269. [Google Scholar] [CrossRef]
- Sobuz, M.H.R.; Datta, S.D.; Rahman, M. Evaluating the Properties of Demolished Aggregate Concrete with Non-destructive Assessment. In Proceedings of the Advances in Civil Engineering, Singapore, 27–30 June 2022; pp. 223–233. [Google Scholar]
- Nath, A.D.; Datta, S.D.; Hoque, M.I.; Shahriar, F. Various recycled steel fiber effect on mechanical properties of recycled aggregate concrete. Int. J. Build. Pathol. Adapt. 2021; ahead of print. [Google Scholar] [CrossRef]
- Hoque, M.I.; Hasan, M.; Datta, S.D. Effect Of Waste Plastic Strip On The Shear Strength And Permeability Characteristics of Black Cotton Soil. J. Appl. Sci. Eng. 2023, 27, 2019–2028. [Google Scholar] [CrossRef]
- Patlins, A. Improvement of sustainability definition facilitating sustainable development of public transport system. Procedia Eng. 2017, 192, 659–664. [Google Scholar] [CrossRef]
- Nafe Assafi, M.; Hossain, M.M.; Chileshe, N.; Datta, S.D. Development and validation of a framework for preventing and mitigating construction delay using 4D BIM platform in Bangladeshi construction sector. Constr. Innov. 2022; ahead of print. [Google Scholar] [CrossRef]
- Datta, S.D.; Rahman Sobuz, M.H.; Mim, N.J.; Nath, A.D. Investigation on the effectiveness of using building information modeling (BIM) tools in project management: A case study. Rev. Constr. J. Constr. 2023, 2022, 306–320. [Google Scholar] [CrossRef]
- Berssaneti, F.T.; Carvalho, M.M. Identification of variables that impact project success in Brazilian companies. Int. J. Proj. Manag. 2015, 33, 638–649. [Google Scholar] [CrossRef]
- Amiril, A.; Nawawi, A.H.; Takim, R.; Latif, S.N.F.A. Transportation infrastructure project sustainability factors and performance. Procedia Social. Behav. Sci. 2014, 153, 90–98. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Datta, S.D.; Tayeh, B.A.; Hakeem, I.Y.; Abu Aisheh, Y.I. Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review. Sustainability 2023, 15, 12466. [Google Scholar] [CrossRef]
- Maglad, A.M.; Othuman Mydin, M.A.; Dip Datta, S.; Tayeh, B.A. Assessing the mechanical, durability, thermal and microstructural properties of sea shell ash based lightweight foamed concrete. Constr. Build. Mater. 2023, 402, 133018. [Google Scholar] [CrossRef]
- Leal Filho, W.; Shiel, C.; Paço, A. Implementing and operationalising integrative approaches to sustainability in higher education: The role of project-oriented learning. J. Clean. Prod. 2016, 133, 126–135. [Google Scholar] [CrossRef]
- Tafazzoli, M. Strategizing sustainable infrastructure asset management in developing countries. In Proceedings of the International Conference on Sustainable Infrastructure, New York, NY, USA, 26–28 October 2017; pp. 375–387. [Google Scholar]
- Pham, H.; Kim, S.-Y.; Luu, T.-V. Managerial perceptions on barriers to sustainable construction in developing countries: Vietnam case. Environ. Dev. Sustain. 2020, 22, 2979–3003. [Google Scholar] [CrossRef]
- Datta, S.D.; Assafi, M.N. Offsite construction (OSC) in Bangladesh: Barriers and future prospects. In Proceedings of the 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), KUET, Khulna, Bangladesh, 10–12 February 2022; pp. 10–12. [Google Scholar]
- Datta, S.D.; Mannan, M.B.; Islam, M.N.; Rahman, M.H. Assessment of Crisis Factors in the Construction Industry of Dhaka City in Bangladesh. In Proceedings of the 6th International Conference on Engineering Research, Innovation and Education School of Applied Sciences & Technology, Sylhet, Bangladesh, 26–28 February 2021. [Google Scholar]
- Datta, S.D.; Sobuz, M.H.R.; Nafe Assafi, M.; Sutan, N.M.; Islam, M.N.; Mannan, M.B.; Akid, A.S.M.; Hasan, N.M.S. Critical project management success factors analysis for the construction industry of Bangladesh. Int. J. Build. Pathol. Adapt. 2023; ahead of print. [Google Scholar] [CrossRef]
- Omotayo, T.; Olanipekun, A.; Obi, L.; Boateng, P. A systems thinking approach for incremental reduction of non-physical waste. Built Environ. Proj. Asset Manag. 2020, 10, 509–528. [Google Scholar] [CrossRef]
- Skorobogatova, O.; Kuzmina-Merlino, I. Transport infrastructure development performance. Procedia Eng. 2017, 178, 319–329. [Google Scholar] [CrossRef]
- Patrman, D.; Splichalova, A.; Rehak, D.; Onderkova, V. Factors influencing the performance of critical land transport infrastructure elements. Transp. Res. Procedia 2019, 40, 1518–1524. [Google Scholar] [CrossRef]
- Cigu, E.; Agheorghiesei, D.T.; Gavriluță, A.F.; Toader, E. Transport infrastructure development, public performance and long-run economic growth: A case study for the Eu-28 countries. Sustainability 2018, 11, 67. [Google Scholar] [CrossRef]
- Yap, J.B.H.; Chow, I.N.; Shavarebi, K. Criticality of construction industry problems in developing countries: Analyzing Malaysian projects. J. Manag. Eng. 2019, 35, 04019020. [Google Scholar] [CrossRef]
- Boone, H.N.; Boone, D.A. Analyzing Likert Data. J. Ext. 2012, 50, 48. [Google Scholar] [CrossRef]
- Khatib, B.A.; Poh, Y.S.; El-Shafie, A. Delay factors management and ranking for reconstruction and rehabilitation projects based on the relative importance index (RII). Sustainability 2020, 12, 6171. [Google Scholar] [CrossRef]
- Subedi, B.P. Using Likert type data in social science research: Confusion, issues and challenges. Int. J. Contemp. Appl. Sci. 2016, 3, 36–49. [Google Scholar]
- Thomas, A.V.; Sudhakumar, J. Critical analysis of the key factors affecting construction labour productivity–An Indian Perspective. Int. J. Constr. Manag. 2013, 13, 103–125. [Google Scholar] [CrossRef]
- Bishara, A.J.; Hittner, J.B. Testing the significance of a correlation with nonnormal data: Comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol. Methods 2012, 17, 399. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Suhariadi, B.T. Construction delays in privately funded large building projects in Bangladesh. Asian J. Civil. Eng. 2018, 19, 415–429. [Google Scholar] [CrossRef]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Bond, T.C.; Sun, H. Can reducing black carbon emissions counteract global warming? ACS Publ. 2005, 39, 5921–5926. [Google Scholar] [CrossRef] [PubMed]
- Alomari, M.A.; Heffron, R.J. Utilising law in the transition of the Kingdom of Saudi Arabia to a low-carbon economy. Environ. Innov. Soc. Transit. 2021, 39, 107–118. [Google Scholar] [CrossRef]
- Swart, R.; Raes, F. Making integration of adaptation and mitigation work: Mainstreaming into sustainable development policies? Clim. Policy 2007, 7, 288–303. [Google Scholar] [CrossRef]
- Lofrano, G.; Brown, J. Wastewater management through the ages: A history of mankind. Sci. Total Environ. 2010, 408, 5254–5264. [Google Scholar] [CrossRef]
- Al-Shihri, F.S. Principles of sustainable development and their application in urban planning in Saudi Arabia. JES J. Eng. Sci. 2013, 41, 1703–1727. [Google Scholar] [CrossRef]
- Daily, B.F.; Huang, S. Achieving sustainability through attention to human resource factors in environmental management. Int. J. Oper. Prod. Manag. 2001, 21, 1539–1552. [Google Scholar] [CrossRef]
- Alshuwaikhat, H.M.; Abubakar, I. An integrated approach to achieving campus sustainability: Assessment of the current campus environmental management practices. J. Clean. Prod. 2008, 16, 1777–1785. [Google Scholar] [CrossRef]
- Rehan, R.; Nehdi, M. Carbon dioxide emissions and climate change: Policy implications for the cement industry. Environ. Sci. Policy 2005, 8, 105–114. [Google Scholar] [CrossRef]
- Wong, F.W.M.H.; Foley, A.; Del Rio, D.F.; Rooney, D.; Shariff, S.; Dolfi, A.; Srinivasan, G. Public perception of transitioning to a low-carbon nation: A Malaysian scenario. Clean Technol. Environ. Policy 2022, 24, 3077–3092. [Google Scholar] [CrossRef]
- Dey, A.; LaGuardia, P.; Srinivasan, M. Building sustainability in logistics operations: A research agenda. Manag. Res. Rev. 2011, 34, 1237–1259. [Google Scholar] [CrossRef]
- Denoas, N.; Martland, C. Transportation Infrastructure In Asia: Priorities That Will Facilitate Trade With Europe. In Proceedings of the 46th Annual Transportation Research Forum, Washington, DC, USA, 6–8 March 2005. [Google Scholar]
- Martens, M.L.; Carvalho, M.M. Key factors of sustainability in project management context: A survey exploring the project managers’ perspective. Int. J. Proj. Manag. 2017, 35, 1084–1102. [Google Scholar] [CrossRef]
- Krajangsri, T.; Pongpeng, J. Effect of sustainable infrastructure assessments on construction project success using structural equation modeling. J. Manag. Eng. 2017, 33, 04016056. [Google Scholar] [CrossRef]
- Bunn, F.; Zannin, P.H.T. Assessment of railway noise in an urban setting. Appl. Acoust. 2016, 104, 16–23. [Google Scholar] [CrossRef]
SI | The Outcome of Transport Infrastructure Sustainability Performance | Reference |
---|---|---|
F1 | Minimize pollution and environmental impacts | [36] |
F2 | A balanced development | [36] |
F3 | Promoting the decrease of carbon emissions | [36] |
F4 | Protect native/aquatic wildlife | [47] |
F5 | Evaluation of water harvesting | [47] |
F6 | Meeting waste management standards | [48] |
F7 | Maximizing rainwater harvesting and re-use | [48] |
F8 | Protection of water quality | [48] |
F9 | Prevention of land contamination and degradation | [48] |
F10 | Encourage the use of energy-efficient clean technology | [47] |
F11 | Air quality and dust suppression | Local Expert |
F12 | Noise and vibration minimization | Local Expert |
F13 | Fit for purpose and quality | [46] |
F14 | Minimize maintenance and operation costs | [47] |
F15 | Minimization risk | [47] |
F16 | Enhancing construction performance | [46] |
F17 | Promoting productivity | [46] |
F18 | Complete on time | Local Expert |
F19 | Reducing project delivery time | [46] |
F20 | Protect cultural heritage | [46] |
F21 | Save travel time and vehicle operating costs | [36] |
F22 | Public acceptance | [36] |
F23 | Promoting financial and investment opportunities | [36] |
F24 | Enhancing project safety and health performance | [36] |
F25 | Promote interagency collaboration | Local Expert |
F26 | Safe construction | Local Expert |
F27 | Minimize health and safety risk | [46] |
F28 | Clear terms of instruction and approval within the timeframe | [46] |
F29 | Enhancement of infrastructure life span | [49] |
F30 | Uninterrupted material supply | [49] |
F31 | Increase design innovation | [49] |
F32 | Long-lasting and high-quality products | [49] |
F34 | No dispute | Local Expert |
Respondents’ Characteristics | Frequency (n = 197) | Percentage |
---|---|---|
Types of respondents | ||
Government agencies | 62 | 31% |
Engineers and design professionals | 56 | 28% |
Project owners | 50 | 25% |
Contractors | 29 | 16% |
Sex | ||
Male | 191 | 97% |
Female | 6 | 3% |
Age | ||
21–30 | 103 | 52% |
31–40 | 83 | 42% |
41–50 | 11 | 6% |
Working Experience | ||
≤5 years | 30 | 15% |
6–10 years | 101 | 51% |
11–20 years | 54 | 28% |
≥21 years | 12 | 6% |
Stakeholders | ρ (Correlation Coefficient) | α (p-Value) |
---|---|---|
Government agencies vs. project owners | 0.652 | 0.01 |
Project owners vs. engineers and design professionals | 0.741 | 0.01 |
Government agencies vs. engineers and design professionals | 0.341 | 0.01 |
Contractors vs. project owners | 0.541 | 0.01 |
Contractors vs. engineers and design professionals | 0.611 | 0.01 |
SI | Factors | Mean | Standard Deviation | RII | Rank |
---|---|---|---|---|---|
F1 | Minimize pollution and environmental impacts | 3.543 | 1.685 | 0.709 | 2 |
F2 | A balanced development | 3.380 | 1.628 | 0.676 | 14 |
F3 | Promoting the decrease of carbon emissions | 3.568 | 1.626 | 0.714 | 1 |
F4 | Protect native/aquatic wildlife | 3.385 | 1.363 | 0.677 | 13 |
F5 | Evaluation of water harvesting | 3.304 | 1.345 | 0.661 | 22 |
F6 | Meeting waste management standards | 3.411 | 1.470 | 0.682 | 7 |
F7 | Maximizing rainwater harvesting and re-use | 3.345 | 1.132 | 0.669 | 17 |
F8 | Protection of water quality | 3.395 | 1.200 | 0.679 | 11 |
F9 | Prevention of land contamination and degradation | 3.406 | 1.307 | 0.681 | 9 |
F10 | Encourage the use of energy-efficient clean technology | 3.461 | 1.427 | 0.692 | 3 |
F11 | Air quality and dust suppression | 3.350 | 1.315 | 0.670 | 16 |
F12 | Noise and vibration minimization | 3.436 | 1.596 | 0.687 | 5 |
F13 | Fit for purpose and quality | 3.263 | 0.906 | 0.653 | 27 |
F14 | Minimize maintenance and operation costs | 3.375 | 1.248 | 0.675 | 15 |
F15 | Minimize risk | 3.324 | 1.135 | 0.665 | 19 |
F16 | Enhancing construction performance | 3.411 | 1.540 | 0.682 | 7 |
F17 | Promoting productivity | 3.258 | 1.265 | 0.652 | 28 |
F18 | Complete on time | 3.157 | 1.030 | 0.631 | 33 |
F19 | Reducing project delivery time | 3.172 | 1.107 | 0.635 | 32 |
F20 | Protect cultural heritage | 3.284 | 1.055 | 0.657 | 24 |
F21 | Save travel time and vehicle operating costs | 3.329 | 1.307 | 0.666 | 18 |
F22 | Public acceptance | 3.431 | 1.670 | 0.686 | 6 |
F23 | Promoting financial and investment opportunities | 3.441 | 1.323 | 0.688 | 4 |
F24 | Enhancing project safety and health performance | 3.324 | 1.405 | 0.665 | 19 |
F25 | Promote interagency collaboration | 3.284 | 1.227 | 0.657 | 24 |
F26 | Safe construction | 3.396 | 1.298 | 0.679 | 10 |
F27 | Minimize health and safety risks | 3.218 | 1.413 | 0.644 | 31 |
F28 | Clear terms of instruction and approval within the timeframe | 3.238 | 1.135 | 0.648 | 30 |
F29 | Enhancement of infrastructure life span | 3.304 | 1.201 | 0.661 | 22 |
F30 | Uninterrupted material supply | 3.309 | 1.125 | 0.662 | 21 |
F31 | Increase design innovation | 3.258 | 1.256 | 0.652 | 28 |
F32 | Long-lasting and high-quality products | 3.142 | 1.114 | 0.628 | 34 |
F33 | No dispute | 3.273 | 1.685 | 0.655 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghuson, M. Exploring the Transport Infrastructure Sustainability Performance: An Investigation of the Transportation Projects in Saudi Arabia. Sustainability 2023, 15, 14174. https://doi.org/10.3390/su151914174
Alghuson M. Exploring the Transport Infrastructure Sustainability Performance: An Investigation of the Transportation Projects in Saudi Arabia. Sustainability. 2023; 15(19):14174. https://doi.org/10.3390/su151914174
Chicago/Turabian StyleAlghuson, Moahd. 2023. "Exploring the Transport Infrastructure Sustainability Performance: An Investigation of the Transportation Projects in Saudi Arabia" Sustainability 15, no. 19: 14174. https://doi.org/10.3390/su151914174