Elasticities of Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. The Choice of the RDM for Estimation
2.1.2. The RDM and the Theoretical Conditions of Rational Consumer Theory
2.1.3. The Conditional Level of Demand Estimation
2.1.4. The Seemingly Unrelated Regression (SUR)
2.2. Data
- Data on the percentage share of consumer expenditure were obtained from the Consumer Expenditure Surveys of the Bureau of Labor Statistics [67]. This included the following data: intercity bus fares, intercity train fares, airline fares, and car costs (intercity).
- Air passenger transport data were obtained from the US Bureau of Transportation Statistics, BTS, from the Airline Origin and Destination Survey [68]. These are random monthly surveys that consider 10% of the prices and quantities of all tickets sold in the United States. The number of passengers (daily average per quarter) and average fare per quarter were later annualised.
- Regarding road transport mode, there were no data on the number of passengers or the prices of cars and buses (Schwieterman et al. [73]). Therefore, these data had to be calculated on the basis of vehicle traffic, vehicle types, average number of passengers, miles, and unit fuel costs. Vehicle traffic counts were taken from [74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90].
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
CITY 1 | CITY 2 | Non-Stop Market Miles (Using Radian Measure) | Air Passengers Per Day |
---|---|---|---|
Miami, FL (Metropolitan Area) | New York City, NY (Metropolitan Area) | 1139 | 16,799 |
Chicago, IL | Orlando, FL | 1005 | 4695 |
New York City, NY (Metropolitan Area) | Orlando, FL | 989 | 11,317 |
Miami, FL (Metropolitan Area) | Washington, DC (Metropolitan Area) | 946 | 6474 |
Boston, MA (Metropolitan Area) | Chicago, IL | 867 | 5148 |
Denver, CO | Los Angeles, CA (Metropolitan Area) | 862 | 5853 |
Atlanta, GA (Metropolitan Area) | New York City, NY (Metropolitan Area) | 795 | 7759 |
Orlando, FL | Washington, DC (Metropolitan Area) | 787 | 5620 |
Chicago, IL | New York City, NY (Metropolitan Area) | 773 | 12,372 |
San Francisco, CA (Metropolitan Area) | Seattle, WA | 696 | 6857 |
Chicago, IL | Washington, DC (Metropolitan Area) | 622 | 6306 |
Atlanta, GA (Metropolitan Area) | Miami, FL (Metropolitan Area) | 594 | 4725 |
Las Vegas, NV | San Francisco, CA (Metropolitan Area) | 414 | 7011 |
Los Angeles, CA (Metropolitan Area) | Sacramento, CA | 404 | 5709 |
Los Angeles, CA (Metropolitan Area) | San Francisco, CA (Metropolitan Area) | 372 | 22,488 |
Los Angeles, CA (Metropolitan Area) | Phoenix, AZ | 370 | 4975 |
Buffalo, NY | New York City, NY (Metropolitan Area) (Maple, Empire and Lake Routes) | 326 | 1697 |
Chicago, IL | St. Louis, MO (Lincoln Route) | 258 | 1193 |
Chicago, IL | Detroit, MI (Wolverine Route) | 235 | 1400 |
Portland, OR | Seattle, WA (Cascades Route) | 129 | 819 |
Year | Number of Passengers | Prices | ||
---|---|---|---|---|
Air | Car/Bus | Air | Car/Bus | |
2001 | −0.1003 | −0.1140 | 0.1044 | |
2002 | 0.0631 | 0.3878 | −0.2229 | −0.1188 |
2003 | −0.0206 | 0.0351 | 0.0081 | 0.0787 |
2004 | 0.0872 | 0.0027 | −0.0189 | 0.0014 |
2005 | 0.0476 | 0.1563 | −0.0597 | 0.0734 |
2006 | 0.1074 | −0.0299 | −0.0476 | 0.0693 |
2007 | 0.0356 | 0.0000 | −0.0384 | 0.0036 |
2008 | −0.1385 | 0.0416 | 0.2470 | 0.1208 |
2009 | −0.0562 | −0.1511 | −0.1547 | −0.1171 |
2010 | 0.0983 | 0.0223 | 0.0489 | 0.1225 |
2011 | 0.0378 | 0.0102 | 0.0289 | 0.0531 |
2012 | 0.0232 | −0.0967 | 0.0430 | 0.0954 |
2013 | −0.0151 | −0.0219 | 0.1064 | 0.0089 |
2014 | −0.0056 | 0.0065 | 0.0706 | −0.0518 |
2015 | 0.0866 | 0.1093 | −0.1598 | −0.1045 |
2016 | 0.0779 | −0.0692 | −0.1021 | −0.1137 |
2017 | 0.0336 | −0.0748 | −0.0236 | 0.1716 |
2018 | 0.0034 | −0.0017 | 0.0760 | 0.0498 |
2019 | −0.0165 | −0.0862 | 0.0390 | 0.1551 |
Year | Rail | Air | Car/bus | Sum (DQgt) |
---|---|---|---|---|
2001 | − | −0.0145 | −0.0163 | − |
2002 | − | 0.0070 | 0.1265 | − |
2003 | − | 0.0264 | 0.0099 | − |
2004 | − | 0.0494 | 0.0018 | − |
2005 | − | 0.0218 | −0.0373 | − |
2006 | − | −0.0020 | 0.0094 | − |
2007 | − | 0.0028 | −0.0044 | − |
2008 | 0.0019 | −0.0227 | 0.0198 | −0.0010 |
2009 | −0.0002 | −0.0034 | 0.0560 | 0.0525 |
2010 | 0.0009 | 0.0081 | −0.0111 | −0.0021 |
2011 | 0.0012 | 0.0346 | −0.0137 | 0.0222 |
2012 | 0.0003 | 0.0064 | 0.0156 | 0.0224 |
2013 | 0.0001 | 0.0196 | −0.0133 | 0.0064 |
2014 | 0.0007 | −0.0091 | 0.0248 | 0.0165 |
2015 | −0.0002 | 0.0265 | 0.0327 | 0.0590 |
2016 | −0.0022 | 0.0141 | 0.0169 | 0.0287 |
2017 | −0.0008 | 0.0185 | 0.0130 | 0.0307 |
2018 | −0.0005 | −0.0168 | −0.0145 | −0.0319 |
2019 | 0.0013 | −0.0215 | −0.0727 | −0.0928 |
Appendix B. Detailed Results
Routes | Car Fares: Gasoline Cost. Bus Fares: Diesel Cost | Average (t, t−1) Unconditional/Conditional Budget Shares | |||||
---|---|---|---|---|---|---|---|
Marginal Budget Share | Slutsky Coefficients | Slutsky Coefficients | Slutsky Coefficients | ||||
Route. Period. | Transport Mode | Values | θi | πi1 Train | πi2 Air | πi3 Car/Bus | ϖit |
Los Angeles/Phoenix | Air (i = 1). | Coefficients | 0.5523 | −0.0008 | 0.0008 | 0.0071 | |
2007 to 2019 | Standard errors(SE) | 0.124 | 0.0005 | 0.0005 | 0.4349 | ||
Pr(>|t|) | 0.0012 | 0.1407 | 0.1407 | ||||
Car/bus (i = 2). | Coeff. | 0.4477 | 0.0008 | −0.0008 | 0.0093 | ||
SE | 0.124 | 0.0005 | 0.0005 | 0.5651 | |||
Pr(>|t|) | 0.0048 | 0.1407 | 0.1407 | ||||
San Francisco (Oakland)/Los Angeles (1) | Train (i = 1) | Coeff. | −0.0162 | −0.0006 | 0.0004 | 0.0002 | 0.0004 |
2007 to 2017 | SE | 0.0328 | 0.0004 | 0.0003 | 0.0004 | 0.0221 | |
Pr(>|t|) | 0.6269 | 0.0999 | 0.1728 | 0.5511 | |||
Air (i = 2). | Coeff. | 0.2776 | 0.0004 | −0.0022 | 0.0019 | 0.0071 | |
SE | 0.0592 | 0.0003 | 0.0005 | 0.0005 | 0.4252 | ||
Pr(>|t|) | 0.0002 | 0.1728 | 0.0078 | 0.0014 | |||
Car/bus (i = 3). | Coeff. | 0.7386 | −0.0005 | 0.0019 | −0.0014 | 0.0093 | |
SE | 0.0548 | 0.0003 | 0.0005 | 0.0005 | 0.5527 | ||
Pr(>|t|) | 0 | 0.126 | 0.0014 | 0.0131 | |||
Los Angeles/Sacramento (2) | Train (i = 1) | Coeff. | −0.0124 | −0.0001 | 0 | 0.0001 | 0.0004 |
2007 to 2019 | SE | 0.0205 | 0.0002 | 0.0002 | 0.0002 | 0.0219 | |
Pr(>|t|) | 0.5507 | 0.6253 | 0.8197 | 0.7911 | |||
Air (i = 2). | Coeff. | 0.3952 | 0 | −0.0037 | 0.0037 | 0.0071 | |
SE | 0.0982 | 0.0002 | 0.0011 | 0.001 | 0.4225 | ||
Pr(>|t|) | 0.0007 | 0.8197 | 0.0026 | 0.0017 | |||
Car/bus (i = 3). | Coeff. | 0.6172 | 0.0001 | 0.0037 | −0.0038 | 0.0093 | |
SE | 0.0928 | 0.0002 | 0.001 | 0.001 | 0.5556 | ||
Pr(>|t|) | 0 | 0.7911 | 0.0017 | 0.0009 | |||
Las Vegas/San Francisco | Air (i = 1). | Coeff. | 0.1299 | −0.0018 | 0.0018 | 0.007 | |
2003 to 2019 | SE | 0.0575 | 0.0008 | 0.0008 | 0.416 | ||
Pr(>|t|) | 0.0404 | 0.0445 | 0.0445 | ||||
Car/bus (i = 2). | Coeff. | 0.871 | 0.0018 | −0.0018 | 0.0098 | ||
SE | 0.0576 | 0.0008 | 0.0008 | 0.584 | |||
Pr(>|t|) | 0 | 0.0445 | 0.0445 | ||||
Atlanta/Miami | Air (i = 1). | Coeff. | 0.3823 | −0.0013 | 0.0013 | 0.0068 | |
2003 to 2017 | SE | 0.0877 | 0.0008 | 0.0008 | 0.4086 | ||
Pr(>|t|) | 0.0009 | 0.1253 | 0.1253 | ||||
Car/bus (i = 2). | Coeff. | 0.6177 | 0.0013 | −0.0013 | 0.0099 | ||
SE | 0.0877 | 0.0008 | 0.0008 | 0.5914 | |||
Pr(>|t|) | 0 | 0.1253 | 0.1253 | ||||
Chicago/Washington DC (3) | Train (i = 1) | Coeff. | 0.0068 | −0.0003 | 0.0003 | 0 | 0.0004 |
2007 to 2019 | SE | 0.0348 | 0.0005 | 0.0005 | 0.0002 | 0.0221 | |
Pr(>|t|) | 0.8473 | 0.4638 | 0.4786 | 0.9299 | |||
Air (i = 2). | Coeff. | 0.3638 | 0.0003 | −0.0005 | 0.0002 | 0.0071 | |
SE | 0.1417 | 0.0005 | 0.0008 | 0.0008 | 0.4252 | ||
Pr(>|t|) | 0.0181 | 0.4786 | 0.5502 | 0.7846 | |||
Car/bus (i = 3). | Coeff. | 0.6294 | 0 | 0.0002 | −0.0002 | 0.0093 | |
SE | 0.1456 | 0.0001 | 0.0008 | 0.0007 | 0.5527 | ||
Pr(>|t|) | 0.0004 | 0.9668 | 0.7846 | 0.7702 | |||
Atlanta/New York | Air (i = 1). | Coeff. | 0.5028 | −0.0011 | 0.0011 | 0.0068 | |
2003 to 2017 | SE | 0.1023 | 0.0005 | 0.0005 | 0.4086 | ||
Pr(>|t|) | 0.0004 | 0.0381 | 0.0381 | ||||
Car/bus (i = 2). | Coeff. | 0.4972 | 0.0011 | −0.0011 | 0.0099 | ||
SE | 0.1023 | 0.0005 | 0.0005 | 0.5914 | |||
Pr(>|t|) | 0.0004 | 0.0381 | 0.0381 | ||||
Chicago/New York | Train (i = 1) | Coeff. | 0.2426 | −0.0022 | 0.0022 | 0.007 | |
2003 to 2019 | SE | 0.0906 | 0.0009 | 0.0009 | 0.416 | ||
Pr(>|t|) | 0.018 | 0.0245 | 0.0245 | ||||
Air (i = 2). | Coeff. | 0.7574 | 0.0022 | −0.0022 | 0.0098 | ||
SE | 0.0906 | 0.0009 | 0.0009 | 0.584 | |||
Pr(>|t|) | 0 | 0.0244 | 0.0244 | ||||
San Francisco/Seattle (4) | Air (i = 1). | Coeff. | 0.6559 | −0.0009 | 0.0009 | 0.007 | |
2003 to 2017 | SE | 0.1403 | 0.0005 | 0.0005 | 0.416 | ||
Pr(>|t|) | 0.0004 | 0.1125 | 0.1125 | ||||
Car/bus (i = 2). | Coeff. | 0.344 | 0.0009 | −0.0009 | 0.0098 | ||
SE | 0.1403 | 0.0005 | 0.0005 | 0.584 | |||
Pr(>|t|) | 0.0279 | 0.1125 | 0.1125 | ||||
Orlando/Washington (5) | Train (i = 1) | Coeff. | 0.0073 | −0.0004 | 0.0005 | −0.0001 | 0.0004 |
2003 to 2019 | SE | 0.0403 | 0.0003 | 0.0004 | 0.0002 | 0.0221 | |
Pr(>|t|) | 0.8589 | 0.2398 | 0.2076 | 0.476 | |||
Air (i = 2). | Coeff. | 0.4082 | 0.0005 | −0.0016 | 0.0011 | 0.0071 | |
SE | 0.1072 | 0.0004 | 0.0008 | 0.0007 | 0.4252 | ||
Pr(>|t|) | 0.0014 | 0.2076 | 0.0482 | 0.1244 | |||
Car/bus (i = 3). | Coeff. | 0.5845 | −0.0001 | 0.0011 | −0.001 | 0.0093 | |
SE | 0.1096 | 0.0002 | 0.0007 | 0.0007 | 0.5527 | ||
Pr(>|t|) | 0 | 0.5843 | 0.1244 | 0.1469 |
Routes | Car Fares: Gasoline Cost. Bus Fares: Diesel Cost. | Average (t, t−1) Unconditional/Conditional Budget Shares | |||||
---|---|---|---|---|---|---|---|
Marginal Budget Share | Slutsky Coefficients | Slutsky Coefficients | Slutsky Coefficients | ||||
Route. Period. | Transport Mode | Values | θi | πi1 Train | πi2 Air | πi3 Car/Bus | ϖit |
Orlando/Washington (3) | Air (i = 1). | Coeff. | 0.4413 | −0.0018 | 0.0018 | 0.0068 | |
2003 to 2019 | SE | 0.0858 | 0.0009 | 0.0009 | 0.4086 | ||
Pr(>|t|) | 0.0002 | 0.0646 | 0.0646 | ||||
Car/bus (i = 2). | Coeff. | 0.5587 | 0.0018 | −0.0018 | 0.0099 | ||
SE | 0.0858 | 0.0009 | 0.0009 | 0.5914 | |||
Pr(>|t|) | 0 | 0.0648 | 0.0648 | ||||
Denver/Los Angeles (6) | Air (i = 1). | Coeff. | 0.5755 | −0.0012 | 0.0012 | 0.007 | |
2003 to 2019 | SE | 0.0857 | 0.0006 | 0.0006 | 0.416 | ||
Pr(>|t|) | 0 | 0.0481 | 0.0481 | ||||
Car/bus (i = 2). | Coeff. | 0.4246 | 0.0012 | −0.0012 | 0.0098 | ||
SE | 0.0858 | 0.0006 | 0.0006 | 0.584 | |||
Pr(>|t|) | 0.0002 | 0.0481 | 0.0481 | ||||
Boston/Chicago | Air (i = 1). | Coeff. | 0.4051 | −0.0008 | 0.0008 | 0.007 | |
2004/2019 | SE | 0.0786 | 0.0004 | 0.0004 | 0.4219 | ||
Pr(>|t|) | 0.0002 | 0.0839 | 0.0839 | ||||
Car/bus (i = 2). | Coeff. | 0.5955 | 0.0008 | −0.0008 | 0.0096 | ||
SE | 0.0788 | 0.0004 | 0.0004 | 0.5781 | |||
Pr(>|t|) | 0 | 0.0843 | 0.0843 | ||||
New York/Orlando | Air (i = 1). | Coeff. | 0.4159 | −0.0014 | 0.0014 | 0.0068 | |
2003 to 2017 | SE | 0.097 | 0.0004 | 0.0004 | 0.4086 | ||
Pr(>|t|) | 0.0011 | 0.0045 | 0.0045 | ||||
Car/bus (i = 2). | Coeff. | 0.584 | 0.0014 | −0.0014 | 0.0099 | ||
SE | 0.097 | 0.0004 | 0.0004 | 0.5914 | |||
Pr(>|t|) | 0.0001 | 0.0045 | 0.0045 | ||||
Chicago/Orlando | Air (i = 1). | Coeff. | 0.5035 | −0.0012 | 0.0012 | 0.0068 | |
2003 to 2017 | SE | 0.0638 | 0.0005 | 0.0005 | 0.4086 | ||
Pr(>|t|) | 0 | 0.0238 | 0.0238 | ||||
Car/bus (i = 2). | Coeff. | 0.4964 | 0.0012 | −0.0012 | 0.0099 | ||
SE | 0.0638 | 0.0005 | 0.0005 | 0.5914 | |||
Pr(>|t|) | 0 | 0.0237 | 0.0237 | ||||
Miami/Washington | Train (i = 1) | Coeff. | 0.0045 | −0.0002 | 0.0002 | 0 | 0.0004 |
2007 to 2019 | SE | 0.0265 | 0.0002 | 0.0002 | 0.0001 | 0.0221 | |
Pr(>|t|) | 0.867 | 0.4536 | 0.5206 | 0.9988 | |||
Air (i = 2). | Coeff. | 0.3341 | 0.0002 | −0.001 | 0.0008 | 0.0071 | |
SE | 0.1063 | 0.0002 | 0.0006 | 0.0005 | 0.4252 | ||
Pr(>|t|) | 0.0054 | 0.5206 | 0.1039 | 0.1437 | |||
Car/bus (i = 3). | Coeff. | 0.6614 | 0 | 0.0008 | −0.0008 | 0.0093 | |
SE | 0.1073 | 0.0001 | 0.0005 | 0.0005 | 0.5527 | ||
Pr(>|t|) | 0 | 0.9424 | 0.1437 | 0.1383 | |||
New York/Miami | Air (i = 1). | Coeff. | 0.3166 | −0.0012 | 0.0012 | 0.007 | |
2003 to 2019 | SE | 0.1414 | 0.0005 | 0.0005 | 0.416 | ||
Pr(>|t|) | 0.0419 | 0.0281 | 0.0281 | ||||
Car/bus (i = 2). | Coeff. | 0.684 | 0.0012 | −0.0012 | 0.0098 | ||
SE | 0.1416 | 0.0005 | 0.0005 | 0.584 | |||
Pr(>|t|) | 0.0003 | 0.0281 | 0.0281 | ||||
Chicago/St. Louis | Train (i = 1) | Coeff. | 0.0038 | −0.0004 | 0.0002 | 0.0002 | 0.0004 |
2007 to 2019 | SE | 0.0548 | 0.0005 | 0.0005 | 0.0005 | 0.0219 | |
Pr(>|t|) | 0.9457 | 0.4748 | 0.6912 | 0.739 | |||
Air (i = 2). | Coeff. | 0.2697 | 0.0002 | −0.0003 | 0.0001 | 0.0071 | |
SE | 0.166 | 0.0005 | 0.0013 | 0.0013 | 0.4225 | ||
Pr(>|t|) | 0.1208 | 0.6912 | 0.8078 | 0.9249 | |||
Car/bus (i = 3). | Coeff. | 0.7266 | 0.0002 | 0.0001 | −0.0006 | 0.0093 | |
SE | 0.1626 | 0.0005 | 0.0013 | 0.0012 | 0.5556 | ||
Pr(>|t|) | 0.0002 | 0.739 | 0.9249 | 0.6357 | |||
Buffalo/New York City (7) | Train (i = 1) | Coeff. | 0.0074 | −0.0002 | 0.0002 | 0 | 0.0004 |
2006 to 2019 | SE | 0.0091 | 0.0001 | 0.0001 | 0.0001 | 0.0219 | |
Pr(>|t|) | 0.4276 | 0.0935 | 0.1836 | 0.7555 | |||
Air (i = 2). | Coeff. | 0.939 | 0.0002 | −0.0002 | 0 | 0.0071 | |
SE | 0.0363 | 0.0001 | 0.0005 | 0.0006 | 0.4225 | ||
Pr(>|t|) | 0 | 0.1836 | 0.7931 | 0.9671 | |||
Car/bus (i = 3). | Coeff. | 0.0536 | 0 | 0 | 0 | 0.0093 | |
SE | 0.0372 | 0.0001 | 0.0006 | 0.0006 | 0.5556 | ||
Pr(>|t|) | 0.1644 | 0.9262 | 0.9671 | 0.9487 | |||
Portland/Seattle | Train (i = 1) | Coeff. | −0.0015 | 0 | −0.0002 | 0.0002 | 0.0004 |
2003 to 2019 | SE | 0.0125 | 0.0001 | 0.0001 | 0.0001 | 0.0219 | |
Note (A) | Pr(>|t|) | 0.9048 | 0.7046 | 0.1259 | 0.1833 | ||
Air (i = 2). | Coeff. | 0.6754 | −0.0002 | −0.0012 | 0.0014 | 0.007 | |
SE | 0.0804 | 0.0001 | 0.0007 | 0.0007 | 0.4069 | ||
Pr(>|t|) | 0 | 0.1259 | 0.115 | 0.0609 | |||
Car/bus (i = 3). | Coeff. | 0.3261 | 0.0002 | 0.0014 | −0.0016 | 0.0098 | |
SE | 0.0802 | 0.0001 | 0.0007 | 0.0007 | 0.5713 | ||
Pr(>|t|) | 0.0004 | 0.2138 | 0.0609 | 0.0367 | 0.0216 | ||
Chicago/Detroit (8) | Train (i = 1) | Coeff. | 0.0104 | −0.0002 | 0.0001 | 0.0002 | 0.0004 |
2003 to 2018 | SE | 0.0172 | 0.0002 | 0.0002 | 0.0002 | ||
Pr(>|t|) | 0.5504 | 0.2353 | 0.6085 | 0.3286 | |||
Air (i = 2). | Coeff. | 0.5554 | 0.0001 | −0.0018 | 0.0017 | 0.0069 | |
SE | 0.0917 | 0.0002 | 0.0007 | 0.0007 | 0.4049 | ||
Pr(>|t|) | 0 | 0.6085 | 0.0179 | 0.0229 | |||
Car/bus (i = 3). | Coeff. | 0.4342 | 0.0001 | 0.0017 | −0.0018 | 0.0098 | |
SE | 0.0927 | 0.0002 | 0.0007 | 0.0007 | 0.5734 | ||
Pr(>|t|) | 0.0001 | 0.4231 | 0.0229 | 0.0147 |
Appendix C. A Brief Comparative Review in the Scientific Literature
Road | Fuel Price Elasticity Values | Income Elasticity |
---|---|---|
Oum et al. (1990) [28] | Car: −0.1 to −1.10. Bus: −0.1 to −1.30. | N.E. |
Goodwin (1992) [29] | Traffic: −0.16 (short-term), −0.33 (long-term). Bus: −0.41 (−0.28, short-term) | N.E. |
Johansson and Schipper (1997) [116] | Car: −0.05 to −0.55 (long-term). | Car: 0.65 to 1.25 (long-term). |
Paulley et al. (2006) [117] | Bus: −0.36 (UK). | Bus: 0 (short−term, UK). −0.15 to −0.63 (long-term). |
Goodwin et al. (2004) [118] | Personal motor−vehicle: −0.1 (short-term), −0.3 (long-term). | Personal motor−vehicle: 0.2 in the short-term and 0.5 in the long-term (volume of traffic) |
Holmgren (2007) [30] | Public transport: 0.009 to −1.32 (mean value −0.38). | N.E. |
Hymel et al. (2010) [119] | Personal motor-vehicle: −0.026 (short-term), −0.135 (long-term) (2004). | 0.5 |
Escañuela (2019) [33] | −0.45, −0.29 (Northeast Corridor, NEC, route level) | 0.65, 0.42 (NEC, route level) |
Air | Price Elasticity Values | Income Elasticity |
---|---|---|
Oum et al. (1990). [28] | From −0.7 to −2.1. | N.E. |
Brons et al. (2002) [120] | −1.146 (although there are estimates from 0.21 to −3.20) | N.E. |
Kincaid and Trethaway (2007) [121] | Route level, short-haul: −1.54, long-haul: −1.40. National level: (−0.88, −0.80) | N.E. |
Smyth and Pearce (2008) [122] | Route Level: −1.4 (−1.54 short-haul routes). National Level: −0.8 (−0.88 short-haul routes) | 1.8 to 2.2. (Depending on route length) |
Chi et al. (2012) [123] | −1.2 a −1.5 (2000), −2.5 to −3.3 (2005) (p. 89) | N.E. |
Clewlow et al. (2014) [124] | By route (Europe), elasticity with respect to jet fuel price: −1.863 to −2.304. | N.E. |
Gundelfinger (2018) [31] | −0.62 | 0.81 |
Escañuela (2019) [33] | −0.73, −0.84 (NEC, route level) | 1.55, 1.88 (NEC, route level) |
Rail | Price Elasticity Values | Income Elasticity |
---|---|---|
Jones and Nichols (1983) [125] | (UK) −0.64 | N.E. |
Doi and Allen (1986) [126] | (US) −0.245 | N.E. |
Oum et al. (1990) [28] | Rail intercity −0.30 to −1.18 | N.E. |
Goodwin (1992) [29] | −0.79 | N.E. |
Douglas and Karpouzis (2009) [127] | (Sydney metropolitan rail, 1969–2008, annual data, parameters with the expected sign, but none of them significant at the 95% confidence level except the constant) −0.283 | (Real GDP pc) 0.74 |
Hortelano et al. (2016) [128] | (Short-term, Spain, high-speed rail) −0.6 | N.E. |
Brumerčíková et al. [129] | (Slovak Rep., cross price elasticity, oil prices, depending ob the year) positive and negative elasticities | (Slovak Republic, depending on the year) positive and negative elasticities |
Escañuela (2019) [33] | −0.44, −0.47 (NEC, route level) | 0.13, 0.20 (NEC, route level) |
Zeng et al. (2021) [25] | (China) −1.049 to −1.090; (China, cross-price elasticities of demand, train–air, train–car) approx. 0.001 | N.E. |
Wijeweera and Charles (2023) [130] | (Australia, Melbourne) −0.07 | N.E. |
References
- U.S. Bureau of Transportation Statistics BTS. National Household Survey Travel 2017. Available online: https://nhts.ornl.gov/ (accessed on 3 September 2023).
- U.S. Bureau of Transportation Statistics BTS. National Household Travel Survey 2021. Available online: https://www.bts.dot.gov/sites/bts.dot.gov/files/2021-12/NTS-50th-complete-11-30-2021.pdf (accessed on 3 September 2023).
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Rodrigue, J.-P.; Noteboom, T. Transportation and Economic Development. In The Geography of Transport Systems, 5th ed.; Jean-Paul Rodrigue, J.-P., Ed.; Routledge: New York, NY, USA, 2020; ISBN 978-0-367-36463-2. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration EIA, Monthly Energy Review, 2023 June. DOE/EIA-0035 (2023/6). Available online: https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf (accessed on 16 July 2023).
- U.S. Environmental Protection Agency EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021. 2023 U.S. EPA 430-R-23-002. Available online: //www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (accessed on 3 September 2023).
- International Energy Agency IEA. CO2 Emissions in 2022. IEA Publications. Available online: https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf (accessed on 3 September 2023).
- Schrank, D.; Luke, A.; Eisele, B.; Lomax, T. Urban Mobility 2021 Report. Texas A&M Transportation Institute. The Texas A&M University System. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2021.pdf (accessed on 17 July 2023).
- Grote, M.; Williams, I.; Preston, J.; Kemp, S. Including congestion effects in urban road traffic CO2 emissions modelling: Do Local Government Authorities have the right options? Transp. Res. Part D Transp. Environ. 2016, 43, 95–106. [Google Scholar] [CrossRef]
- Clarke, J.P.B.; Lowther, M.; Ren, L.; Singhose, W.; Solak, S.; Vela, A.; Wong, L. En route traffic optimization to reduce environmental impact. Partnership for Air Transportation Noise and Emissions Reduction. 2008, No. PARTNER-COE-2008-005. Available online: https://rosap.ntl.bts.gov/view/dot/66516 (accessed on 3 September 2023).
- U.S. Travel Association. Infrastructure/Road Congestion Economic Impact Study and Survey. 2019. Available online: https://www.ustravel.org/sites/default/files/media_root/Congestion_Survey%20%281%29.pdf (accessed on 1 August 2023).
- Federal Aviation Administration FAA. Cost of Delay Estimates 2019. FAA APO-100. Available online: https://www.faa.gov/sites/faa.gov/files/data_research/aviation_data_statistics/cost_delay_estimates.pdf (accessed on 27 July 2023).
- Travel Impact Newswire 3 June 2008. Available online: https://www.travel-impact-newswire.com/2008/06/pata-faces-questions-over-financial-reporting/ (accessed on 1 August 2023).
- Gelhausen, M.C.; Berster, P.; Wilken, D. Do Airport Capacity Constraints Have a Serious Impact on the Future Development of Air Traffic? J. Air Transp. Manag. 2013, 28, 3–13. [Google Scholar] [CrossRef]
- Burghouwt, G.; Boonekamp, T.; Suau-Sanchez, P.; Volta, N.; Pagliari, R.; Mason, K. The Impact of Airport Capacity Constraints on Air Fares; SEO Amsterdam Economics: Amsterdam, The Netherlands, 2017; Available online: http://www.atceuc.org/uploads/docs/2017-the-impact-of-airport-capacity-constraints-on-air-fares.pdf (accessed on 17 July 2023).
- Pollard, A. Pilot Shortages and Increasing Travel Demand Are Causing Backups at Major Airports. The Solution May Be as Simple as Using Bigger Planes. Available online: https://www.businessinsider.com/airlines-fly-bigger-planes-as-pilot-shortage-congestion-continues-2023-4 (accessed on 8 August 2023).
- Banchik, L.; Riedel, R.; Kloss, B. Right in Your Backyard: Regional Airports Are an Accessible and Underused Resource for Future Air Mobility. Available online: https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-mobility-blog/right-in-your-backyard-regional-airports-are-an-accessible-and-underused-resource-for-future-air-mobility (accessed on 8 August 2023).
- NASA Team. Regional Air Mobility. 2021. Available online: https://sacd.larc.nasa.gov/wp-content/uploads/sites/167/2021/04/2021-04-20-RAM.pdf (accessed on 17 July 2023).
- Severino, A.; Martseniuk, L.; Curto, S.; Neduzha, L. Routes Planning Models for Railway Transport Systems in Relation to Passengers’ Demand. Sustainability 2021, 13, 8686. [Google Scholar] [CrossRef]
- Nar, M.; Arslankaya, S. Passenger demand forecasting for railway systems. Open Chem. 2022, 20, 105–119. [Google Scholar] [CrossRef]
- Çelebi, D.; Bolat, B.; Bayraktar, D. Light rail Passenger demand forecasting by artificial neural networks. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; pp. 239–243. [Google Scholar]
- Qin, X.; Ke, J.; Wang, X.; Tang, Y.; Yang, H. Demand management for smart transportation: A review. Multimodal Transp. 2022, 1, 100038. [Google Scholar] [CrossRef]
- Orlando, V.M.; Baquela, E.G.; Bhouri, N.; Lotito, P.A. Public transport demand estimation by frequency adjustments. Transp. Res. Interdiscip. Perspect. 2023, 19, 100832. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Sun, L.; Wang, X.; Song, S. Research on Demand Price Elasticity Based on Expressway ETC Data: A Case Study of Shanghai, China. Sustainability 2023, 15, 4379. [Google Scholar] [CrossRef]
- Zeng, Y.; Ran, B.; Zhang, N.; Yang, X. Estimating the Price Elasticity of Train Travel Demand and Its Variation Rules and Application in Energy Used and CO2 Emissions. Sustainability 2021, 13, 475. [Google Scholar] [CrossRef]
- Hörcher, D.; Tirachini, A. A Review of Public Transport Economics. Econ. Transp. 2021, 25, 100196. [Google Scholar] [CrossRef]
- Gama, A. Own and cross-price elasticities of demand for domestic flights and intercity trains in the US. Transp. Res. Part D Transp. Environ. 2017, 54, 360–371. [Google Scholar] [CrossRef]
- Oum, T.H.; Waters, W.G.; Yong, J.S. A Survey of Recent Estimates of Price Elasticities of Demand for Transport; World Bank: Washington, DC, USA, 1990; Volume 359. [Google Scholar]
- Goodwin, P.B. A review of new demand elasticities with special reference to short and long run effects of price changes. J. Transp. Econ. Policy 1992, 26, 155–169. [Google Scholar]
- Holmgren, J. Meta-Analysis of Public Transport Demand. Transp. Res. Part A Policy Pract. 2007, 41, 1021–1035. [Google Scholar] [CrossRef]
- Gundelfinger Casar, J. Análisis de los factores determinantes de demanda, competencia y eficiencia del transporte aéreo y el turismo. Available online: https://repositorio.unican.es/xmlui/bitstream/handle/10902/13486/Tesis%20JGC.pdf?sequence=1&isAllowed=y2018 (accessed on 2 May 2023).
- Davis, L.W. Estimating the Price Elasticity of Demand for Subways: Evidence from Mexico. Reg. Sci. Urban Econ. 2021, 87, 103651. [Google Scholar] [CrossRef]
- Escañuela Romana, I. The Elasticities of Passenger Transport Demand in the Northeast Corridor. Res. Transp. Econ. 2019, 78, 100759. [Google Scholar]
- Barten, A.P. Consumer demand functions under conditions of almost additive preferences. Econom. J. Econom. Soc. 1964, 32, 1–38. [Google Scholar] [CrossRef]
- Theil, H. The Information Approach to Demand Analysis. Econometrica 1965, 33, 67–87. [Google Scholar] [CrossRef]
- Dunkerley, F.; Rohr, C.; Daly, A. Road Traffic Demand Elasticities: A Rapid Evidence Assessment; RAND Corporation: Santa Monica, CA, USA, 2014; Available online: https://www.rand.org/pubs/research_reports/RR888.html (accessed on 3 September 2023).
- Oum, T.H. Alternative demand models and their elasticity estimates. J. Transp. Econ. Policy 1989, 23, 163–187. [Google Scholar]
- Winston, C.; Small, K. The Demand for Transportation: Models and Applications. University of California. 1998. UCI-ITS-WP-98-8. Available online: https://escholarship.org/content/qt9g8265fz/qt9g8265fz_noSplash_f4c358e217a584e1596f7e4e78c64ab0.pdf (accessed on 3 September 2023).
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in Econometrics; Academic Press: New York, NY, USA, 1974; pp. 105–142. ISBN 0-12-776150-0. [Google Scholar]
- Cirillo, C.; Hetrakul, P. Passenger Demand Model for Railway Revenue Management. (No. MAUTC-2009-01); University of Maryland: Baltimore, MD, USA, 2011. Available online: https://rosap.ntl.bts.gov/view/dot/34449/dot_34449_DS1.pdf (accessed on 3 September 2023).
- Fillone, A.M.; Montalbo, C.M.J.; Tiglao, N.C. Transport Mode Choice Models for Metro Manila and Urban Transport Policy Applications. J. East. Asia Soc. Transp. Stud. 2007, 7, 454–469. [Google Scholar]
- Al-Salih, W.Q.; Esztergár-Kiss, D. Linking mode choice with travel behavior by using logit model based on utility function. Sustainability 2021, 13, 4332. [Google Scholar] [CrossRef]
- Lago, A.M.; Mayworm, P.; McEnroe, J.M. Transit service elasticities: Evidence from demonstrations and demand models. J. Transp. Econ. Policy 1981, 15, 99–119. [Google Scholar]
- Hoang-Tung, N.; Kato, H.; Huy, T.T.; Le Binh, P.; Duy, L. Impacts of the introduction of bus rapid transit on travel behaviors of commuters in Hanoi, Vietnam: A quasi-experimental approach. Case Stud. Transp. Policy 2021, 9, 95–102. [Google Scholar] [CrossRef]
- Deaton, A. Demand Analysis; Handbook of Econometrics; New-Holland: Amsterdam, NY, USA, 1986; pp. 1767–1839. [Google Scholar]
- Barnett, W.A.; Seck, O. Rotterdam model versus almost ideal demand system: Will the best specification please stand up? J. Appl. Econom. 2008, 23, 795–824. [Google Scholar] [CrossRef]
- Varian, H.R.; Varian, H.R. Microeconomic Analysis; Norton: New York, NY, USA, 1992; Volume 3. [Google Scholar]
- McFadden, D.L. Existence Conditions for Theil-Type Preferences; University of California: Berkeley, CA, USA, 1964. [Google Scholar]
- Yoshihara, K. Demand functions: An application to the Japanese expenditure pattern. Econom. J. Econom. Soc. 1969, 37, 257–274. [Google Scholar] [CrossRef]
- Barten, A.P. The systems of consumer demand functions approach: A review. Econom. J. Econom. Soc. 1977, 45, 23–51. [Google Scholar] [CrossRef]
- Barnett, W.A. Theoretical foundations for the Rotterdam model. Rev. Econ. Stud. 1979, 46, 109–130. [Google Scholar] [CrossRef]
- Deaton, A.; Muellbauer, J. Economics and Consumer Behavior; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Granger, C.W.; Newbold, P. Spurious regressions in econometrics. J. Econom. 1974, 2, 111–120. [Google Scholar] [CrossRef]
- Nguyen, L.; Duong, L.T.; Mentreddy, R.S. The US import demand for spices and herbs by differentiated sources. J. Appl. Res. Med. Aromat. Plants 2019, 12, 13–20. [Google Scholar]
- Muhammad, A.; Countryman, A.M. In Vino ‘No’Veritas: Impacts of fraud on wine imports in China. Aust. J. Agric. Resour. Econ. 2019, 63, 742–758. [Google Scholar] [CrossRef]
- Clements, K.; Si, J.; Selvanathan, E.; Selvanathan, S. Demand elasticities for 9 goods in 37 countries. Appl. Econ. 2020, 52, 2636–2655. [Google Scholar] [CrossRef]
- Clements, K.W.; Gao, G. The Rotterdam demand model half a century on. Econ. Model. 2015, 49, 91–103. [Google Scholar] [CrossRef]
- Barnett, W.A.; Serletis, A. Chapter 3: The differential approach to demand analysis and the Rotterdam model. In Quantifying Consumer Preferences; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 61–81. [Google Scholar]
- Clements, K.W.; Johnson, L. The demand for beer, wine and spirits. J. Bus. 1983, 56, 273–304. [Google Scholar] [CrossRef]
- Barten, A.P. Maximum likelihood estimation of a complete system of demand equations. Eur. Econ. Rev. 1969, 1, 7–73. [Google Scholar] [CrossRef]
- Deaton, A.S. The analysis of consumer demand in the United Kingdom, 1900–1970. Econom. J. Econom. Soc. 1974, 42, 341–367. [Google Scholar] [CrossRef]
- Serletis, A.; Shahmoradi, A. Flexible functional forms, curvature conditions, and the demand for assets. Macroecon. Dyn. 2007, 11, 455–486. [Google Scholar] [CrossRef]
- Clements, K.W.; Selvanathan, E.A. The Rotterdam demand model and its application in marketing. Mark. Sci. 1988, 7, 60–75. [Google Scholar] [CrossRef]
- Selvanathan, E.A.; Selvanathan, S. The demand for transport and communication in the United Kingdom and Australia. Transp. Res. Part B: Methodol. 1994, 28, 1–9. [Google Scholar] [CrossRef]
- Edgerton, D.L. Weak separability and the estimation of elasticities in multistage demand systems. Am. J. Agric. Econ. 1997, 79, 62–79. [Google Scholar] [CrossRef]
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics BLS. The Consumer Expenditure Surveys. 2023. Available online: https://www.bls.gov/cex/ (accessed on 13 April 2023).
- U.S. Bureau of Transportation Statistics BTS. The Airline Origin and Destination Survey. 2023. Available online: https://www.bts.gov/topics/airlines-and-airports/origin-and-destination-survey-data (accessed on 13 April 2023).
- Amtrak. Amtrak Guide. Available online: https://amtrakguide.com/2019/09/01/how-do-i-get-from-bwi-to-amtrak/ (accessed on 27 July 2023).
- Amtrak Media. Amtrak Media. Available online: https://media.amtrak.com/2023 (accessed on 13 April 2023).
- Amtrak. Available online: https://www.amtrak.com/content/dam/projects/dotcom/english/public/documents/corporate/reports/Amtrak-General-Legislative-Annual-Report-FY2020-Grant-Request.pdf (accessed on 13 April 2023).
- Amtrak Ridership Statistics|Rail Passengers Association|Washington, DC. Available online: https://narprail.org/resources/ridership-statistics/ (accessed on 13 April 2023).
- Schwieterman, J.P.; Fischer, L.; Ghoshal, C.; Largent, P.; Netzel, N.; Schulz, M. The Intercity Bus Rolls to Record Expansion: 2011 Update on Scheduled Motor Coach Service in the United States; School of Public Service Policy Study, DePaul University: Chicago, IL, USA, 2011. [Google Scholar]
- Arizona Department of Transport. Available online: https://azdot.gov/home (accessed on 13 April 2023).
- California Department of Transportation. Caltrans. Traffic Volumes. Available online: https://dot.ca.gov/programs/traffic-operations/census/traffic-volumes (accessed on 2 May 2023).
- Georgia Department of Transportation. Georgia Traffic Counts. Available online: http://geocounts.com/traffic/us/gdot#http://geocounts.com/traffic/countbooks/us/gdot/station/0750165/@,aadt_time,chart (accessed on 2 May 2023).
- Illinois Department of Transportation. Available online: https://www.gettingaroundillinois.com/gai.htm?mt=aadt# (accessed on 2 May 2023).
- Indiana Department of Transportation INDOT. Available online: https://www.in.gov/indot/2469.htm (accessed on 2 May 2023).
- Maine Department of Transportation. Maine Transport Count Book. Available online: https://www11.maine.gov/mdot/traffic/docs/ytc/2016/CountReport_Waldo2016.pdf (accessed on 2 May 2023).
- Maine Department of Transportation. Yearly Traffic Counts. Available online: https://www.maine.gov/mdot/traffic/counts/ (accessed on 2 May 2023).
- Nevada Department of Transportation. NevadaDot. Available online: https://www.nevadadot.com/doing-business/about-ndot/ndot-divisions/planning/traffic-information/-folder-400 (accessed on 2 May 2023).
- New York State Department of Transportation. Available online: https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/traffic-data (accessed on 2 May 2023).
- Orange County Transportation Authority. Available online: https://www.octa.net/Projects-and-Programs/All-Projects/Streets-Projects/Master-Road-Plan/Annual-Traffic-Volume-Maps/ (accessed on 2 May 2023).
- Pennsylvania Department of Transportation. Pennsylvania Traffic Data. Available online: https://www.penndot.gov/ProjectAndPrograms/Planning/TrafficInformation/Pages/default.aspx (accessed on 2 May 2023).
- Pennsylvania Department of Transportation. Traffic Volume Maps. Available online: https://gis.penndot.gov/BPR_PDF_FILES/MAPS/Traffic/Traffic_Volume/Historical_Statewide_tvm_maps.htm (accessed on 2 May 2023).
- State of California The Transportation Agency. Department of Transportation. AADT. I15. Available online: https://dot.ca.gov/programs/traffic-operations/census (accessed on 2 May 2023).
- State of Illinois. Vehicle Miles of Travel (VMT) Summary. Available online: http://idot.illinois.gov (accessed on 2 May 2023).
- State of Nevada Department of Transportation. AADT Count Stations. I15. Available online: https://www.nevadadot.com/doing-business/about-ndot/ndot-divisions/planning/traffic-information (accessed on 2 May 2023).
- Virginia Department of Transportation. Annual Average Daily Traffic Volume Estimates by Section of Route i95. Greensville County. Available online: https://www.virginiadot.org/info/ct-TrafficCounts.asp (accessed on 2 May 2023).
- Washington State Department of Transportation. Available online: https://wsdot.wa.gov/about/transportation-data/travel-data/traffic-count-data (accessed on 2 May 2023).
- U.S. Bureau of Transportation Statistics BTS. National Transportation Statistics (NTS), 2023. Table 1–35 . Available online: https://www.fhwa.dot.gov/policyinformation/statistics/2019/pdf/vm1.pdf (accessed on 13 April 2023).
- U.S. Federal Highway Administration FHWA. The National Transit Database 2023. Available online: https://www.fhwa.dot.gov/tpm/guidance/avo_factors.pdf (accessed on 3 September 2023).
- U.S. Federal Highway Administration FHWA. Developing a Statistically Valid and Practical Method to Compute Bus and Truck Occupancy Data 2019. Available online: https://www.fhwa.dot.gov/policyinformation/tables/occupancyfactors/fhwa_pl_19_048.pdf (accessed on 2 May 2023).
- U.S. Energy Information Administration EIA. Retail Motor Gasoline and on-Highway Diesel Fuel Prices, on-Highway Diesel Fuel Price, Dollars per Gallon Including Taxes 2023. Available online: https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm (accessed on 2 May 2023).
- American Automobile Association. Your Driving Costs 2008. Available online: https://exchange.aaa.com/wp-content/uploads/2015/08/2008-YDC-Final.pdf (accessed on 2 May 2023).
- American Automobile Association. Your Driving Costs 2019. Available online: https://exchange.aaa.com/wp-content/uploads/2019/09/AAA-Your-Driving-Costs-2019.pdf (accessed on 2 May 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 3 September 2023).
- Henningsen, A.; Hamann, J.D. Systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 2007, 23, 1–40. [Google Scholar] [CrossRef]
- Wardman, M. Demand for rail travel and the effects of external factors. Transp. Res. Part E: Logist. Transp. Rev. 2006, 42, 129–148. [Google Scholar] [CrossRef]
- Halsnaen, K.; Callaway, L.; Meyers, H.J. Economics of GHG Limitations. Main Report. Methodological Guidelines; UNEP Collaborating Centre for Energy and Environment, Riso National Laboratory: Copenhagen, Denmark, 1998; ISBN 87-550-2490-4. Available online: https://www.osti.gov/etdeweb/biblio/20001450 (accessed on 3 September 2023).
- Barrett, P.; Chen, S. The Economics of Social Unrest. International Monetary Fund August 2021. Available online: https://www.imf.org/external/pubs/ft/fandd/2021/08/economics-of-social-unrest-imf-barrett-chen.htm (accessed on 3 September 2023).
- Newburger, E. California Bans the Sale of New Gas-Powered Cars by 2035. Available online: https://www.cnbc.com/2022/08/25/california-bans-the-sale-of-new-gas-powered-cars-by-2035.html (accessed on 8 August 2023).
- Nakamura, K.; Hayashi, Y. Strategies and instruments for low-carbon urban transport: An international review on trends and effects. Transp. Policy 2013, 29, 264–274. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy OEE&RE. Sustainable Aviation Fuels. US Department of Energy 2023. Available online: https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuels (accessed on 27 July 2023).
- Breusch, T.S. Testing for Autocorrelation in Dynamic Linear Models. Aust. Econ. Pap. 1978, 17, 334–355. [Google Scholar] [CrossRef]
- Godfrey, L.G. Testing Against General Autoregressive and Moving Average Error Models when the Regressors Include Lagged Dependent Variables. Econometrica 1978, 46, 1293–1301. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroskedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Buse, A. The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. Am. Stat. 1982, 36, 153–157. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships [Internet]; R News: 2002; Volume 2, p. 7–10. Available online: https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf (accessed on 3 September 2023).
- Gross, J.; Ligges, U. Nortest: Tests for Normality. R Package Version 1.0-4. 2015. Available online: http://CRAN.R-project.org/package=nortest (accessed on 3 September 2023).
- Sibdari, S.; Lin, K.Y.; Chellappan, S. Multiproduct revenue management: An empirical study of auto train at Amtrak. J. Revenue Pricing Manag. 2008, 7, 172–184. [Google Scholar] [CrossRef]
- Amtrak. Amtrak Timetable Archives. Available online: https://juckins.net/amtrak_timetables/archive/home.php#Amtrak_Cascades (accessed on 3 September 2023).
- Banse, T. Last Year’s Amtrak Derailment Set Back Regional Train Service Expansion by Years. NWNews December 18, 2018 at 10:30 AM PST. Available online: https://www.nwnewsnetwork.org/transportation/2018-12-18/last-years-amtrak-derailment-set-back-regional-train-service-expansion-by-years (accessed on 3 September 2023).
- Johansson, O.; Schipper, L. Measuring the long-run fuel demand of cars: Separate estimations of vehicle stock, mean fuel intensity, and mean annual driving distance. J. Transp. Econ. Policy 1997, 31, 277–292. [Google Scholar]
- Paulley, N.; Balcombe, R.; Mackett, R.; Titheridge, H.; Preston, J.; Wardman, M.; Shires, J.; White, P. The demand for public transport: The effects of fares, quality of service, income and car ownership. Transp. Policy 2006, 13, 295–306. [Google Scholar] [CrossRef]
- Goodwin, P.; Dargay, J.; Hanly, M. Elasticities of road traffic and fuel consumption with respect to price and income: A review. Transp. Rev. 2004, 24, 275–292. [Google Scholar] [CrossRef]
- Hymel, K.M.; Small, K.A.; Van Dender, K. Induced demand and rebound effects in road transport. Transp. Res. Part B Methodol. 2010, 44, 1220–1241. [Google Scholar] [CrossRef]
- Brons, M.; Pels, E.; Nijkamp, P.; Rietveld, P. Price elasticities of demand for passenger air travel: A meta-analysis. J. Air Transp. Manag. 2002, 8, 165–175. [Google Scholar] [CrossRef]
- Kincaid, I.; Trethaway, M. Estimating Air Travel Demand Elasticities. Intervistas, Prepared for the International Air Transport Association (IATA) 2007. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/estimating-air-travel-demand-elasticities---by-intervistas/ (accessed on 3 September 2023).
- Smyth, M.; Pearce, B. Air travel demand. IATA Econ. Brief. 2008, 9, 46. [Google Scholar]
- Chi, J.; Koo, W.W.; Lim, S.H. Demand analysis for air passenger service in US city-pair markets. J. Transp. Res. Forum 2012, 49, 81–93. [Google Scholar] [CrossRef]
- Clewlow, R.R.; Sussman, J.M.; Balakrishnan, H. The impact of high-speed rail and low-cost carriers on European air passenger traffic. Transp. Policy 2014, 33, 136–143. [Google Scholar] [CrossRef]
- Jones, I.S.; Nichols, A.J. The demand for inter-city rail travel in the United Kingdom: Some evidence. J. Transp. Econ. Policy 1983, 17, 133–153. [Google Scholar]
- Doi, M.; Allen, W.B. A time series analysis of monthly ridership for an urban rail rapid transit line. Transportation 1986, 13, 257–269. [Google Scholar] [CrossRef]
- Douglas, N.; Karpouzis, G. An explorative econometric model of Sydney metropolitan rail patronage. In Proceedings of the 32nd Australasian Transport Research Forum, Auckland, New Zealand, 29 September–1 October 2009. [Google Scholar]
- Hortelano, A.O.; Guzman, A.F.; Preston, J.; Vassallo, J.M. Price elasticity of demand on the high-speed rail lines of Spain: Impact of the new pricing scheme. Transp. Res. Rec. 2016, 2597, 90–98. [Google Scholar] [CrossRef]
- Brumerčíková, E.; Buková, B.; Kondek, P. The influence of free transport in rail passenger transport on the elasticity of demand of rail passenger transport. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 134, p. 00002. [Google Scholar]
- Wijeweera, A.; Charles, M. An empirical analysis of the determinants of passenger rail demand in Melbourne, Australia. Econ. Anal. Policy 2013, 43, 249–264. [Google Scholar] [CrossRef]
Routes (i) | Period | Train | Air | Road |
---|---|---|---|---|
Los Angeles/Phoenix | 2007 to 2019 | 1.2700 | 0.7922 | |
San Francisco/Los Angeles | 2007 to 2019 | −0.7325 | 0.5022 | 1.7372 |
Los Angeles/Sacramento | 2007 to 2019 | −0.5685 | 0.7113 | 1.4610 |
Las Vegas/San Francisco | 2003 to 2017 | 0.3123 | 1.4914 | |
Atlanta/Miami | 2003 to 2017 | 0.9357 | 1.0445 | |
Chicago/Washington DC | 2008 to 2019 | 0.3071 | 0.6582 | 1.4803 |
Atlanta/New York | 2003 to 2017 | 1.2307 | 0.8406 | |
Chicago/New York | 2003 to 2019 | 0.5832 | 1.2970 | |
San Francisco/Seattle | 2003 to 2017 | 1.5766 | 0.5891 | |
Orlando/Washington (2 modes) | 2003 to 2017 | 1.0800 | 0.9447 | |
Orlando/Washington (3 modes) | 2003 to 2017 | 0.3287 | 0.7386 | 1.3747 |
Denver/Los Angeles | 2003 to 2019 | 1.3833 | 0.7270 | |
Boston/Chicago | 2004 to 2019 | 0.9603 | 1.0300 | |
New York/Orlando | 2003 to 2017 | 1.0178 | 0.9875 | |
Chicago/Orlando | 2003 to 2017 | 1.2322 | 0.8394 | |
Miami/Washington | 2008 to 2019 | 0.2036 | 0.6045 | 1.5555 |
New York/Miami | 2003 to 2019 | 0.7611 | 1.1713 | |
Chicago/St. Louis | 2007 to 2019 | 0.1728 | 0.4853 | 1.7197 |
Buffalo/New York City | 2007 to 2019 | 0.3365 | 1.6900 | 0.1269 |
Portland/Seattle | 2003 to 2019 | −0.0689 | 1.1823 | 0.8016 |
Chicago/Detroit | 2003 to 2018 | 0.4799 | 0.9686 | 1.0722 |
Estimated average elasticity | 0.0510 | 0.9402 | 1.1070 | |
Estimated S.D. of elasticity | 0.4270 | 0.3801 | 0.4124 | |
Coefficient of variation (%) | 8.3771 | 0.4043 | 0.3726 | |
Estimated median | 0.2036 | 0.9480 | 1.0584 |
Routes | Period | Transport Mode | Cross Elasticity | |||
---|---|---|---|---|---|---|
Train | Air | Road | Air Pass., Road Prices | Road Pass., Air Prices | ||
Los Angeles/Phoenix | 2007 to 2019 | −0.6597 | −0.5304 | −0.6104 | −0.2618 | |
San Francisco/Los Angeles | 2007 to 2019 | −1.6481 | −0.5921 | −0.8859 | 0.0486 | −0.7582 |
Los Angeles/Sacramento | 2007 to 2019 | −0.2665 | −0.9204 | −1.0185 | 0.2186 | −0.4169 |
Las Vegas/San Francisco | 2003 to 2017 | −0.3866 | −1.0532 | 0.0743 | −0.4382 | |
Atlanta/Miami | 2003 to 2017 | −0.5702 | −0.7466 | −0.3655 | −0.2979 | |
Chicago/Washington DC | 2008 to 2019 | −0.9325 | −0.4392 | −0.6524 | −0.2506 | −0.7956 |
Atlanta/New York | 2003 to 2017 | −0.6690 | −0.6111 | −0.5617 | −0.2296 | |
Chicago/New York | 2003 to 2019 | −0.5655 | −0.9861 | −0.0177 | −0.3109 | |
San Francisco/Seattle | 2003 to 2017 | −0.7784 | −0.4308 | −0.7982 | −0.1583 | |
Orlando/Washington (2 modes) | 2003 to 2017 | −0.7024 | −0.7377 | −0.3776 | −0.2070 | |
Orlando/Washington (3 modes) | 2003 to 2017 | −1.0233 | −0.6360 | −0.6923 | −0.1595 | −0.6408 |
Denver/Los Angeles | 2003 to 2019 | −0.7503 | −0.5485 | −0.6330 | −0.1785 | |
Boston/Chicago | 2004 to 2019 | −0.5153 | −0.6757 | −0.4450 | −0.3543 | |
New York/Orlando | 2003 to 2017 | −0.6255 | −0.7277 | −0.3923 | −0.2598 | |
Chicago/Orlando | 2003 to 2017 | −0.6764 | −0.6151 | −0.5558 | −0.2243 | |
Miami/Washington | 2008 to 2019 | −0.4137 | −0.4719 | −0.7517 | −0.1406 | −0.7700 |
New York/Miami | 2003 to 2019 | −0.4865 | −0.8042 | −0.2746 | −0.3671 | |
Chicago/St. Louis | 2007 to 2019 | −0.9741 | −0.3148 | −0.7901 | −0.1873 | −0.9420 |
Buffalo/New York City | 2007 to 2019 | −0.6482 | −0.9692 | −0.0575 | −0.7108 | −0.0681 |
Portland/Seattle | 2003 to 2019 | |||||
Chicago/Detroit | 2003 to 2018 | −0.6596 | −0.8174 | −0.6218 | −0.1426 | −0.4399 |
Estimated average Marshall elasticity (1) | −0.8208 | −0.6234 | −0.6947 | −0.3107 | −0.4164 | |
Estimated S.D. of Marshall elasticity | 0.4293 | 0.1728 | 0.2270 | 0.2873 | 0.2483 | |
Coefficient of variation | 0.5231 | 0.2773 | 0.3268 | 0.9246 | 0.5962 | |
Estimated median | −0.7961 | −0.6255 | −0.6923 | −0.2746 | −0.3543 |
Cross Elasticities | Train Passengers | Air Passengers | Road Passengers | ||||
---|---|---|---|---|---|---|---|
Routes | Period | Air Prices | Road Prices | Train Prices | Road Prices | Train Prices | Air Prices |
San Francisco/Los Angeles | 2007 to 2019 | 1.4061 | 0.9745 | 0.0412 | 0.0486 | −0.0931 | −0.7582 |
Los Angeles/Sacramento | 2007 to 2019 | 0.4320 | 0.4030 | −0.0095 | 0.2186 | −0.0256 | −0.4169 |
Chicago/Washington DC | 2008 to 2019 | 0.7159 | −0.0904 | 0.0317 | −0.2506 | −0.0323 | −0.7956 |
Orlando/Washington (3 modes) | 2003 to 2017 | 1.2216 | −0.5270 | 0.0569 | −0.1595 | −0.0416 | −0.6408 |
Miami/Washington | 2008 to 2019 | 0.2963 | −0.0862 | 0.0080 | −0.1406 | −0.0338 | −0.7700 |
Chicago/St. Louis | 2007 to 2019 | 0.4303 | 0.3709 | 0.0167 | −0.1873 | −0.0201 | −0.9420 |
Buffalo/New York City | 2007 to 2019 | 0.3326 | −0.0208 | −0.0100 | −0.7108 | −0.0014 | −0.0681 |
Chicago/Detroit | 2003 to 2018 | −0.0464 | 0.2262 | −0.0087 | −0.1426 | −0.0105 | −0.4399 |
Estimated average Marshall elasticity | 0.5985 | 0.1563 | 0.0158 | −0.1655 | −0.0323 | −0.6039 | |
Estimated S.D. of Marshall elasticity | 0.4911 | 0.4471 | 0.0255 | 0.2672 | 0.0278 | 0.2810 | |
Coefficient of variation | 0.8205 | 2.8610 | 1.6164 | 1.6140 | 0.8611 | 0.4653 | |
Estimated median | 0.4311 | 0.1027 | 0.0123 | −0.1510 | −0.0289 | −0.6995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escañuela Romana, I.; Torres-Jiménez, M.; Carbonero-Ruz, M. Elasticities of Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for Sustainability. Sustainability 2023, 15, 14036. https://doi.org/10.3390/su151814036
Escañuela Romana I, Torres-Jiménez M, Carbonero-Ruz M. Elasticities of Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for Sustainability. Sustainability. 2023; 15(18):14036. https://doi.org/10.3390/su151814036
Chicago/Turabian StyleEscañuela Romana, Ignacio, Mercedes Torres-Jiménez, and Mariano Carbonero-Ruz. 2023. "Elasticities of Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for Sustainability" Sustainability 15, no. 18: 14036. https://doi.org/10.3390/su151814036
APA StyleEscañuela Romana, I., Torres-Jiménez, M., & Carbonero-Ruz, M. (2023). Elasticities of Passenger Transport Demand on US Intercity Routes: Impact on Public Policies for Sustainability. Sustainability, 15(18), 14036. https://doi.org/10.3390/su151814036