Ecological Restoration of Coalmine-Degraded Lands: Influence of Plant Species and Revegetation on Soil Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Revegetation Method in the Study Area
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Analysis Results
3.2. Multivariate Statistical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, W.; Hongbo, G.; Liang, X.; Zeping, J.; Jinxing, Z.; Shiwen, Z.; Ming, C.; Jianli, Y. Review of studies on reclamation and ecological restoration of abandoned land of mine. Sci. Soil Water Conserv. 2012, 10, 107–114. [Google Scholar]
- Jiskani, I.M.; Cai, Q.; Zhou, W.; Lu, X.; Shah, S.A.A. An integrated fuzzy decision support system for analyzing challenges and pathways to promote green and climate smart mining. Expert Syst. Appl. 2022, 188, 116062. [Google Scholar] [CrossRef]
- Dejun, Y.; Zhengfu, B.; Shaogang, L. Impact on soil physical qualities by the subsidence of coal mining: A case study in Western China. Environ. Earth Sci. 2016, 75, 652. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.C.; Guang-Yi, A.N. Selection and Application of Landscape Plants in the Construction of Green Mines in Chengde. J. Landsc. Res. 2010, 2, 60–63. [Google Scholar]
- Ma, K.; Zhang, Y.; Ruan, M.; Guo, J.; Chai, T. Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions. Int. J. Environ. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef]
- Chen, J.; Jiskani, I.M.; Jinliang, C.; Yan, H. Evaluation and future framework of green mine construction in China based on the DPSIR model. Sustain. Environ. Res. 2020, 30, 13. [Google Scholar] [CrossRef]
- Yan-ping, Y.; Fu-zhou, L. A study of sustainable design for abandoned coal mines’ ecological remediation. Acta Tech. 2017, 62, 303–314. [Google Scholar]
- Henry, H.F.; Burken, J.G.; Maier, R.M.; Newman, L.A.; Rock, S.; Schnoor, J.L.; Suk, W.A. Phytotechnologies–preventing exposures, improving public health. Int. J. Phytorem. 2013, 15, 889–899. [Google Scholar] [CrossRef]
- Cano-Reséndiz, O.; de la Rosa, G.; Cruz-Jiménez, G.; Gardea-Torresdey, J.L.; Robinson, B.H. Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS. J. Hazard. Mater. 2011, 189, 472–478. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Y.-T.; Wang, S.-F.; Pan, H.-W.; Sun, H.-J.; Liu, C.-X.; Liu, J.-F.; Jiang, Z.-P. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int. J. Phytorem. 2016, 18, 1155–1163. [Google Scholar] [CrossRef]
- Shu-Jun, C.U.I.; Li-Kun, G.U.; You-Xuan, L.; Gang, L.I. Research of Microbiology Technology in Ecological Remediation of the Abandoned Coal Mining Land. Met. Mine 2010, 39, 176. [Google Scholar]
- Kang, B.T.; Wilson, G.F.; Sipkens, L. Alley cropping maize (Zea mays L.) and leucaena (Leucaena leucocephala Lam) in southern Nigeria. Plant Soil 1981, 63, 165–179. [Google Scholar] [CrossRef]
- Maiti, S.K.; Kumar, A.; Ahirwal, J. Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. Int. J. Min. Reclam. Environ. 2016, 30, 231–244. [Google Scholar] [CrossRef]
- Arshi, A. Reclamation of coalmine overburden dump through environmental friendly method. Saudi J. Biol. Sci. 2017, 24, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Cai, T.; Wang, X. Effects of vegetation restoration models on soil nutrients in an abandoned quarry. J. Beijing For. Univ. 2010, 32, 151–154. [Google Scholar]
- Yan, G. Soil Physical and Chemical Properties and Species Diversity Characteristics during the Vegetation Recovery Process in Wasteland of Opencast Coal Mine. For. Sci. Technol. 2012, 37, 51–54. [Google Scholar]
- Jun, T.; Tinghui, D.; Jiang, X. Effects of vegetation restora⁃ tion on soil aggregate characteristics of an opencast coal mine dump in the loess area. Acta Ecol. Sin. 2016, 36, 5067–5077. [Google Scholar]
- Zhou, H.; Peng, X.; Peth, S.; Xiao, T.Q. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography. Soil Tillage Res. 2012, 124, 17–23. [Google Scholar] [CrossRef]
- Zhao, Z.; Shahrour, I.; Bai, Z.; Fan, W.; Feng, L.; Li, H. Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China. Eur. J. Soil Biol. 2013, 55, 40–46. [Google Scholar] [CrossRef]
- Sasmaz, M.; Akgul, B.; Yıldırım, D.; Sasmaz, A. Bioaccumulation of thallium by the wild plants grown in soils of mining area. Int. J. Phytorem. 2016, 18, 1164–1170. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecol. Eng. 2013, 57, 133–142. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, C.; Ma, J.; Zhu, T. Effects of plant types on physico-chemical properties of reclaimed mining soil in Inner Mongolia, China. Chin. Geogr. Sci. 2010, 20, 309–317. [Google Scholar] [CrossRef]
- Torroba-Balmori, P.; Zaldívar, P.; Alday, J.G.; Fernández-Santos, B.; Martínez-Ruiz, C. Recovering Quercus species on reclaimed coal wastes using native shrubs as restoration nurse plants. Ecol. Eng. 2015, 77, 146–153. [Google Scholar] [CrossRef]
- LY/T 1215-1999; Field Sampling and Preparation of Forest Soil Samples. National Forestry and Grassland Administration: Beijing, China, 1999.
- LY/T 1275-1999; Forest Soil Analysis Methods. National Forestry and Grassland Administration: Beijing, China, 1999.
- SQI. Soil Quality Test Kit Guide; Soil Quality Institute, National Resources Conservation Service, US Department of Agriculture: Washington, DC, USA, 1998. [Google Scholar]
- Holliday, V.T. Methods of soil analysis, part 1, physical and mineralogical methods (2nd edition), A. Klute, Ed., 1986, American Society of Agronomy, Agronomy Monographs 9(1), Madison, Wisconsin, 1188 pp., $60.00. Geoarchaeology Int. J. 1990, 5, 87–89. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal components in regression analysis. In Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002; pp. 167–198. [Google Scholar]
- Maiti, S.K. Biodiversity Erosion and Conservation in Ecorestored Site. In Ecorestoration of the Coalmine Degraded Lands; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–199. [Google Scholar]
- Jin-Hui, C. Effect of Mine Wastelands Vegetation on Soil Properties. Met. Mine 2016, 45, 147. [Google Scholar]
- Kondratenko, L.; Gura, D.; Shaidullina, V.; Rogulin, R.; Kondrashev, S. Restoration of vegetation around mining enterprises. Saudi J. Biol. Sci. 2022, 29, 1881–1886. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef]
- Pratiwi; Narendra, B.H.; Siregar, C.A.; Turjaman, M.; Hidayat, A.; Rachmat, H.H.; Mulyanto, B.; Suwardi; Iskandar; Maharani, R.; et al. Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review. Land 2021, 10, 658. [Google Scholar] [CrossRef]
- Pellegrini, E.; Boscutti, F.; Alberti, G.; Casolo, V.; Contin, M.; De Nobili, M. Stand age, degree of encroachment and soil characteristics modulate changes of C and N cycles in dry grassland soils invaded by the N2-fixing shrub Amorpha fruticosa. Sci. Total Environ. 2021, 792, 148295. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, N.; Dong, J.; Wang, C.; Li, Q.; Wang, R.; Feng, Z.; Xie, D.; Ye, G.; Ma, Y. Prediction of the sea buckthorn AQP gene structure and its spatiotemporal expression pattern under drought stress. J. Plant Biochem. Biotechnol. 2022, 31, 239–249. [Google Scholar] [CrossRef]
- Adams, M.B.; Angel, P.; Barton, C.; Burger, J.; Davis, V.; French, M.; Graves, D.; Groninger, J.W.; Hall, N.; Keiffer, C.H.; et al. The Forestry Reclamation Approach: Guide to Successful Reforestation of Mined Lands; United States Department of Agriculture: Washington, DC, USA, 2017; Volume 169. [Google Scholar]
Method | Revegetation Type | Altitude (m) | Slope (°) | Vegetation Coverage (%) | Slope Exposition |
---|---|---|---|---|---|
1 | Ulmus pumila | 143 | 34 | 90 | Adret |
2 | Ulmus pumila + Amorpha fruticosa + Robinia pseudoacacia | 204 | 0 | 90 | |
3 | Ulmus pumila + Amorpha fruticosa + Robinia pseudoacacia + Jerusalem artichoke | 212 | 0 | 92 | |
4 | Jerusalem artichoke | 215 | 0 | 93 | |
5 | Sea buckthorn + Amorpha fruticosa | 238 | 0 | 94 | |
6 | Ulmus pumila + Amorpha fruticosa | 186 | 35 | 91 | |
7 (Control group) | Bare land | 201 | 0 | 0 |
Method | Moisture (%) | Moisture Ratio * | Bulk Density (g cm−3) | Bulk Density Ratio * | Porosity (%) | Porosity Ratio * |
---|---|---|---|---|---|---|
(a) topsoil (0–20 cm) | ||||||
1 | 10.51 | 5.53 | 1.12 | 0.84 | 57.22 | 0.95 |
2 | 10.14 | 5.34 | 1.03 | 0.77 | 60.51 | 1.00 |
3 | 8.2 | 4.32 | 1.04 | 0.78 | 61.61 | 1.02 |
4 | 11.1 | 5.84 | 1.31 | 0.98 | 50.52 | 0.83 |
5 | 11.93 | 6.28 | 1.04 | 0.78 | 62.32 | 1.03 |
6 | 10.15 | 5.34 | 1.22 | 0.91 | 54.43 | 0.90 |
7 | 1.9 | 1 | 1.34 | 1 | 60.55 | 1 |
(b) subsoil (20–40 cm) | ||||||
1 | 11.39 | 2.57 | 1.02 | 0.77 | 62.37 | 1.23 |
2 | 10.95 | 2.47 | 1.21 | 0.92 | 54.49 | 1.08 |
3 | 10.23 | 2.30 | 1.03 | 0.78 | 60.52 | 1.20 |
4 | 12.6 | 2.84 | 1.12 | 0.85 | 57.22 | 1.13 |
5 | 14.14 | 3.18 | 1.06 | 0.80 | 60.51 | 1.20 |
6 | 11.61 | 2.61 | 1.01 | 0.77 | 61.63 | 1.22 |
7 | 4.44 | 1 | 1.32 | 1 | 50.56 | 1 |
Method | Soil Layer Depth (cm) | pH | pH Ratio | Conductivity (/μS·cm−1) | Conductivity Ratio | Organic Carbon (%) | Organic Carbon (Ratio) | Available Nitrogen (mg·kg−1) | Available Nitrogen Ratio | Available Phosphorus (mg·kg−1) | Available Phosphorus Ratio | Available Potassium (mg·kg−1) | Available Potassium Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) topsoil | |||||||||||||
1 | 0~20cm | 6.98 | 0.91 | 113.16 | 14.79 | 1.12 | 1.81 | 28.31 | 1.70 | 1.5 | 1.63 | 434.79 | 3.91 |
2 | 0~20cm | 6.42 | 0.84 | 75.11 | 9.82 | 2.12 | 3.42 | 45.95 | 2.76 | 2.01 | 2.18 | 187.12 | 1.68 |
3 | 0~20cm | 6.38 | 0.83 | 91.05 | 11.90 | 1.86 | 3.00 | 47.12 | 2.83 | 3.72 | 4.04 | 624.02 | 5.62 |
4 | 0~20cm | 6.16 | 0.81 | 130.28 | 17.03 | 0.95 | 1.53 | 24.31 | 1.46 | 1.02 | 1.11 | 606.41 | 5.46 |
5 | 0~20cm | 7.23 | 0.95 | 112.87 | 14.75 | 3.23 | 5.21 | 54.3 | 3.26 | 2.19 | 2.38 | 123.79 | 1.11 |
6 | 0~20cm | 6.78 | 0.89 | 125 | 16.34 | 1.51 | 2.44 | 40.34 | 2.42 | 3.72 | 4.04 | 438.65 | 3.95 |
7 | 0~20cm | 7.65 | 1.00 | 630.28 | 82.39 | 0.62 | 1.00 | 16.64 | 1.00 | 0.92 | 1.00 | 111.1 | 1.00 |
(b) subsoil | |||||||||||||
1 | 20~40 | 7.33 | 0.89 | 130.25 | 0.15 | 0.66 | 2.87 | 14.93 | 1.44 | 1.23 | 1.64 | 260.01 | 4.73 |
2 | 20~40 | 7.58 | 0.92 | 91.19 | 0.11 | 0.84 | 3.65 | 39.99 | 3.85 | 1.53 | 2.04 | 105.81 | 1.93 |
3 | 20~40 | 6.60 | 0.80 | 115.60 | 0.13 | 1.15 | 5.00 | 25.02 | 2.41 | 2.42 | 3.23 | 579.02 | 10.54 |
4 | 20~40 | 6.67 | 0.81 | 256.51 | 0.30 | 0.56 | 2.43 | 13.16 | 1.27 | 0.86 | 1.15 | 472.33 | 8.59 |
5 | 20~40 | 6.53 | 0.79 | 139.73 | 0.16 | 1.32 | 5.74 | 33.74 | 3.24 | 1.33 | 1.77 | 68.96 | 1.25 |
6 | 20~40 | 6.67 | 0.81 | 184.95 | 0.21 | 0.78 | 3.39 | 27.94 | 2.69 | 3.08 | 4.11 | 187.84 | 3.42 |
7 | 20~40 | 8.25 | 1.00 | 862.74 | 1.00 | 0.23 | 1.00 | 10.40 | 1.00 | 0.75 | 1.00 | 54.96 | 1.00 |
Correlation Coefficient | Moisture | Density | Porosity | pH | Conductivity | Organic Carbon | Available Nitrogen | Available Phosphorus | Available Potassium |
---|---|---|---|---|---|---|---|---|---|
Moisture | 1.000 | ||||||||
Density | −0.622 | 1.000 | |||||||
Porosity | 0.180 | −0.772 | 1.000 | ||||||
pH | −0.575 | 0.453 | −0.214 | 1.000 | |||||
Conductivity | −0.784 | 0.648 | −0.356 | 0.719 | 1.000 | ||||
Organic Carbon | 0.300 | −0.463 | 0.428 | −0.333 | −0.516 | 1.000 | |||
Available Nitrogen | 0.321 | −0.400 | 0.301 | −0.353 | −0.614 | 0.883 | 1.000 | ||
Available Phosphorus | 0.150 | −0.439 | 0.324 | −0.420 | −0.471 | 0.480 | 0.635 | 1.000 | |
Available Potassium | 0.171 | −0.098 | −0.117 | −0.639 | −0.417 | 0.019 | 0.000 | 0.349 | 1.000 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Moisture | 0.682 | −0.255 | −0.456 |
Density | −0.797 | −0.196 | 0.459 |
Porosity | 0.561 | 0.498 | −0.385 |
pH | −0.737 | 0.531 | 0.007 |
Conductivity | −0.896 | 0.229 | 0.107 |
Organic Carbon | 0.731 | 0.421 | 0.336 |
Available Nitrogen | 0.753 | 0.362 | 0.454 |
Available Phosphorus | 0.673 | 0.054 | 0.475 |
Available Potassium | 0.355 | −0.790 | 0.245 |
Eigenvalue | 4.442 | 1.621 | 1.184 |
Variance explained, % | 49.353 | 18.011 | 13.151 |
Total variance explained, % | 49.353 | 67.365 | 80.515 |
Method | Score | Rank | |||
---|---|---|---|---|---|
1st PC | 2nd PC | 3rd PC | CPC | ||
1 | 0.05079 | −0.50098 | −0.18101 | −0.1105 | 9 |
−0.08494 | 0.16104 | −1.80928 | −0.31156 | 10 | |
2 | 0.86509 | 0.71528 | 0.11280 | 0.708702 | 3 |
−0.32826 | 0.35718 | 0.17342 | −0.09299 | 8 | |
3 | 1.16573 | −0.14424 | 1.33229 | 0.899898 | 2 |
0.53086 | −0.70880 | −0.27077 | 0.122616 | 7 | |
4 | −0.27767 | −2.18588 | 0.67790 | −0.54845 | 11 |
−0.27104 | −1.22627 | −1.21682 | −0.6392 | 12 | |
5 | 1.06954 | 1.88041 | 0.45563 | 1.150656 | 1 |
0.46117 | 0.37507 | −1.25746 | 0.161195 | 6 | |
6 | 0.40900 | −0.50377 | 1.74985 | 0.423825 | 4 |
0.48800 | 0.24721 | −0.73497 | 0.234381 | 5 | |
7 | −1.67544 | 1.00265 | 0.44889 | −0.72938 | 13 |
−2.40284 | 0.53111 | 0.51956 | −1.26919 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jiskani, I.M.; Li, G. Ecological Restoration of Coalmine-Degraded Lands: Influence of Plant Species and Revegetation on Soil Development. Sustainability 2023, 15, 13772. https://doi.org/10.3390/su151813772
Chen J, Jiskani IM, Li G. Ecological Restoration of Coalmine-Degraded Lands: Influence of Plant Species and Revegetation on Soil Development. Sustainability. 2023; 15(18):13772. https://doi.org/10.3390/su151813772
Chicago/Turabian StyleChen, Jinhui, Izhar Mithal Jiskani, and Guoqing Li. 2023. "Ecological Restoration of Coalmine-Degraded Lands: Influence of Plant Species and Revegetation on Soil Development" Sustainability 15, no. 18: 13772. https://doi.org/10.3390/su151813772
APA StyleChen, J., Jiskani, I. M., & Li, G. (2023). Ecological Restoration of Coalmine-Degraded Lands: Influence of Plant Species and Revegetation on Soil Development. Sustainability, 15(18), 13772. https://doi.org/10.3390/su151813772