Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer
Abstract
:1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, G.; Zhou, Y.; Xie, Q.; Chen, J.; Zheng, K.; Zheng, L.; Pan, J.; Wang, R. Research progress in doped absorber layer of CdTe solar cells. Renew. Sustain. Energy Rev. 2023, 113427. [Google Scholar] [CrossRef]
- Shilpa, G.; Kumar, P.M.; Kumar, D.K.; Deepthi, P.R.; Sadhu, V.; Sukhdev, A.; Kakarla, R.R. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review. Mater. Sci. Energy Technol. 2023, 6, 533–546. [Google Scholar] [CrossRef]
- Duan, L.; Walter, D.; Chang, N.; Bullock, J.; Kang, D.; Phang, S.P.; Weber, K.; White, T.; Macdonald, D.; Catchpole, K.; et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 2023, 8, 261–281. [Google Scholar] [CrossRef]
- Khezami, L.; Megbel, A.O.A.; Jemai, A.B.; Rabha, M.B. Theoretical and experimental analysis on effect of porous silicon surface treatment in multicrystalline silicon solar cells. Appl. Surf. Sci. 2015, 353, 106–111. [Google Scholar] [CrossRef]
- Rabha, M.B.; Boujmil, M.F.; Saadoun, M.; Bessaïs, B. The use of chemical vapor etching in multicrystalline silicon solar cells. Eur. Phys. J. -Appl. Phys. 2009, 47, 10301. [Google Scholar] [CrossRef]
- Olsen, L.C.; Bohara, R.C.; Urie, M.W. Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Appl. Phys. Lett. 1979, 34, 47–49. [Google Scholar] [CrossRef]
- Wong, T.K.S.; Zhuk, S.; Masudy-Panah, S.; Dalapati, G.K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 2016, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Olsen, L.C.; Addis, F.W.; Miller, W. Experimental and theoretical studies of Cu2O solar cells. Sol. Cells 1982, 7, 247–279. [Google Scholar] [CrossRef]
- Bai, B.P. Cu2O solar cells: A review. Sol. Cells 1988, 25, 265–272. [Google Scholar]
- Susman, M.D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical Deposition of Cu2O Nanocrystals with Precise Morphology Control. ACS Nano 2014, 8, 162–174. [Google Scholar] [CrossRef]
- Hossain, M.A.; Al-Gaashani, R.; Hamoudi, H.; Marri, M.J.A.; Hussein, I.A.; Belaidi, A.; Merzougui, B.A.; Alharbi, F.H.; Tabet, N. Controlled growth of Cu2O thin films by electrodeposition approach. Mater. Sci. Semicond. Process. 2017, 63, 203–211. [Google Scholar] [CrossRef]
- Wang, G.J.; Weichman, F.L. The temperature dependence of the electrical conductivity and switching phenomena in Cu2O single crystals. Can. J. Phys. 1982, 60, 1648–1655. [Google Scholar] [CrossRef]
- Minami, T.; Miyata, T.; Ihara, K.; Minamino, Y.; Tsukada, S. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices. Thin Solid Film. 2006, 494, 47–52. [Google Scholar] [CrossRef]
- Wang, L.; Tao, M. Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition. Electrochem. Solid-State Lett. 2007, 10, 248–250. [Google Scholar] [CrossRef]
- Pan, L.; Zou, J.J.; Zhang, T.; Wang, S.; Li, Z.; Wang, L.; Zhang, X. Cu2O film via hydrothermal redox approach: Morphology and photocatalytic performance. J. Phys. Chem. C 2014, 118, 16335–16343. [Google Scholar] [CrossRef]
- Yang, Y.; Han, J.; Ning, X.; Cao, W.; Xu, W.; Guo, L. Controllable Morphology and Conductivity of Electrodeposited Cu2O Thin Film: Effect of Surfactants. ACS Appl. Mater. Interfaces 2014, 6, 22534–22543. [Google Scholar] [CrossRef]
- Paracchino, A.; Brauer, J.C.; Moser, J.-E.; Thimsen, E.; Graetzel, M. Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. J. Phys. Chem. C 2012, 116, 7341–7350. [Google Scholar] [CrossRef] [Green Version]
- Jayatissa, A.H.; Guo, K.; Jayasuriya, A.C. Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl. Surf. Sci. 2009, 255, 9474–9479. [Google Scholar] [CrossRef]
- Zimbovskii, D.S.; Churagulov, B.R. Cu2O and CuO films produced by chemical and anodic oxidation on the surface of copper foil. Inorg. Mater. 2018, 54, 660–666. [Google Scholar] [CrossRef]
- Zimbovskiy, D.S.; Gavrilov, A.I.; Churagulov, B.R. Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction. IOP Conf. Ser. Mater. Sci. Eng. 2018, 347, 012010. [Google Scholar] [CrossRef]
- Zhu, H.L.; Zhang, J.Y.; Li, C.Z.; Pan, F.; Wang, T.M.; Huang, B.B. Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Film. 2009, 517, 5700–5704. [Google Scholar] [CrossRef]
- Deuermeier, J.; Gassmann, J.; Brötz, J.; Kleina, A. Reactive magnetron sputtering of Cu2O: Dependence on oxygen pressure and interface formation with indium tin oxide. J. Appl. Phys. 2011, 109, 113704. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Fu, W.Y.; Yang, H.B.; Tian, C.J.; Li, M.H.; Li, Y.Z.; Zhang, L.N.; Sui, Y.M.; Zhou, X.M.; Chen, H.; et al. Electrodeposition of Cu2O films and their photoelectrochemical properties. CrystEngComm 2011, 13, 2871. [Google Scholar] [CrossRef]
- Matsuzaki, K.K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 2008, 93, 202107. [Google Scholar] [CrossRef]
- Shibasaki, S.; Honishi, Y.; Nakagawa, N.; Yamazaki, M.; Mizuno, Y.; Nishida, Y.; Sugimoto, K.; Yamamoto, K. Highly transparent Cu2O absorbing layer for thin film solar cells. Appl. Phys. Lett. 2021, 119, 242102. [Google Scholar] [CrossRef]
- Mohra, D.; Benhaliliba, M.; Serin, M.; Khelladi, M.R.; Lahmar, H.; Azizi, A. The investigation of electrodeposited Cu2O/ITO layers by chronocoulometry process: Effect of electrical potential. J. Semicond. 2016, 37, 103001. [Google Scholar] [CrossRef]
- Septina, W.; Ikeda, S.; Khan, M.A.; Hirai, T.; Harada, T.; Matsumura, M.; Peter, L.M. Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 2011, 56, 4882–4888. [Google Scholar] [CrossRef]
- Chen, L.C. Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure. Mater. Sci. Semicond. Process. 2013, 16, 1172–1185. [Google Scholar] [CrossRef]
- Messaoudi, O.; Assaker, I.B.; Gannouni, M.; Souissi, A.; Makhlouf, H.; Bardaoui, A.; Chtourou, R. Structural, morphological and electrical characteristics of electrodeposited Cu2O: Effect of deposition time. Appl. Surf. Sci. 2016, 366, 383–388. [Google Scholar] [CrossRef]
- Laidoudi, S.; Bioud, A.Y.; Azizi, A.; Schmerber, G.; Bartringer, J.; Barre, S.; Dinia, A. Growth and characterization of electrodeposited Cu2O thin films. Semicond. Sci. Technol. 2013, 28, 115005. [Google Scholar] [CrossRef]
- Hanif, A.S.M.; Azmal, S.A.; Ahmad, M.K.; Mohamad, F. Effect of deposition time on the electrodeposited n-Cu2O thin film. Appl. Mech. Mater. 2015, 773–774, 677–681. [Google Scholar] [CrossRef]
- Kamoun, O.; Gassoumi, A.; Shkir, M.; Gorji, N.E.; Turki-Kamoun, N. Synthesis and Characterization of Highly Photocatalytic Active Ce and Cu Co-Doped Novel Spray Pyrolysis Developed MoO3 Films for Photocatalytic Degradation of Eosin-Y Dye. Coatings 2022, 12, 823. [Google Scholar] [CrossRef]
- Tran, M.H.; Cho, J.Y.; Sinha, S.; Gang, M.G.; Heo, J.Y. Cu2O/ZnO heterojunction thin-film solar cells: The effect of electrodeposition condition and thickness of Cu2O. Thin Solid Film. 2018, 661, 132–136. [Google Scholar] [CrossRef]
- Yang, T.H.; Ding, Y.L.; Li, C.Y.; Yin, N.Q.; Liu, X.L.; Li, P. Potentiostatic and galvanostatic two-step electrodeposition of semiconductor Cu2O films and its photovoltaic application. J. Alloy. Compd. 2017, 727, 14–19. [Google Scholar] [CrossRef]
- Perng, D.C.; Hong, M.H.; Chen, K.H. Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. J. Alloy. Compd. 2017, 695, 549–554. [Google Scholar] [CrossRef]
- Yanga, Y.Y.; Pritzkera, M.; Li, Y.N. Electrodeposited p-type Cu2O thin films at high pH for all-oxide solar cells with improved performance. Thin Solid Film. 2019, 676, 42–53. [Google Scholar] [CrossRef]
- Kaur, J.; Bethgec, O.; Wibowo, R.A.; Bansal, N.; Bauch, M.; Hamid, R.; Bertagnolli, E.; Dimopoulos, T. All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Sol. Energy Mater. Sol. Cells 2017, 161, 449–459. [Google Scholar] [CrossRef]
- Wu, L.L.; Tsui, L.; Swami, N.; Zangar, G. Photoelectrochemical Stability of Electrodeposited Cu2O Films. J. Phys. Chem. C 2010, 114, 11551–11556. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Piqué, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451–6461. [Google Scholar] [CrossRef]
- Wang, W.; Wu, D.; Zhang, Q.; Wang, L.; Tao, M.J. pH-dependence of conduction type in cuprous oxide synthesized from solution. Appl. Phys. 2010, 107, 123717. [Google Scholar] [CrossRef] [Green Version]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press Ltd.: New York, NY, USA, 1966. [Google Scholar]
- Shahrestani, S.M. Electro Deposition of Cuprous Oxide for Thin Film Solar Cell Applications. Ph.D. Dissertation, University of Montreal, Montreal, QC, Canada, 2013. [Google Scholar]
- van Zeghbroeck, B. Principles of Semiconductor Devices and Heterojunctions; Prentice Hall: London, UK, 2010. [Google Scholar]
- von Roedern, B.; Bauer, G.H. Proceeding of Material Research Society Spring Meeting, Symposium A—Amorphous and Heterogeneous Silicon Thin Films—Fundamentals to Devices. Mater. Res. Soc. Symp. Proc. 1999, 557, 761. [Google Scholar]
Solar Cell | n | ϕi (V) | VOC (V) | JSC (mA/cm2) | Vm (V) | Jm (mA/cm2) | Pm (mW/cm2) | FF (%) | η (%) |
---|---|---|---|---|---|---|---|---|---|
Cu2O/ITO | 1.21 | 0.74 | 0.26 | 6.6 | 0.13 | 3.43 | 0.45 | 25.8 | 1.78 |
Cu2O/Ti/ITO | 1.64 | 1.01 | 0.37 | 7.14 | 0.18 | 3.53 | 0.64 | 24.2 | 2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Chen, Z.; Zhao, F. Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability 2023, 15, 10876. https://doi.org/10.3390/su151410876
Wang B, Chen Z, Zhao F. Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability. 2023; 15(14):10876. https://doi.org/10.3390/su151410876
Chicago/Turabian StyleWang, Binghao, Zhiqiang Chen, and Feng Zhao. 2023. "Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer" Sustainability 15, no. 14: 10876. https://doi.org/10.3390/su151410876
APA StyleWang, B., Chen, Z., & Zhao, F. (2023). Cu2O Heterojunction Solar Cell with Photovoltaic Properties Enhanced by a Ti Buffer Layer. Sustainability, 15(14), 10876. https://doi.org/10.3390/su151410876