Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Regulation and Employment
2.2. Environmental Regulation and Green Innovation
3. Theoretical Mechanisms
3.1. Policy Background
3.2. Mechanisms of NPL Affecting LD
3.3. Declining LD and GIT Response under the Policy Constraints of NPL
3.4. Mechanism Analysis
3.4.1. The Moderating Effect of Financial Constraints
3.4.2. Moderating Effect of Fintech
4. Variable Description and Model Design
4.1. Sample Descriptions and Data Sources
4.2. Variable Description
4.2.1. Core Variables
4.2.2. Control Variables
4.3. Model Design
4.4. Statistical Description of Variables
5. Empirical Results of Mandatory Environmental Regulations Impacting Enterprise Labor Demand
5.1. Benchmark Regression Results
5.2. Robustness Tests
5.2.1. Parallel Trend Testing
5.2.2. Placebo Testing
5.2.3. High-Dimensional Fixed Testing
5.2.4. Removing Observations in 2015
5.2.5. Controlling Urban Characteristics
5.2.6. The Lag Period of Enterprise Labor Demand
5.2.7. PSM-DID Model Testing
5.3. Heterogeneous Analysis
5.3.1. Regional Heterogeneity
5.3.2. Enterprise Heterogeneity
- (1)
- New and old enterprises
- (2)
- Enterprise labor cost
5.3.3. Dynamic Effects
5.4. Mechanism Analysis
5.4.1. Examination of the Moderating Effect of Financial Constraints
5.4.2. Examination of the Moderating Effects of Fintech
6. Reducing Enterprise Labor Demand and Green Innovation Transition Response under the Policy Constraints of New Environmental Protection Law
6.1. Benchmark Regression Results
6.2. Heterogeneity Analysis
6.2.1. Regional Heterogeneity
6.2.2. Enterprise Heterogeneity
- (1)
- New and old enterprises
- (2)
- Enterprise labor cost
6.2.3. Dynamic Effects
6.3. Mechanism Analysis
6.3.1. Examination of the Moderating Effect of Financial Constraints
6.3.2. Examination of the Moderating Effects of Fintech
7. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, Z.; Zafar, M.W.; Ali, S. Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustain. Cities Soc. 2020, 55, 102064. [Google Scholar] [CrossRef]
- Fang, X.; Wang, L.; Sun, C.; Zheng, X.; Wei, J. Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China. Energy Policy 2021, 148, 111945. [Google Scholar] [CrossRef]
- Wang, K.; Pang, S.; Ding, L.; Miao, Z. Combining the biennial Malmquist–Luenberger index and panel quantile regression to analyze the green total factor productivity of the industrial sector in China. Sci. Total Environ. 2020, 739, 140280. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2021, 98, 105247. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2021, 102, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Zhu, B.; Zhang, H.; Li, L.; Xie, M. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci. Total Environ. 2021, 746, 140810. [Google Scholar] [CrossRef]
- Garrett, R.D.; Cammelli, F.; Ferreira, J.; Levy, S.A.; Valentim, J.; Vieira, I. Forests and sustainable development in the Brazilian Amazon: History, trends, and future prospects. Annu. Rev. Env. Resour. 2021, 46, 625–652. [Google Scholar] [CrossRef]
- Xu, X.; Nie, S.; Ding, H.; Hou, F. Environmental pollution and kidney diseases. Nat. Rev. Nephrol. 2018, 14, 313–324. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, S.; Manteiga, R.; Moreira, M.T.; Feijoo, G. Assessing the sustainability of Spanish cities considering environmental and socio-economic indicators. J. Clean. Prod. 2018, 178, 599–610. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, A. Can government environmental regulation promote low-carbon development in heavy polluting industries? Evidence from China’s new environmental protection law. Environ. Impact Asses. 2023, 99, 106991. [Google Scholar] [CrossRef]
- Sun, C.; Ding, D.; Fang, X.; Zhang, H.; Li, J. How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China’s market. Energy 2019, 169, 637–645. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, B.; Ding, L.; Miao, Z. Government intervention, market development, and pollution emission efficiency: Evidence from China. Sci. Total Environ. 2021, 757, 143738. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Pan, D.; Tang, J. The effects of heterogeneous environmental regulations on water pollution control: Quasi-natural experimental evidence from China. Sci. Total Environ. 2021, 751, 141550. [Google Scholar] [CrossRef]
- Wang, A.; Hu, S.; Lin, B. Can environmental regulation solve pollution problems? Theoretical model and empirical research based on the skill premium. Energy Econ. 2022, 94, 105068. [Google Scholar] [CrossRef]
- Ramos, A.R.; Ferreira, J.C.E.; Kumar, V.; Garza-Reyes, J.A.; Cherrafi, A. A lean and cleaner production benchmarking method for sustainability assessment: A study of manufacturing companies in Brazil. J. Clean. Prod. 2018, 177, 218–231. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Z. Does factor market distortion inhibit the green total factor productivity in China? J. Clean. Prod. 2018, 197, 25–33. [Google Scholar] [CrossRef]
- Zhong, S.; Xiong, Y.; Xiang, G. Environmental regulation benefits for whom? Heterogeneous effects of the intensity of the environmental regulation on employment in China. J. Environ. Manag. 2021, 281, 111877. [Google Scholar] [CrossRef]
- Liu, M.; Shadbegian, R.; Zhang, B. Does environmental regulation affect labor demand in China? Evidence from the textile printing and dyeing industry. J. Environ. Econ. Manag. 2017, 86, 277–294. [Google Scholar] [CrossRef]
- Liu, M.; Tan, R.; Zhang, B. The costs of “blue sky”: Environmental regulation, technology upgrading, and labor demand in China. J. Dev. Econ. 2021, 150, 102610. [Google Scholar] [CrossRef]
- Lenzen, M.; Geschke, A.; West, J.; Fry, J.; Malik, A.; Giljum, S.; Milà i Canals, L.; Piñero, P.; Lutter, S.; Wiedmann, T. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 2022, 5, 157–166. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Ioppolo, G.; Morone, P. An analysis of Sustainable Development Goals in Italian cities: Performance measurements and policy implications. Land Use Policy. 2022, 120, 106278. [Google Scholar] [CrossRef]
- Olabi, A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sust. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Yi, S.; Xiao, A. Application of threshold regression analysis to study the impact of regional technological innovation level on sustainable development. Renew. Sust. Energy Rev. 2018, 89, 27–32. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Kong, X.; Sensoy, A.; Cui, X.; Cheng, F. Government’s awareness of environmental protection and corporate green innovation: A natural experiment from the new environmental protection law in China. Econ. Anal. Policy 2021, 70, 294–312. [Google Scholar] [CrossRef]
- Cao, W.; Wang, H.; Ying, H. The effect of environmental regulation on employment in resource-based areas of China—An empirical research based on the mediating effect model. Int. J. Environ. Res. Public Health 2017, 14, 1598. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Yang, Q.; Ni, Q.; Kim, Y. The impact of environmental regulation on employment: An empirical study of China’s Two Control Zone policy. Environ. Sci. Pollut. Res. 2019, 26, 26472–26487. [Google Scholar] [CrossRef]
- Guo, W.; Dai, H.; Liu, X. Impact of different types of environmental regulation on employment scale: An analysis based on perspective of provincial heterogeneity. Environ. Sci. Pollut. Res. 2020, 27, 45699–45711. [Google Scholar] [CrossRef]
- Bu, T.; Du, W.; Tang, C.; Liu, Y.; Wang, X.; Wang, Y.; Tang, D. Market-oriented environmental regulations, employment adjustment and transfer path: Quasi-experimental evidence from China’s carbon emissions trading pilot. J. Clean. Prod. 2022, 369, 133292. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Yang, C. Analyzing the impact of low-carbon city pilot policy on enterprises’ labor demand: Evidence from China. Energy Econ. 2023, 124, 106676. [Google Scholar] [CrossRef]
- Walker, W.R. Environmental regulation and labor reallocation: Evidence from the Clean Air Act. Am. Econ. Rev. 2011, 101, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Ferris, A.E.; Shadbegian, R.J.; Wolverton, A. The effect of environmental regulation on power sector employment: Phase I of the title IV SO2 trading program. J. Assoc. Environ. Resour. Econ. 2014, 1, 521–553. [Google Scholar] [CrossRef]
- Li, Z.; Lin, B. Analyzing the impact of environmental regulation on labor demand: A quasi-experiment from Clean Air Action in China. Environ. Impact Assess. Rev. 2022, 93, 106721. [Google Scholar] [CrossRef]
- Raff, Z.; Earnhart, D. Employment and environmental protection: The role of regulatory stringency. J. Environ. Manag. 2022, 321, 115896. [Google Scholar] [CrossRef]
- Sheng, J.; Zhou, W.; Zhang, S. The role of the intensity of environmental regulation and corruption in the employment of manufacturing enterprises: Evidence from China. J. Clean. Prod. 2019, 219, 244–257. [Google Scholar] [CrossRef]
- Zheng, J.; He, J.; Shao, X.; Liu, W. The employment effects of environmental regulation: Evidence from eleventh five-year plan in China. J. Environ. Manag. 2022, 316, 115197. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Wang, Q. Job destruction and creation: Labor reallocation entailed by the clean air action in China. China Econ. Rev. 2023, 79, 101945. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Y.; Ma, J.; Cui, G. Does environmental regulation affect capital-labor ratio of manufacturing enterprises: Evidence from China. Int. Rev. Financ. Anal. 2023, 86, 102485. [Google Scholar] [CrossRef]
- Wu, B.; Yan, T.; Elahi, E. The impact of environmental pollution on labor supply: Empirical evidence from China. Environ. Sci. Pollut. R 2023, 30, 25764–25772. [Google Scholar] [CrossRef] [PubMed]
- Berman, E.; Bui, L.T. Environmental regulation and labor demand: Evidence from the south coast air basin. J. Public Econ. 2001, 79, 265–295. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J. Do environmental regulations cost jobs? An industry-level analysis of the UK. BE J. Econ. Anal. Policy 2007, 7, 28–48. [Google Scholar] [CrossRef]
- Luo, Y.; Salman, M.; Lu, Z. Heterogeneous impacts of environmental regulations and foreign direct investment on green innovation across different regions in China. Sci. Total Environ. 2021, 759, 143744. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—Based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, D.; Song, D.; Li, Y. Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy. Econ. Syst. 2021, 45, 100911. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation: Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Guo, M.; Wang, H.; Kuai, Y. Environmental regulation and green innovation: Evidence from heavily polluting firms in China. Financ. Res. Lett. 2023, 53, 103624. [Google Scholar] [CrossRef]
- Cheng, Z.; Yu, X. Can central environmental protection inspection induce corporate green technology innovation? J. Clean. Prod. 2023, 387, 135902. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Li, D.; Shao, S. Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China. Energy Econ. 2023, 117, 106479. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.; Wu, Y. The spatiotemporal effects of environmental regulation on green innovation: Evidence from Chinese cities. Sci. Total Environ. 2023, 876, 162790. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, W.; Gao, Y.; Balezentis, T.; Shen, Z. Is environmental regulation effective in promoting the quantity and quality of green innovation? Environ. Sci. Pollut. Res. 2021, 28, 6232–6241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ouyang, Y.; Ballesteros-Pérez, P.; Li, H.; Philbin, S.P.; Li, Z.; Skitmore, M. Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustain. Cities Soc. 2021, 65, 102647. [Google Scholar] [CrossRef]
- Zhou, D.; Qiu, Y.; Wang, M. Does environmental regulation promote enterprise profitability? Evidence from the implementation of China’s newly revised Environmental Protection Law. Econ. Model. 2021, 102, 105585. [Google Scholar] [CrossRef]
- Gao, K.; Yuan, Y. The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China. Technol. Forecast. Soc. 2021, 172, 121047. [Google Scholar] [CrossRef]
- Shao, S.; Li, B.; Fan, M.; Yang, L. How does labor transfer affect environmental pollution in rural China? Evidence from a survey. Energy Econ. 2021, 102, 105515. [Google Scholar] [CrossRef]
- Ulucak, R. Renewable energy, technological innovation and the environment: A novel dynamic auto-regressive distributive lag simulation. Renew. Sust. Energy Rev. 2021, 150, 111433. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, A.; Wu, Y. Environmental regulation and green innovation: Evidence from China’s new environmental protection law. J. Clean. Prod. 2021, 297, 126698. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, C.; Zhang, W.; Wang, Q.; Hu, D. How does the implementation of the new Environmental Protection Law affect the stock price of heavily polluting enterprises? Evidence from China’s capital market. Emerg. Mark. Finance Trade 2019, 55, 3513–3538. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Dong, K. Do pollutant discharge fees affect labor demand? evidence from china’s industrial enterprises. Appl. Econ. 2022, 54, 170–188. [Google Scholar] [CrossRef]
- David, H.; Katz, L.F.; Kearney, M.S. The polarization of the US labor market. Am. Econ. Rev. 2006, 96, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.B. The cost of regulation: OSHA, EPA and the productivity slowdown. Am. Econ. Rev. 1987, 77, 998–1006. Available online: https://www.jstor.org/stable/1810223 (accessed on 16 July 2023).
- Rassier, D.G.; Earnhart, D. The effect of clean water regulation on profitability: Testing the Porter hypothesis. Land Econ. 2010, 86, 329–344. [Google Scholar] [CrossRef]
- Vrontis, D.; Christofi, M.; Pereira, V.; Tarba, S.; Makrides, A.; Trichina, E. Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. Int. J. Hum. Resour. Manag. 2022, 33, 1237–1266. [Google Scholar] [CrossRef]
- Aldieri, L.; Kotsemir, M.; Vinci, C.P. The impact of environmental innovations on job-creation process: An empirical investigation for Russian regions. Environ. Econ. Policy 2019, 21, 285–306. [Google Scholar] [CrossRef]
- Guo, D.; Bose, S.; Alnes, K. Employment implications of stricter pollution regulation in China: Theories and lessons from the USA. Environ. Dev. Sustain. 2017, 19, 549–569. [Google Scholar] [CrossRef]
- Vona, F.; Marin, G.; Consoli, D.; Popp, D. Environmental regulation and green skills: An empirical exploration. J. Assoc. Environ. Res. 2018, 5, 713–753. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Yuan, X.; Umar, M.; Lobonţ, O. Does technological innovation bring destruction or creation to the labor market? Technol. Soc. 2022, 68, 101905. [Google Scholar] [CrossRef]
- Kim, D.; Lin, S. Human capital and natural resource dependence. Struct. Chang. Econ. Dyn. 2017, 40, 92–102. [Google Scholar] [CrossRef]
- Yip, C.M. On the labor market consequences of environmental taxes. J. Environ. Econ. Manag. 2018, 89, 136–152. [Google Scholar] [CrossRef]
- Fazzari, S.M.; Hubbard, R.G.; Petersen, B.C.; Blinder, A.S.; Poterba, J.M. Financing Constraints and Corporate Investment. Brook. Pap. Econ. Act. 1988, 1, 141–206. [Google Scholar] [CrossRef] [Green Version]
- Edwards-Jones, G.; Plassmann, K.; York, E.; Hounsome, B.; Jones, D.L.; i Canals, L.M. Vulnerability of exporting nations to the development of a carbon label in the United Kingdom. Environ. Sci. Policy 2009, 12, 479–490. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Xia, X.; Wang, Z. The mixed impact of environmental regulations and external financing constraints on green technological innovation of enterprise. Int. J. Environ. Res. Public Health 2022, 19, 11972. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Shin, Y.J. Fintech: Ecosystem, business models, investment decisions, and challenges. Bus. Horiz. 2018, 61, 35–46. [Google Scholar] [CrossRef]
- Chen, M.A.; Wu, Q.; Yang, B. How valuable is FinTech innovation? Rev. Financ. Stud. 2019, 32, 2062–2106. [Google Scholar] [CrossRef] [Green Version]
- Haddad, C.; Hornuf, L. The emergence of the global fintech market: Economic and technological determinants. Small Bus. Econ. 2019, 53, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, A. Does credit reporting lead to a decline in relationship lending? Evidence from information sharing technology. J. Account. Econ. 2018, 66, 123–141. [Google Scholar] [CrossRef]
- Buchak, G.; Matvos, G.; Piskorski, T.; Seru, A. Fintech, regulatory arbitrage, and the rise of shadow banks. J. Financ. Econ. 2018, 130, 453–483. [Google Scholar] [CrossRef]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Hadlock, C.J.; Pierce, J.R. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Chen, X.; Teng, L.; Chen, W. How does FinTech affect the development of the digital economy? Evidence from China. N. Am. J. Econ. Financ. 2022, 61, 101697. [Google Scholar] [CrossRef]
- Luo, S.; Sun, Y.; Yang, F.; Zhou, G. Does fintech innovation promote enterprise transformation? Evidence from China. Technol. Soc. 2022, 68, 101821. [Google Scholar] [CrossRef]
- Ren, S.; Liu, D.; Li, B.; Wang, Y.; Chen, X. Does emissions trading affect labor demand? Evidence from the mining and manufacturing industries in China. J. Environ. Manag. 2020, 254, 109789. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. 2022, 174, 121276. [Google Scholar] [CrossRef]
- Greenstone, M.; Gayer, T. Quasi-experimental and experimental approaches to environmental economics. J. Environ. Econ. Manag. 2009, 57, 21–44. [Google Scholar] [CrossRef]
- Li, M.; Dong, L.; Luan, J.; Wang, P. Do environmental regulations affect investors? Evidence from China’s action plan for air pollution prevention. J. Clean. Prod. 2020, 244, 118817. [Google Scholar] [CrossRef]
- Liu, K.; Meng, C.; Tan, J.; Zhang, G. Do smart cities promote a green economy? Evidence from a quasi-experiment of 253 cities in China. Environ. Impact Assess. Rev. 2023, 99, 107009. [Google Scholar] [CrossRef]
- Lim, D.S.; Morse, E.A.; Mitchell, R.K.; Seawright, K.K. Institutional environment and entrepreneurial cognitions: A comparative business systems perspective. Entrep. Theory Pract. 2010, 34, 491–516. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X. Transformation effect of resource-based cities based on PSM-DID model: An empirical analysis from China. Environ. Impact Assess. Rev. 2021, 91, 106648. [Google Scholar] [CrossRef]
- Wang, H.; Kong, R. Does formal lending promote rural households’ consumption? An empirical analysis based on PSM method. China Rural. Econ. 2019, 8, 72–90. (In Chinese) [Google Scholar]
- Li, R.; Chen, Y. The influence of a green credit policy on the transformation and upgrading of heavily polluting enterprises: A diversification perspective. Econ. Ana. Policy 2022, 74, 539–552. [Google Scholar] [CrossRef]
- Grant, D.S.; Wallace, M. The political economy of manufacturing growth and decline across the American States, 1970–1985. Soc. Forces 1994, 73, 33–63. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.; Zhang, J.; Zhang, S. New-type urbanization construction, shift-share of employment, and CO2 emissions: Evidence from China. Environ. Impact Assess. Rev. 2022, 30, 26472–26495. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Chen, F.; Zhang, K. The policy effect of green finance in promoting industrial transformation and upgrading efficiency in China: Analysis from the perspective of government regulation and public environmental demands. Environ. Sci. Pollut. Res. 2021, 28, 47474–47491. [Google Scholar] [CrossRef] [PubMed]
Type | Variable Name | Symbols | Explanation |
---|---|---|---|
Explained variables | Labor Demand | LD | Ln (The number of enterprise employees) |
Green technology innovation | GRI | Ln (Utility model patent applications + 1) | |
Green Innovation Transformation | GIT | GRI/LD | |
Explanatory variables | Mandatory environmental regulation (NPL) | Treat | The sample is taken as 1 when the sample is a heavy pollution enterprise, otherwise, it is taken as 0. |
Post | The value is 1 if the sample belongs to 2015 and later, otherwise, it is 0. | ||
Treat × Post | The sample takes the value 1 when it is a heavy pollution industry and after the implementation of the new environmental protection law policy, otherwise, it takes the value 0. | ||
Moderating variables | Financial constraints | Fic | 0–1 dummy variables calculated using SA index as proxy variables |
Fintech | Fte | 0–1 dummy variables using fintech calculations as proxy variables | |
Enterprise control variables | Bodie’s internal control index | Bic | Ln (the internal control index from the Bodie database) |
book-to-market ratio | Omc | Owner’s equity to market capitalization ratio | |
operating income | Opi | Ln (enterprise’s total operating revenue) | |
operating costs | Opc | Ln (enterprise’s total operating costs) | |
Gearing ratio | Ger | The ratio of total liabilities to total assets | |
cash holdings | Cah | The ratio of corporate annuity and cash equivalents balances to total assets | |
Prefecture-level city control variables | advanced industrial structure | Ais | The ratio of the output value of the tertiary sector to the secondary sector |
the intensity of fiscal science and technology expenditures | Fse | The proportion of government expenditure on science and education to GDP | |
informatization level | Inf | Computer software industry employees accounted for the proportion of the total number of urban employees. | |
financial development level | Fdl | The loan balance of financial institutions as a percentage of GDP |
Type | Variables | Average | S.D. | 25th | Median | 75th |
---|---|---|---|---|---|---|
Explained variables | LD | 7.705 | 1.146 | 6.917 | 7.658 | 8.454 |
GRI | 1.838 | 1.649 | 0 | 1.792 | 3.091 | |
GIT | 0.233 | 0.202 | 0 | 0.238 | 0.403 | |
Explanatory variables | Treat | 0.295 | 0.456 | 0 | 0 | 1 |
Post | 0.528 | 0.499 | 0 | 1 | 1 | |
Treat × Post | 0.145 | 0.353 | 0 | 0 | 0 | |
Moderating variables | Fic | 0.500 | 0.500 | 0 | 0.5 | 1 |
Fte | 0.288 | 0.453 | 0 | 0 | 1 | |
Enterprise control variables | Bic | 6.492 | 0.150 | 6.445 | 6.514 | 6.562 |
Omc | 0.301 | 0.146 | 0.190 | 0.278 | 0.389 | |
Opi | 21.479 | 1.308 | 20.549 | 21.365 | 22.271 | |
Opc | 21.119 | 1.409 | 20.125 | 20.986 | 21.976 | |
Ger | 0.439 | 0.192 | 0.287 | 0.438 | 0.586 | |
Cah | 0.154 | 0.109 | 0.075 | 0.125 | 0.204 | |
Prefecture-level city control variables | Ais | 1.378 | 0.855 | 0.867 | 1.113 | 1.533 |
Fse | 0.202 | 0.039 | 0.173 | 0.199 | 0.226 | |
Inf | 0.028 | 0.029 | 0.009 | 0.017 | 0.039 | |
Fdl | 1.496 | 0.612 | 0.979 | 1.481 | 1.973 |
Variables | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) |
---|---|---|---|---|---|
Treat × Post | −0.053 *** (0.014) | −0.031 *** (0.012) | −0.046 *** (0.015) | −0.186 *** (0.014) | −0.025 ** (0.012) |
Bic | −0.118 *** (0.020) | −0.193 *** (0.034) | −0.117 *** (0.020) | ||
Omc | 0.290 *** (0.031) | 0.107 *** (0.039) | 0.292 *** (0.031) | ||
Opi | 0.597 *** (0.021) | 1.001 *** (0.019) | 0.602 *** (0.021) | ||
Opc | −0.062 *** (0.020) | −0.298 *** (0.018) | −0.066 *** (0.020) | ||
Ger | 0.397 *** (0.034) | −0.393 *** (0.036) | 0.400 *** (0.034) | ||
Cah | −0.290 *** (0.035) | −0.371 *** (0.049) | −0.284 *** (0.035) | ||
Ais | 0.025 * (0.015) | −0.068 *** (0.009) | 0.073 *** (0.012) | ||
Fse | 0.706 *** (0.150) | −0.177 (0.127) | 0.551 *** (0.122) | ||
Inf | 0.437 * (0.236) | 0.178 (0.258) | 0.243 (0.192) | ||
Fdl | −0.007 (0.017) | −0.136 *** (0.010) | −0.017 (0.014) | ||
Cons | 7.713 *** (0.004) | −3.251 *** (0.163) | 7.532 *** (0.045) | −5.718 *** (0.219) | −3.477 *** (0.168) |
Enterprise fixed effect | YES | YES | YES | NO | YES |
Time fixed effect | YES | YES | YES | NO | YES |
Prefectural fixed effect | YES | YES | YES | NO | YES |
R2 | 0.861 | 0.907 | 0.861 | 0.567 | 0.907 |
N | 24,150 | 24,150 | 24,150 | 24,186 | 24,150 |
Variables | High-Dimensional Fixed Testing | Removing Observations in 2015 | Removing Provincial Capitals and Municipalities | Lag Period Method |
---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (4) | |
Treat × Post | −0.039 *** (0.012) | −0.049 *** (0.013) | −0.027 * (0.015) | −0.029 ** (0.014) |
Control variables | YES | YES | YES | YES |
Cons | −3.665 *** (0.166) | −3.774 *** (0.174) | −3.598 *** (0.207) | −0.628 *** (0.210) |
Enterprise fixed effect | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES |
Industry fixed effect | YES | YES | YES | YES |
R2 | 0.912 | 0.912 | 0.923 | 0.908 |
N | 24,149 | 22,354 | 12,852 | 19,532 |
Matching Method | Average Treatment Effect | Standard Error | t-Test Value |
---|---|---|---|
K-nearest-neighborhood matching (K = 4) | −0.038 ** | 0.019 | −1.98 |
Caliper Matching (caliper = 0.029) | −0.041 ** | 0.017 | −2.40 |
Nuclear matching | −0.033 * | 0.017 | −1.92 |
Average value | −0.037 |
Variables | K-Nearest-Neighborhood Matching (K = 4) | Caliper Matching (Caliper = 0.029) | Nuclear Matching |
---|---|---|---|
Model (1) | Model (2) | Model (3) | |
Treat × Post | −0.038 *** (0.012) | −0.039 *** (0.012) | −0.039 *** (0.012) |
Control variables | YES | YES | YES |
Cons | −3.654 *** (0.168) | −3.653 *** (0.168) | −3.654 *** (0.168) |
Enterprise fixed effect | YES | YES | YES |
Time fixed effect | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES |
Industry fixed effect | YES | YES | YES |
R2 | 0.912 | 0.912 | 0.912 |
N | 24,146 | 24,144 | 24,146 |
Variables | Eastern China | Middle China | Western China |
---|---|---|---|
Model (1) | Model (2) | Model (3) | |
Treat × Post | 0.029 * (0.015) | −0.061 ** (0.024) | −0.148 *** (0.033) |
Control variables | YES | YES | YES |
Cons | −3.227 *** (0.212) | −4.723 *** (0.348) | −2.539 *** (0.437) |
Enterprise fixed effect | YES | YES | YES |
Time fixed effect | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES |
R2 | 0.906 | 0.923 | 0.891 |
N | 16,721 | 4399 | 3079 |
Variables | New Enterprises | Old Enterprises | Low Staff Cost | High Staff Cost | Short-Term | Long-Term |
---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
Treat × Post | 0.002 (0.016) | −0.057 *** (0.019) | 0.021 (0.017) | −0.056 *** (0.016) | 0.023 (0.015) | −0.021 * (0.012) |
Control variables | YES | YES | YES | YES | YES | YES |
Cons | −3.318 *** (0.218) | −2.897 *** (0.259) | −1.131 *** (0.234) | −2.183 *** (0.256) | −3.493 *** (0.168) | −3.480 *** (0.168) |
Enterprise fixed effect | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES | YES | YES |
R2 | 0.928 | 0.902 | 0.833 | 0.872 | 0.907 | 0.907 |
N | 12,755 | 11,317 | 11,926 | 11,955 | 24,150 | 24,150 |
Moderating Variables | Financial Constraints | Fintech | ||
---|---|---|---|---|
Variables | Model (1) | Model (2) | Model (3) | Model (4) |
Treat × Post | −0.074 *** (0.014) | −0.087 *** (0.016) | −0.037 *** (0.012) | −0.048 *** (0.014) |
Treat × Post × Fic | 0.118 *** (0.019) | 0.130 *** (0.021) | ||
Fic | −0.029 *** (0.011) | −0.025 ** (0.012) | ||
Treat × Post × Fte | 0.071 *** (0.022) | 0.082 *** (0.023) | ||
Fte | −0.006 (0.008) | −0.008 (0.008) | ||
Control variables | YES | YES | YES | YES |
Cons | −3.411 *** (0.168) | −3.521 *** (0.176) | −3.442 *** (0.168) | −3.554 *** (0.176) |
Enterprise fixed effect | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES |
R2 | 0.907 | 0.906 | 0.907 | 0.906 |
N | 24,110 | 22,341 | 24,110 | 22,341 |
Explained Variables | Enterprise Green Innovation | Enterprise Green Innovation Transformation | |||||
---|---|---|---|---|---|---|---|
Variables | Main Regression Results | High-Dimensional Fixation | Removing Observations in 2015 | Removing Provincial Capitals and Municipalities | Lag Period Method | K-Nearest-Neighborhood Matching (K = 4) | |
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | Model (7) | |
Treat × Post | 0.298 *** (0.027) | 0.039 *** (0.003) | 0.039 *** (0.003) | 0.046 *** (0.004) | 0.026 *** (0.005) | 0.025 *** (0.004) | 0.039 *** (0.003) |
Control variables | YES | YES | YES | YES | YES | YES | YES |
Cons | −5.709 *** (0.370) | −0.350 *** (0.047) | −0.403 *** (0.048) | −0.419 *** (0.049) | −0.308 *** (0.067) | −0.231 *** (0.057) | −0.401 *** (0.048) |
Enterprise fixed effect | YES | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES | YES | YES | YES |
Industry fixed effect | YES | NO | YES | YES | YES | YES | YES |
R2 | 0.790 | 0.764 | 0.770 | 0.772 | 0.761 | 0.779 | 0.770 |
N | 24,149 | 24,150 | 24,149 | 22,354 | 12,582 | 19,532 | 24,146 |
Variables | Eastern China | Middle China | Western China |
---|---|---|---|
Model (1) | Model (2) | Model (3) | |
Treat × Post | 0.044 *** (0.004) | 0.026 *** (0.007) | 0.034 *** (0.009) |
Control variables | YES | YES | YES |
Cons | −0.270 *** (0.059) | −0.507 *** (0.110) | −0.449 *** (0.117) |
Enterprise fixed effect | YES | YES | YES |
Time fixed effect | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES |
R2 | 0.766 | 0.759 | 0.756 |
N | 16,721 | 4399 | 3079 |
Variables | New Enterprises | Old Enterprises | Low Staff Cost | High Staff Cost | Short-Term | Long-Term |
---|---|---|---|---|---|---|
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
Treat × Post | 0.030 *** (0.005) | 0.042 *** (0.005) | 0.024 *** (0.006) | 0.046 *** (0.004) | −0.007 (0.004) | 0.006 * (0.003) |
Control variables | YES | YES | YES | YES | YES | YES |
Cons | −0.179 ** (0.070) | −0.458 *** (0.067) | −0.232 *** (0.079) | −0.420 *** (0.071) | −0.331 *** (0.047) | −0.334 *** (0.047) |
Enterprise fixed effect | YES | YES | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES | YES | YES |
R2 | 0.776 | 0.774 | 0.743 | 0.814 | 0.762 | 0.762 |
N | 12,755 | 11,317 | 11,926 | 11,955 | 24,150 | 24,150 |
Moderating Variables | Financial Constraints | Fintech | ||
---|---|---|---|---|
Variables | Model (1) | Model (2) | Model (3) | Model (4) |
Treat × Post | 0.030 *** (0.004) | 0.037 *** (0.004) | 0.037 *** (0.004) | 0.044 *** (0.004) |
Treat × Post × Fic | 0.023 *** (0.005) | 0.024 *** (0.006) | ||
Fic | −0.001 (0.003) | −0.000 (0.003) | ||
Treat × Post × Fte | 0.013 ** (0.006) | 0.013 * (0.007) | ||
Fte | −0.001 (0.002) | −0.000 (0.002) | ||
Control variables | YES | YES | YES | YES |
Cons | −0.344 *** (0.047) | −0.351 *** (0.049) | −0.347 *** (0.047) | −0.355 *** (0.049) |
Enterprise fixed effect | YES | YES | YES | YES |
Time fixed effect | YES | YES | YES | YES |
Prefectural fixed effect | YES | YES | YES | YES |
R2 | 0.764 | 0.767 | 0.764 | 0.767 |
N | 24,110 | 22,341 | 24,110 | 22,341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ma, X.; Zhao, B.; Cui, Q.; Zhang, S.; Zhang, J. Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law. Sustainability 2023, 15, 11298. https://doi.org/10.3390/su151411298
Liu J, Ma X, Zhao B, Cui Q, Zhang S, Zhang J. Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law. Sustainability. 2023; 15(14):11298. https://doi.org/10.3390/su151411298
Chicago/Turabian StyleLiu, Jiamin, Xiaoyu Ma, Bin Zhao, Qi Cui, Sisi Zhang, and Jiaoning Zhang. 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law" Sustainability 15, no. 14: 11298. https://doi.org/10.3390/su151411298
APA StyleLiu, J., Ma, X., Zhao, B., Cui, Q., Zhang, S., & Zhang, J. (2023). Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law. Sustainability, 15(14), 11298. https://doi.org/10.3390/su151411298