Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Weather Conditions
2.2. Plant Materials and Experimental Design
2.3. Nitrogen Sources and Analysis Methods
2.4. Applications of Nitrogen
2.5. Observations and Measurements
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romani, M.; Piano, E.; Pecetti, L. Collection and preliminary evaluation of native turfgrass accessions in Italy. Genet. Resour. Crop Evol. 2002, 49, 341–348. [Google Scholar]
- Lamp, C.A.; Forbes, S.J.; Cade, J.W. Grasses of Temperate Australia—A Field Guide; Inkata Press: Melbourne, Australia, 1990. [Google Scholar]
- Beard, J.B. Turfgrass: Science and Culture; Prentice-Hall: Upper Saddle River, NJ, USA, 1973. [Google Scholar]
- Thorogood, D. Perennial Ryegrass. In Turfgrass Biology, Genetics, and Breeding; Casler, M.D., Duncan, R.R., Eds.; John Wiley & Sons: New York, NY, USA, 2003; p. 76. [Google Scholar]
- Feo, G.; Ferrara, C.; Iannone, V.; Parente, P. Improving the efficacy of municipal solid waste collection with a communicative approach based on easily understandable indicators. Sci. Total Environ. 2019, 651, 2380–2390. [Google Scholar] [CrossRef]
- Minelgaite, A.; Liobikiene, G. Waste problem in European Union and its influence on waste management behaviors. Sci. Total Environ. 2019, 667, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, K.; Alriksson, S. Influence of recycling programmes on waste separation behaviour. Waste Manag. 2017, 68, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Orman, S.; Ok, H.; Fahad, M.; Ozgur, A. Obtaining humic acid from stabilized and dried domestic sewage sludge and its utilization in grass (Lolium perenne L.) growth. Mediterr. Agric. Sci. 2020, 33, 411–416. [Google Scholar] [CrossRef]
- Faria, W.M.; Figueiredo, C.C.; de Coser, T.R.; Vale, A.T.; Schneider, B.G. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Beard, J. The origins of turfgrass species. Golf Course Manag. 1998, 66, 49–55. [Google Scholar]
- Bergkvist, P.; Jarvis, N.; Berggren, D.; Carlgre, K. Long-term effects of sewage sludge applications on soil properties cadmium availability and distribution in arable soil. Agric. Ecosyst. Environ. 2003, 97, 167–179. [Google Scholar] [CrossRef]
- Topac, F.; Ucaroglu, S. Sustainable Utilization Alternatives for Sewage Sludge: Priority Approaches. Eur. J. Sci. Technol. 2020, 20, 728–739. [Google Scholar] [CrossRef]
- Epstein, E. Land Application of Sewage Sludge and Biosolids; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Ata, S.; Asik, B.B.; Kaner, Ö. Determination of Agricultural Uses of Organic and Organomineral Fertilizers of Produced in Biogas Facility: “A Case Study In Sütaş Ic”. In Proceedings of the IV. Balkan Agricultural Congress, Edirne, Turkey, 31 August–2 September 2022; pp. 819–823. Available online: https://www.researchgate.net/profile/Vanya-Slavova/publication/366670377_APPLICATION_OF_FLUORESCENCE_SPECTROSCOPY_FOR_THE_ANALYSIS_OF_DIFFERENT_GARLIC_ACCESSIONS_AFTER_9_MONTHS’_STORAGE_IN_A_WIREHOUSE/links/63adbf0ba03100368a39bb90/APPLICATION-OF-FLUORESCENCE-SPECTROSCOPY-FOR-THE-ANALYSIS-OF-DIFFERENT-GARLIC-ACCESSIONS-AFTER-9-MONTHS-STORAGE-IN-A-WIREHOUSE.pdf#page=818 (accessed on 3 November 2022).
- Kelley, W.D.; Martens, D.C.; Reneau, R.B.; Simpson, T.W. Agricultural Use of Sewage Sludge. A Literature Review; Polytechnic Institute and State University Blacksburg, Bulletins, Virginia Water Resources Research Center Publishing House: Blacksburg, VA, USA, 1984. [Google Scholar]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani, F. Short-term experiments in using digestate products as sub-stitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, W.; Liu, J.; Zhao, Q.; He, Y.; Chen, G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Eng. 2007, 29, 96–104. [Google Scholar] [CrossRef]
- Mota, F.D.; Villas Bôas, R.L.; Mateus, C.M.D.; Silva, T.B.G. Sewage sludge compost in zoysia grass sod production. Rev. Ambiente Y Agua 2019, 14, e2301. [Google Scholar] [CrossRef]
- Silva, P.S.T.; Zabotto, A.R.; Santos, P.L.F.D.; Nascimento, M.V.L.D.; Tavares, A.R.; Bôas, R.L. Regrowth and ornamental traits of bermudagrass fertilized with sewage sludge. Ornam. Hortic. 2020, 26, 390–398. [Google Scholar] [CrossRef]
- Rezende, B.T.; Santos, P.L.F.D.; Bezerra, J.C.M.; Pagliarini, M.K.; Castilho, R.M.M.D. Sewage sludge composted in the coloring and development of Bermuda grass. Ornam. Hortic. 2020, 26, 440–447. [Google Scholar] [CrossRef]
- Acikgoz, E.; Bilgili, U.; Sahin, F.; Guillard, K. Effect of plant growth-promoting Bacillus sp. on color and clipping yield of three turfgrass species. J. Plant Nutr. 2016, 39, 1404–1411. [Google Scholar] [CrossRef]
- Biyikli, M.; Dorak, S.; Asik, B.B. Effects of Food Industry Wastewater Treatment Sludge on Corn Plant Development and Soil Properties. Pol. J. Environ. Stud. 2020, 29, 2565–2578. [Google Scholar] [CrossRef]
- Parkpain, P.; Leong, S.T.; Laortanakul, P.; Torotoro, J.L. Influence of salinity and acidity on bio-availability of sludge-borne heavy metals. A case study of Bangkok municipal sludge. Water Air Soil Poll. 2002, 139, 43. [Google Scholar] [CrossRef]
- Ottaviani, M.; De Fulvio, S. Availability of heavy metals from sewage sludge and its possible impact on regulatory activity in Italy. Ann. Dell. Super. Sanita 1991, 27, 665. [Google Scholar]
- Hannaway, D.B.; Fransen, S.; Cooper, J.; Teel, M.; Chaney, M.; Griggs, T.; Halse, R.; Hart, J.; Cheeke, P.; Hansen, D.; et al. Perennial Ryegrass (Lolium perenne L.); Pacific Northwest Extension Publications, Oregon State University: Corvallis, OR, USA, 1999. [Google Scholar]
- Jacobs, L.W.; Mcgreary, D.S. Utilizing Biosolids on Agricultural Land; Department of Crop and Soil Science, Michigan State University, Extension Bulletin: East Lansing, MI, USA, 2001. [Google Scholar]
- Garau, M.A.; Felipo, M.T.; Ruiz DE Villa, M.C. Nitrogen mineralization of sewage sludges in soils. J. Environ. Qual. 1986, 15, 225. [Google Scholar] [CrossRef]
- Morris, K.N.; Shearman, R.C. NTEP Turfgrass Evaluation Guidelines; NTEP Turfgrass Evaluation Workshop: Beltsville, MD, USA, 2008; pp. 1–5. Available online: https://www.ntep.org/reports/ratings.htm#quality (accessed on 3 August 2023).
- Caturegli, L.; Sportelli, M.; Pirchio, M.; Sciusco, G.; Volterrani, M.; Tucci, M.; Magni, S.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; et al. Hot Foam and Nitrogen Application to Promote Spring Transition of “Diamond” Zoysiagrass (Zoysia matrella (L.) Merr.) Overseeded with Perennial Ryegrass (Lolium perenne L.). Agronomy 2022, 12, 1049. [Google Scholar] [CrossRef]
- Chandra, A.; Genovesi, A.D.; Meeks, M.; Segars, C.A.; Eads, J.; Hejl, R.; Floyd, W.; Wherley, B.; Straw, C.; Bowling, R.; et al. Registration of ‘DALSA 1618’ St. Augustinegrass. J. Plant Regist. 2023, 14, 19–34. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Duo, L. Effects of different size fractions of municipal solid waste compost on growth of Lolium perenne L. Int. J. Environ. Sci. Technol. 2020, 17, 3705–3714. [Google Scholar] [CrossRef]
- Stier, J.C.; Hollman, A.B. Cultivation and topdressing requirements for thatch management in A and G bentgrasses and creeping bluegrass. HortScience 2003, 38, 1227–1231. [Google Scholar] [CrossRef]
- Salman, A. Farklı gübre Dozlarının bazı serin ve sıcak iklim Çimlerinin yeşil alan Performanslarına etkisi. Ph.D. Thesis, Ege University, İzmir, Turkey, 2008. [Google Scholar]
- Wołejko, E.; Butarewicz, A.; Wydro, U.; Łoboda, T. Advantages and potential risks of municipal sewage sludge application to urban soil. Desalination Water Treat. 2014, 52, 3732–3742. [Google Scholar] [CrossRef]
- Larsen, A.B.; Func, F.H.; Hamilton, H.A. The use of fermentation sludge as a fertilizer in agriculture. Water Sci. Technol. 1991, 52, 33–42. [Google Scholar] [CrossRef]
- Topac, F.O.; Baskaya, H.S. Importance of Nitrogen Forms in the Evaluation of Plant Nutrient Levels of Domestic Sludges. Uludag Univ. J. Fac. Eng. 2008, 13, 59–66. [Google Scholar]
- US EPA. Land Application of Biosolids, Process Design Manuel; U.S. Enviromental Protection Agency, Center for Environmental Research Information: Cincinnati, OH, USA, 1996; 625/1-96-011.
- Water Research Commission. Permissible Utilisation and Disposal of Sewage Sludge, 1st ed.; Water Research Commission: Pretoria, South Africa, 1997; 83p. [Google Scholar]
- Asik, B.B. Evaluation of Different Wastewater Sludges for Possible Agricultural Use. Ph.D. Thesis, Uludag University, Bursa, Turkey, 2011. [Google Scholar]
- Andreoli, C.V.; Pegorini, E.S.; Fernandes, F.; Santos, H.F. Land application of sewage sludge. In Sludge Treatment and Disposal; Von Sperling, M., Andreoli, C.V., Fernandes, F., Eds.; IWA Publishing: London, UK, 2007; pp. 162–206. [Google Scholar]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Schiavon, M.; Green, R.L.; Baird, J.H. Drought tolerance of cool-season turfgrasses in a Mediterranean climate. Eur. J. Hortic. Sci. 2014, 79, 175–182. [Google Scholar]
- Asik, B.B.; Aydinalp, C.; Sagban, F.O.T.; Katkat, A.V. Agricultural use of wastewater sludge from various sources with special emphasis on total and DTPA-extractable heavy metal content. Environ. Prot. Eng. 2016, 42, 45–58. [Google Scholar]
- Risberg, K.; Cederlund, H.; Pell, M.; Arthurson, V.; Schnürer, A. Comparative characterization of digestate versus pig slurry and cow manure—Chemical composition and effects on soil microbial activity. Waste Manag. 2017, 61, 529–538. [Google Scholar] [CrossRef]
- Arthurson, V. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—Potential benefits and drawbacks. Energies 2009, 2, 226–242. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- De Notaris, C.; Sørensen, P.; Møller, H.B.; Wahid, R.; Eriksen, J. Nitrogen fertilizer replacement value of digestates from three green manures. Nutr. Cycl. Agroecosyst. 2018, 112, 355–368. [Google Scholar] [CrossRef]
- Yilmaz, M. The effects of different combinations of combined fertilizer doses on some turfgrass performances of turf mixture. Pak. J. Bot. 2019, 51, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Bilgili, U.; Yonter, F. Effects of different sewage sludges on plant growth and turf quality of tall fescue (Festuca arundinacea Schreb.). Ziraat Fakültesi Derg. Uludağ Üniversitesi 2016, 30, 395–400. [Google Scholar]
- Morris, K.N.; Shearman, R.C. NTEP Turfgrass Evaluation Guidelines, National Turfgrass Evaluation Program, Beltsville. 2014. Available online: https://www.ntep.org/pdf/ratings.pdf (accessed on 3 August 2023).
- Grabowski, K.; Głowacka-Gil, A.; Grzegorczyk, S.; Grabowska, K. Utility Values of Extensive Lawns Fertilized with Sewage Sludge. Pol. J. Environ. Stud. 2015, 24, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Celebi, S.Z.; Arvas, O.; Celebi, R.; Yılmaz, İ.H. Determination the Performance of Perennial Ryegrass (Lolium perene L.) in a Sod Establishment with Biosolid. J. Tekirdag Agric. Fac. 2010, 7, 111–118. [Google Scholar]
- Bilgili, U.; Topac-Sagban, F.O.; Surer, I.; Caliskan, N.; Uzun, P.; Acikgoz, E. Effects of Wastewater Sludge Topdressing on Color, Quality, and Clipping Yield of a Turfgrass Mixture. Hortscience 2011, 46, 1308–1313. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X. Hydroxyapatite reduces potential Cadmium risk by amendment of sludge compost to turf-grass grown soil in a consecutive two-year study. Sci. Total Environ. 2019, 661, 48–54. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Poplawska, A.; Kolodziej, B.; Ciarkowska, K.; Gambus, F.; Bryk, M.; Babula, J. Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production. J. Environ. Manag. 2020, 264, 110450. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Butarewicz, A.; Wydro, U.; Łoboda, T. Effects of different kinds of sewage sludge amendment on urban lawn grasses. J. Ecol. Eng. 2015, 16, 164–170. [Google Scholar] [CrossRef]
- Lasaridi, K.E.; Manios, T.; Stamatiadis, S.; Chroni, C.; Kyriacou, A. The evaluation of hazards to man and the environment during the composting of sewage sludge. Sustainability 2018, 10, 2618. [Google Scholar] [CrossRef]
- Asik, B.B.; Katkat, A.V. Sewage sludge as an alternative to increase soil organic matter. In Organomineral Gubre Calistayi; Kınaci, E., Ed.; TEMA: İstanbul, Turkey, 2018; pp. 37–52. [Google Scholar]
- Straub, T.M.; Pepper, I.L.; Gerba, C.P. Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev. Environ. Contam. Toxicol. Contin. Residue Rev. 1993, 132, 55–91. [Google Scholar]
- Goldfarb, W.; Krogmann, U.; Hopkins, C. Unsafe sewage sludge or beneficial biosolids? Liability, planning, and management issues regarding the land application of sewage treatment residuals. Boston Coll. Environ. Aff. Law Rev. 1999, 26, 687–768. [Google Scholar]
- US EPA. 40 CFR Part 503: The standards for the use or disposal of sewage sludge. Fed. Regist. 1993, 58, 9248–9404. [Google Scholar]
- European Union. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). 1986. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01986L0278-20220101 (accessed on 3 August 2023).
- US EPA. Environmental Regulations and Technology. Control of Pathogens and Vector Attraction in Sewage Sludge; U.S. Environmental Protection Agency, Center for Environmental Research Information: Cincinnati, OH, USA, 2010; 625/R-92-013. Available online: https://www.epa.gov/biosolids/control-pathogens-and-vector-attraction-sewage-sludge (accessed on 3 August 2023).
- Duan, B.; Feng, Q. Comparison of the Potential Ecological and Human Health Risks of Heavy Metals from Sewage Sludge and Livestock Manure for Agricultural Use. Toxics 2021, 9, 145. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Ge, Y.; Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 2008, 160, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Asik, B.B.; Katkat, A.V. Possibilities of the Usage of Food Industry Treatment Waste (sludge) for Agricultural Area Purposes. J. Agric. Fac. Uludag Univ. 2004, 18, 59–71. [Google Scholar]
Months | Air Temperature (°C) | Total Precipitation (mm) | Relative Humidity (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | LTA 1 | 2015 | 2016 | 2017 | LTA | 2015 | 2016 | 2017 | LTA | |
January | 5.4 | 5.2 | 3.2 | 5.4 | 112 | 122.2 | 96.4 | 87.6 | 79.0 | 80.7 | 75.8 | 70.0 |
February | 7.3 | 11.1 | 7.4 | 6.3 | 74.2 | 80.7 | 19.9 | 74.6 | 76.5 | 76 | 69.3 | 68.7 |
March | 9.1 | 11.2 | 9.4 | 8.4 | 78.2 | 75.6 | 17.7 | 69.7 | 79.1 | 71 | 75.9 | 67.7 |
April | 11.5 | 16.4 | 12.2 | 12.8 | 95.6 | 22.8 | 38.1 | 63.4 | 70.1 | 65.3 | 68.8 | 66.1 |
May | 19.3 | 18.3 | 17.2 | 17.6 | 36 | 67.3 | 33.3 | 44.3 | 64.2 | 71.2 | 71.5 | 62.0 |
June | 21.7 | 24.5 | 22.1 | 22.1 | 37.8 | 36.4 | 56.4 | 34.3 | 72.0 | 62.3 | 70.0 | 57.8 |
July | 25.5 | 25.9 | 24.6 | 24.6 | 0.0 | 0 | 18.9 | 15.3 | 60.7 | 60.4 | 63.0 | 56.2 |
August | 26.4 | 26.2 | 24.5 | 24.3 | 5.6 | 7.6 | 6.3 | 15.7 | 61.5 | 66 | 66.4 | 57.3 |
September | 23.6 | 21.4 | 22.9 | 20.1 | 98.1 | 30.8 | 0.1 | 39.5 | 73.2 | 67.3 | 56.4 | 63.8 |
October | 16.4 | 15.8 | 14.4 | 15.2 | 93.2 | 15.8 | 57.6 | 68.8 | 83.7 | 74.6 | 73.2 | 68.7 |
November | 12.7 | 10.9 | 10.7 | 10.7 | 26.4 | 51 | 34.1 | 78.5 | 78.1 | 71.6 | 80.0 | 69.3 |
December | 5.6 | 7.4 | 9.7 | 7.4 | 3.0 | 110.6 | 102.6 | 103.4 | 76.6 | 82.4 | 78.6 | 68.7 |
Tot./Mean | 15.4 | 14.8 | 14.8 | 14.5 | 660.1 | 620.8 | 481.4 | 695.1 | 72.8 | 70.7 | 70.7 | 64.6 |
Wastewater Treatment Plant | Source of Wastewater |
---|---|
NS2 | domestic type |
NS3 | milk products (cheese, yogurt, etc.) |
NS4 | food (canned food) |
Parameters | Base Soil | NS2 * | NS3 | NS4 | EU Council ** | |
---|---|---|---|---|---|---|
pH | 8.48 | 6.79 | 7.71 | 6.73 | ||
Electrical conductivity (μS cm−1) | 468 | 4100 | 2540 | 6780 | ||
C/N | 15.32 | 7.35 | 5.24 | |||
% | N | 0.106 | 4.76 | 2.46 | 4.66 | |
Organic C | 2.091 | 60.4 | 63.29 | 42.15 | ||
Total Ca | 17,415 | 3.62 | 2.49 | 2.51 | ||
Total-P | 0.73 | 1.25 | 1.87 | |||
mg kg−1 | Available-P | 30.95 | 2717.3 | 1118.6 | 785.9 | |
Total Mn | 788.3 | 132.6 | 299.6 | 625.6 | ||
Total K | 5180 | 4437.5 | 4587.5 | 6050 | ||
Total Fe | 36,210 | 8278.8 | 5050 | 9211.3 | ||
Total Mg | 15,090 | 5375 | 8198.8 | 7768.8 | ||
Total Na | 675 | 4150 | 1875 | 1262.5 | ||
Total Pb | 10.42 | 11.8 | 3.6 | 30.3 | 750–1200 | |
Total Cd | 0.148 | 0.8 | 0.5 | 1.4 | 20–40 | |
Total Cr | 134.0 | 43.3 | 13.6 | 176.4 | ||
Total Cu | 33.48 | 67.6 | 79.6 | 115.3 | 1000–750 | |
Total Ni | 97.08 | 42.0 | 18.0 | 93.1 | 300–400 | |
Total Zn | 54.95 | 273.5 | 596.0 | 578.9 | 2500–4000 | |
DTPA-Pb | 3.550 | 0.480 | 3.000 | |||
DTPA-Cd | 0.390 | 0.170 | 0.120 | |||
DTPA-Cr | 1.120 | 0.310 | 0.510 | |||
DTPA-Ni | 31.44 | 1.140 | 4.890 | |||
DTPA-Cu | 55.87 | 23.50 | 19.31 | |||
DTPA-Zn | 182.7 | 195.7 | 34.94 | |||
DTPA-Mn | 160.4 | 44.98 | 26.98 | |||
DTPA-Fe | 99.44 | 95.07 | 363.4 |
Sources of Variation | Color | Quality | Clipping Yield | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 *** | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | |
Nitrogen sources (NS) | ** | ** | ** | ** | ** | ** | ** | * | ** | ** | ** |
Nitrogen doses (ND) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
NS × ND | * | * | ns | ns | * | * | * | * | ** | ** | ** |
Nitrogen Sources | Color | Quality | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Mean | 1 | 2 | 3 | 4 | Mean | |
NS1 * | 5.9 a ** | 5.8 a | 6.6 a | 6.7 a | 6.3 | 5.5 ab | 5.6 a | 6.7 a | 5.5 ab | 5.8 |
NS2 | 5.4 b | 5.2 b | 6.1 b | 6.1 c | 5.7 | 5.4 b | 5.4 b | 6.1 c | 5.4 bc | 5.6 |
NS3 | 4.9 c | 4.8 c | 5.5 c | 5.4 d | 5.2 | 4.9 c | 5.0 c | 5.4 d | 5.1 c | 5.1 |
NS4 | 6.0 a | 5.8 a | 6.3 a | 6.4 b | 6.2 | 5.6 a | 5.7 a | 6.4 b | 5.8 a | 5.9 |
Mean | 5.6 | 5.4 | 6.1 | 6.2 | 5.9 | 5.4 | 5.4 | 6.2 | 5.5 | 5.6 |
Lsd0.05 | 0.280 | 0.220 | 0.250 | 0.166 | 0.208 | 0.216 | 0.147 | 0.300 | ||
Nitrogen Doses | ||||||||||
0.0 g m−2 | 3.8 d | 3.5 d | 4.1 d | 3.7 d | 3.8 | 3.5 d | 3.6 d | 4.2 d | 3.9 d | 3.8 |
2.0 g m−2 | 5.4 c | 5.2 c | 5.9 c | 5.9 c | 5.6 | 5.3 c | 5.2 c | 5.9 c | 5.1 c | 5.4 |
4.0 g m−2 | 6.3 b | 6.2 b | 6.8 b | 6.9 b | 6.6 | 6.1 b | 5.8 b | 6.7 b | 6.2 b | 6.2 |
6.0 g m−2 | 6.8 a | 6.8 a | 7.7 a | 7.8 a | 7.3 | 6.7 a | 6.7 a | 7.6 a | 6.6 a | 6.9 |
Mean | 5.6 | 5.4 | 6.1 | 6.1 | 5.8 | 5.4 | 5.3 | 6.1 | 5.5 | 5.6 |
Lsd0.05 | 0.396 | 0.330 | 0.145 | 0.259 | 0.412 | 0.366 | 0.299 | 0.324 |
Nitrogen Sources | 1 | 2 | 3 | Mean |
---|---|---|---|---|
NS1 | 100.0 a * | 107.7 a | 214.7 a | 140.8 |
NS2 | 57.0 c | 64.0 b | 143.5 c | 88.2 |
NS3 | 43.6 d | 51.7 c | 88.2 d | 61.2 |
NS4 | 66.0 b | 71.2 b | 160.1 b | 99.1 |
Mean | 66.7 | 71.7 | 151.6 | 97.3 |
Lsd0.05 | 0.145 | 0.145 | 0.145 | |
Nitrogen doses | ||||
0.0 g m−2 | 33.7 d | 40.7 d | 61.0 d | 45.1 |
2.0 g m−2 | 55.2 c | 57.3 c | 118.2 c | 76.9 |
4.0 g m−2 | 78.1 b | 86.1 b | 180.9 b | 115.0 |
6.0 g m−2 | 90.0 a | 110.7 a | 245.8 a | 148.8 |
Mean | 64.3 | 73.7 | 151.5 | 96.5 |
Lsd0.05 | 0.173 | 0.173 | 0.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zere Taskin, S.; Bilgili, U. Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass. Sustainability 2023, 15, 13597. https://doi.org/10.3390/su151813597
Zere Taskin S, Bilgili U. Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass. Sustainability. 2023; 15(18):13597. https://doi.org/10.3390/su151813597
Chicago/Turabian StyleZere Taskin, Sinem, and Ugur Bilgili. 2023. "Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass" Sustainability 15, no. 18: 13597. https://doi.org/10.3390/su151813597
APA StyleZere Taskin, S., & Bilgili, U. (2023). Using Sewage Sludge as Alternative Fertilizer: Effects on Turf Performance of Perennial Ryegrass. Sustainability, 15(18), 13597. https://doi.org/10.3390/su151813597