The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. The Snow-Depth Observational Data
2.2. Atmospheric Forcing Data
2.3. Land-Surface Model
2.4. Experimental Design
3. Results
3.1. Spatial Distribution of the Snow Depth
3.2. Snow-Depth Error Time Series
3.3. Assessment of the Snow Depth in Three Major Snow Areas
4. Discussion
5. Conclusions
- (1)
- The CLM3.5, Noah, and Noah-MP models were able to simulate the spatial distribution of snow in China, but there were some differences in the magnitude of the simulated snow depth. In particular, the snow depth and snow cover simulated by CLM3.5 were lower than those of Noah and Noah-MP in Northwest China and the Tibetan Plateau, which was mainly related to the parameterization schemes of the models themselves.
- (2)
- From the overall evaluation across China, there was an underestimation of snow cover by CLM3.5 and an overestimation of snow cover by Noah in the snow-accumulation period. And the snow cover simulations of the three models all produced overestimates, especially from mid-March to April in the snowmelt period. Overall, the snow depth simulated by Noah-MP was better than that of CLM3.5 and Noah in China.
- (3)
- From the evaluation of regions, the snow depths simulated by the three models were better in the Tibetan Plateau than in Northeast China, and the snow depth simulated in Northeast China was better than in Northwest China. The snow depth simulated by Noah-MP was best in Northeast China, and the snow depth simulated by CLM3.5 was best in the Tibetan Plateau in the snow-accumulation and snowmelt periods. For Northwest China, Noah-MP simulated snow depth best in the snow-accumulation period, and the Noah model had the best snow-depth performance in the snowmelt period.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henderson, G.R.; Peings, Y.; Furtado, J.C.; Kushner, P.J. Snow–atmosphere coupling in the Northern Hemisphere. Nat. Clim. Change 2018, 8, 954–963. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Qiu, B.; Xue, Y.; Hsu, P.-C.; Wei, J. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 2018, 9, 4243. [Google Scholar] [CrossRef] [Green Version]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musselman, K.N.; Addor, N.; Vano, J.A.; Molotch, N.P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 2021, 11, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Kersebaum, K.C. Frost risk by dwindling snow cover. Nat. Clim. Change 2022, 12, 421–423. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, J.; Peng, H.; Wang, S.; Wei, J. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal dynamics of snowline altitude and their responses to climate change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Gao, J. Analysis and assessment of the risk of snow and freezing disaster in China. Int. J. Disaster Risk Reduct. 2016, 19, 334–340. [Google Scholar] [CrossRef]
- Ma, N.; Yu, K.; Zhang, Y.; Zhai, J.; Zhang, Y.; Zhang, H. Ground observed climatology and trend in snow cover phenology across China with consideration of snow-free breaks. Clim. Dyn. 2020, 55, 2867–2887. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Hancock, S.; Baxter, R.; Evans, J.; Huntley, B. Evaluating global snow water equivalent products for testing land surface models. Remote Sens. Environ. 2013, 128, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wang, J.; Li, H.; Liang, J.; Li, C.; Wang, X. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). J. Appl. Remote Sens. 2014, 8, 084689. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, Z.; Shi, C.; Li, Y.; Meng, J.; Xu, T.; Wu, X.; Zhang, B. Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteorol. Res. 2019, 33, 159–189. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Li, L. Evaluation of snow depth and snow cover represented by multiple datasets over the Tianshan Mountains: Remote sensing, reanalysis, and simulation. Int. J. Climatol. 2022, 42, 4223–4239. [Google Scholar] [CrossRef]
- You, Y.; Huang, C.; Gu, J.; Li, H.; Hao, X.; Hou, J. Assessing snow simulation performance of typical combination schemes within Noah-MP in northern Xinjiang, China. J. Hydrol. 2020, 581, 124380. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, C.; Shen, R.; Wu, J. Improved assimilation of Fengyun-3 satellite-based snow cover fraction in northeastern China. J. Meteorol. Res. 2019, 33, 960–975. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Li, J. Effects of organic soil in the Noah-MP land-surface model on simulated skin and soil temperature profiles and surface energy exchanges for China. Atmos. Res. 2021, 249, 105284. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, Z.; Xie, Z.; Jia, B.; Sun, G.; Du, Y.; Song, H. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau. Theor. Appl. Climatol. 2018, 131, 951–965. [Google Scholar] [CrossRef]
- Yang, T.; Li, Q.; Chen, X.; Hamdi, R.; De Maeyer, P.; Kurban, A.; Li, L. Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains, Central Asia. J. Hydrol. 2020, 590, 125525. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.; Shen, Y.; Zhang, Y.; Ai, M.; Zhang, W. Modeling snow depth and snow water equivalent distribution and variation characteristics in the Irtysh River Basin, China. Appl. Sci. 2021, 11, 8365. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Menenti, M.; Zhang, X.; Ma, W. Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Orsolini, Y.; Wegmann, M.; Dutra, E.; Liu, B.; Balsamo, G.; Yang, K.; de Rosnay, P.; Zhu, C.; Wang, W.; Senan, R. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite Remote Sensing observations. Cryosphere 2019, 13, 2221–2239. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, Z.-L.; Jia, B.; Wang, L.; Wang, P.; Xie, Z.; Shi, C. Elucidating Dominant Factors Affecting Land Surface Hydrological Simulations of the Community Land Model over China. Adv. Atmos. Sci. 2023, 40, 235–250. [Google Scholar] [CrossRef]
- Xia, Y.; Sheffield, J.; Ek, M.B.; Dong, J.; Chaney, N.; Wei, H.; Meng, J.; Wood, E.F. Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol. 2014, 512, 107–125. [Google Scholar] [CrossRef]
- You, Y.; Huang, C.; Yang, Z.; Zhang, Y.; Bai, Y.; Gu, J. Assessing Noah-MP parameterization sensitivity and uncertainty interval across snow climates. J. Geophys. Res. Atmos. 2020, 125, e2019JD030417. [Google Scholar] [CrossRef]
- Jia, B.; Wang, L.; Wang, Y.; Li, R.; Luo, X.; Xie, J.; Xie, Z.; Chen, S.; Qin, P.; Li, L. CAS-LSM datasets for the CMIP6 land surface snow and soil moisture model intercomparison project. Adv. Atmos. Sci. 2021, 38, 862–874. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Jia, B.; Wang, L.; Li, R.; Liu, B.; Chen, S.; Xie, J.; Qin, P. Sensitivity of snow simulations to different atmospheric forcing data sets in the land surface model CAS-LSM. J. Geophys. Res. Atmos. 2020, 125, e2019JD032001. [Google Scholar] [CrossRef]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite Remote Sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Sun, S.; Shi, C.; Pan, Y.; Bai, L.; Xu, B.; Zhang, T.; Han, S.; Jiang, L. Applicability assessment of the 1998–2018 CLDAS multi-source precipitation fusion dataset over China. J. Meteorol. Res. 2020, 34, 879–892. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, Z.; Gu, L.; Sun, G.; Du, Y.; Yan, X. Meteorological forcing datasets for blowing snow modeling on the Tibetan Plateau: Evaluation and intercomparison. J. Hydrometeorol. 2017, 18, 2761–2780. [Google Scholar] [CrossRef]
- Anderson, E.A. A Point Energy and Mass Balance Model of a Snow Cover; Stanford University: Stanford, CA, USA, 1976. [Google Scholar]
- Jordan, R.E. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM; U.S. Army Cold Regions Research and Engineering Laboratory Special Report 91-16; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1991; Volume 89.
- Dai, Y.; Zeng, Q. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar]
- Oleson, K.; Niu, G.Y.; Yang, Z.L.; Lawrence, D.; Thornton, P.; Lawrence, P.; Stöckli, R.; Dickinson, R.; Bonan, G.; Levis, S. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. Biogeosci. 2008, 113, G01021. [Google Scholar] [CrossRef]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, R.; Liu, G.; Liu, Z.; Wang, X. Trends and variability in snowmelt in China under climate change. Hydrol. Earth Syst. Sci. 2022, 26, 305–329. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Che, T.; Ji, W.; Sun, X.; Zhao, Q.; Zhao, H.; Wang, J.; Li, H.; Yang, Q. The NIEER AVHRR snow cover extent product over China–a long-term daily snow record for regional climate research. Earth Syst. Sci. Data 2021, 13, 4711–4726. [Google Scholar] [CrossRef]
- Li, J.Z.; Li, S.; Wang, W.Z.; Rao, L.L.; Liu, H. Are people always more risk averse after disasters? Surveys after a heavy snow-hit and a major earthquake in China in 2008. Appl. Cogn. Psychol. 2011, 25, 104–111. [Google Scholar] [CrossRef]
- Liu, F.; Mao, X.; Zhang, Y.; Chen, Q.; Liu, P.; Zhao, Z. Risk analysis of snow disaster in the pastoral areas of the Qinghai-Tibet Plateau. J. Geogr. Sci. 2014, 24, 411–426. [Google Scholar] [CrossRef]
- Li, J.; Zou, Y.; Zhang, Y.; Sun, S.; Dong, X. Risk Assessment of Snow Disasters for Animal Husbandry on the Qinghai–Tibetan Plateau and Influences of Snow Disasters on the Well-Being of Farmers and Pastoralists. Remote Sens. 2022, 14, 3358. [Google Scholar] [CrossRef]
- Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Gao, X.; Avramov, A.; Saikawa, E.; Schlosser, C.A. Emulation of Community Land Model version 5 (CLM5) to quantify sensitivity of soil moisture to uncertain parameters. J. Hydrometeorol. 2021, 22, 259–278. [Google Scholar] [CrossRef]
- Barlage, M.; Chen, F.; Tewari, M.; Ikeda, K.; Gochis, D.; Dudhia, J.; Rasmussen, R.; Livneh, B.; Ek, M.; Mitchell, K. Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res. Atmos. 2010, 115, D22101. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Menenti, M.; Ma, Y.; Ma, W. Improved parameterization of snow albedo in WRF+ Noah: Methodology based on a severe snow event on the Tibetan Plateau. Adv. Atmos. Sci. 2022, 39, 1079–1102. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Gao, X.; Zhao, M.; Guo, Z.; Oki, T.; Hanasaki, N. GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 2006, 87, 1381–1398. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, F.M.; Koven, C.D.; Keppel-Aleks, G.; Lawrence, D.M.; Riley, W.J.; Randerson, J.T.; Ahlström, A.; Abramowitz, G.; Baldocchi, D.D.; Best, M.J. 2016 International Land Model Benchmarking (ILAMB) Workshop Report; USDOE Office of Science: Washington, DC, USA, 2017.
- Mudryk, L.; Santolaria-Otín, M.; Krinner, G.; Ménégoz, M.; Derksen, C.; Brutel-Vuilmet, C.; Brady, M.; Essery, R. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 2020, 14, 2495–2514. [Google Scholar] [CrossRef]
- Liu, J.; Shi, C.; Sun, S.; Liang, J.; Yang, Z.-L. Improving land surface hydrological simulations in China using CLDAS meteorological forcing data. J. Meteorol. Res. 2019, 33, 1194–1206. [Google Scholar] [CrossRef]
- Raleigh, M.S.; Livneh, B.; Lapo, K.; Lundquist, J.D. How does availability of meteorological forcing data impact physically based snowpack simulations? J. Hydrometeorol. 2016, 17, 99–120. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Yin, Z.; Zhang, Q.; Mo, H.; Wu, J.; Fan, F. CFD Simulations of Snowdrifts on a Gable Roof: Impacts of Wind Velocity and Snowfall Intensity. Buildings 2022, 12, 1878. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Che, T.; Jin, R.; Wang, S.; Wang, J.; Gao, F.; Zhang, S.; Qiu, C.; Wang, C. Development of a Chinese land data assimilation system: Its progress and prospects. Prog. Nat. Sci. 2007, 17, 881–892. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Shi, C.; Liang, X.; Zhang, S.; Gu, J.; Han, S.; Jiang, H.; Xu, B.; Yu, Q.; Liang, Y.; et al. The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations. Sustainability 2023, 15, 11284. https://doi.org/10.3390/su151411284
Sun S, Shi C, Liang X, Zhang S, Gu J, Han S, Jiang H, Xu B, Yu Q, Liang Y, et al. The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations. Sustainability. 2023; 15(14):11284. https://doi.org/10.3390/su151411284
Chicago/Turabian StyleSun, Shuai, Chunxiang Shi, Xiao Liang, Shuai Zhang, Junxia Gu, Shuai Han, Hui Jiang, Bin Xu, Qingbo Yu, Yujing Liang, and et al. 2023. "The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations" Sustainability 15, no. 14: 11284. https://doi.org/10.3390/su151411284
APA StyleSun, S., Shi, C., Liang, X., Zhang, S., Gu, J., Han, S., Jiang, H., Xu, B., Yu, Q., Liang, Y., & Deng, S. (2023). The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations. Sustainability, 15(14), 11284. https://doi.org/10.3390/su151411284