Barriers and Drivers Underpinning Newcomers in Agriculture: Evidence from Italian Census Data
Abstract
:1. Introduction
2. The Theoretical Framework
3. Dataset and Methods
4. Results
- (I) SI = β0 + β1S1 + β2S2 + β3S3 + β4S4
- (II) SI = β0 + β1E1 + β2E2 + β3E3 + β4E4 + β1E5 + β2E6 + β3E7 + β4E8 + β1E9 + β2E10 + β3E11 + β4E12 + β1E13
- (III) SI = β0 + β1O1 + β2O2
- (IV) SI = β0 + β1IC1 + β2IC2 + β3IC3 + β4IC4 + β1IC5 + β2IC6 + β3IC7 + β4IC8 + β1IC9 + β2IC10 + β3IC11
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- ISTAT. The General Census of Agriculture; ISTAT: Rome, Italy, 2020; Available online: https://www.istat.it/en/permanent-censuses/agriculture (accessed on 20 January 2023).
- Cardillo, C.; Cimino, O. Small Farms in Italy: What Is Their Impact on the Sustainability of Rural Areas? Land 2022, 11, 2142. [Google Scholar] [CrossRef]
- Fanelli, R.M. Barriers to Adopting New Technologies within Rural Small and Medium Enterprises (SMEs). Soc. Sci. 2021, 10, 430. [Google Scholar] [CrossRef]
- Cork. Cork 2.0 Declaration. A Better Life in Rural Areas: European Union Agenda. 2016. Available online: https://euagenda.eu/publications/cork-2-0-declaration-2016-a-better-life-in-rural-areas (accessed on 20 April 2023).
- Rovný, P. The Analysis of Farm Population with Respect to Young Farmers in the European Union. Procedia-Soc. Behav. Sci. 2016, 220, 391–398. [Google Scholar] [CrossRef]
- Zagata, L.; Sutherland, L.A. Deconstructing the “young farmer problem in Europe”: Towards a research agenda. J. Rural Stud. 2015, 38, 39–51. [Google Scholar] [CrossRef]
- Chamber of Commerce. Register of Companies; Unioncamere: Rome, Italy, 2021; Available online: https://www.registroimprese.it (accessed on 20 March 2023).
- European Commission. Young People in Farming. 2022. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/young-farmers_en (accessed on 10 April 2023).
- Nordin, M.; Lovén, I. Is the setting up aid mitigating the generation renewal problem in farming? Eur. Rev. Agric. Econ. 2020, 47, 1697–1715. [Google Scholar] [CrossRef]
- Pavi´c, L.; Turk, J.; Grgi´c, I.; Prišenk, J. Impact Analysis of the Young Farmers’ Support Program on Slovenian Dairy Sector Development Using Econometric Modeling Approach. Agronomy 2020, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, R.M. Assessing the Convergence of Farming Systems towards a Reduction of Greenhouse Gas Emissions in European Union Countries. Agronomy 2023, 13, 1263. [Google Scholar] [CrossRef]
- Cagliero, R.; Novelli, S. Giovani e senilizzazione nel censimento dell’agricoltura. Agriregionieuropa 2012, 8, 11–14. [Google Scholar]
- Barberis, C.; Sisto, V. Agricoltura e Strati Sociali; Franco Angeli: Milan, Italy, 1993. [Google Scholar]
- White, B. Agriculture and the generation problem: Rural youth, employment and the future of farming. IDS Bull. 2012, 43, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Sumberg, J.; Yeboah, T.; Flynn, J.; Anyidoho, N.A. Young people’s perspectives on farming in Ghana: A Q study. Food Secur. 2017, 9, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Zagata, L.; Hrabak, J.; Lostak, M.; Ratinger, T.; Sutherland, A.L.; McKee, A.; Bavorova, M. Young Farmers. Policy Implementation after the 2013 CAP Reform: Research for AGRI Committee. Policy Department for Structural and Cohesion Policies Agriculture and Rural Development. Available online: http://www.europarl.europa.eu/committees/en/supporting-analyses-search.html (accessed on 12 April 2023).
- Corsi, A.; Carbone, A.; Sotte, F. Quali fattori influenzano il ricambio generazionale? Agriregionieuropa 2005, 2, 9–12. [Google Scholar]
- Cordeiro, D.; Saini, G.; Makhani, M.; Bargout, R.N. The importance of youth for global food security. J. Sustain. Dev. 2015. Available online: https://consiliencejournal.org/2015/01/01/the-importance-of-youth-for-global-food-security/ (accessed on 16 May 2022).
- Calus, M.; Van Huylenbroeck, G.; Van Lierde, D. The relationship between farm assets and farm succession on Belgium farms. Sociol. Rural. 2008, 48, 38–56. [Google Scholar] [CrossRef]
- Hennessey, T.C.; Rehman, T. An Investigation into factors affecting the occupational choices of nominated farm heirs in Ireland. J. Agric. Econ. 2007, 58, 61–75. [Google Scholar] [CrossRef]
- Glauben, T.; Tietje, H.; Weiss, C. Intergenerational Succession on Family Farms: Evidence from Survey Data; Working Paper EWP 0202; Department of Food Economics and Consumption Studies: Gainesville, FL, USA, 2002. [Google Scholar]
- Meert, H.; Van Huylenbroeck, G.; Vernimmen, T.; Bourgeois, M.; van Hecke, E. Farm household survival strategies and diversification on marginal farms. J. Rural Stud. 2005, 21, 81–97. [Google Scholar] [CrossRef]
- Lavison, R. Factors Influencing the Adoption of Organic Fertilizers in Vegetable Production in Accra. Master’s Thesis, University of Ghana, Accra, Ghana, 2013. [Google Scholar]
- Ahmad, S.Z.; Abu Bakar, A.R.; Faziharudean, T.M.; Mohamad Zaki, K.A. An empirical study of factors affecting e-commerce adoption among small-and medium-sized enterprises in a developing country: Evidence from Malaysia. Inf. Technol. Dev. 2015, 21, 555–572. [Google Scholar] [CrossRef]
- Gabre-Madhin, Z.; Haggblade, S. Success in African Agriculture: Results of an Expert Survey; International Food Policy Research Institute: Washington, DC, USA, 2001. [Google Scholar]
- Mignouna, B.; Manyong, M.; Rusike, J.; Mutabazi, S.; Senkondo, M. Determinants of Adopting Imazapyr-Resistant Maize Technology and its Impact on Household Income I Western Kenya. AgBioforum 2011, 14, 158–163. [Google Scholar]
- Uaiene, R.; Arndt, C.; Masters, W. Determinants of Agricultural Technology Adoption in Mozambique; Discussion papers No. 67E; Ministry of Planning and Development: Port of Spain, Trinidad and Tobago, 2009. [Google Scholar]
- Szumelda, A.U. Agriculture and everyday realities on small farms–an entrepreneurial challenge to farmers between the desire for autonomy and a secure existence. Two examples from east and south-east Poland. J. Rural Stud. 2019, 67, 57–68. [Google Scholar] [CrossRef]
- Filmer, D.; Fox, L. Youth Employment in Sub-Saharan Africa; World Bank Publications-Book: Washington, DC, USA, 2014. [Google Scholar]
- EIP-AGRI. Focus Group New Entrants. Final Report. 2016. Available online: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-new-entrants-final-report.html (accessed on 5 May 2023).
- Delobel, V.; Bisetto, J.M. Learning from new peasants. Farming Matters 2013, 29, 21–26. [Google Scholar]
- Kinsella, J. Acknowledging hard to reach farmers: Cases from Ireland. Int. J. Agric. Ext. 2018, 6, 61–69. [Google Scholar]
- Mc Namara, F. Member state responsibility for migration control within third states-Externalisation revisited. Eur. J. Migr. Law 2013, 15, 319–335. [Google Scholar] [CrossRef]
- Okunlola, J.O.; Oludare, A.O.; Akinwalere, B.O. Adoption of new technologies by fish farmers in Akure, Ondo state, Nigeria. J. Agric. Technol. 2011, 7, 1539–1548. [Google Scholar]
- Duesberg, S.; Bogue, P.; Renwick, A. Retirement farming or sustainable growth–land transfer choices for farmers without a successor. Land Use Policy 2017, 61, 526–535. [Google Scholar] [CrossRef]
- European Commission. Ageing Europe. Looking at the Lives of Older People in the EU. 2020. Available online: https://ec.europa.eu/eurostat/documents/3217494/11478057/KS-02-20-655-EN-N.pdf/9b09606c-d4e8-4c33-63d2-3b20d5c19c91?t=1604055531000 (accessed on 3 March 2023).
- Morais, M.; Binotto, E.; Borges, J.A.R. Identifying beliefs underlying successors’ intention to take over the farm. Land Use Policy 2017, 68, 48–58. [Google Scholar] [CrossRef]
- Schuh, G.; Reinhart, G.; Prote, J.P.; Sauermann, F.; Horsthofer, J.; Oppolzer, F.; Knoll, D. Data mining definitions and applications for the management of production complexity. Procedia CIRP 2019, 81, 874–879. [Google Scholar] [CrossRef]
- Boháčková, I.; Hrabánková, M.; Svatošová, L. Role of agriculture in the development of rural regions. Agric. Econ.-Czech 2003, 49, 229–232. [Google Scholar] [CrossRef]
- Inea-Oiga. Insediamento e Permanenza dei Giovani in Agricoltura. Gli Interventi a Favore dei Giovani Agricoltori; Rapporto2003/2004 2005; Inea: Rome, Italy, 2003. [Google Scholar]
- Monllor i Rico, N.; Fuller, A.M. Newcomers to farming: Towards a new rurality in Europe. Doc. D’anàlisi Geogràfica 2016, 62, 531–551. [Google Scholar] [CrossRef] [Green Version]
- ISTAT. Report Sulle Migrazioni Internazionali e Interne Della Popolazione Residente; ISTAT: Rome, Italy, 2017. [Google Scholar]
- European Commission. Directorate-General for Agriculture and Rural Development, Young farmers’ Needs in Italy, Annex I.15 to the Pilot Project: Exchange Programmes for Young Farmers. 2015. Available online: https://noaw2020.eu/wp-content/uploads/2017/05/annex-i.15-italy-needs-of-young-farmers.pdf (accessed on 5 March 2023).
- Rullani, E. Conoscenza e Innovazione: L’apprendimento del nuovo. In L’innovazione Nelle Imprese Agricole: Usi Nuovi Della Conoscenza; VV, A.A., Ed.; Veneto Agricoltura: Legnano, PD, Italy; Harvard University Press: Cambridge, MA, USA, 2012; (English translation of 1926 2nd German edition of Theorie der Wirtschaftlichen Entwicklung). [Google Scholar]
- Simeone, M.; Spigola, M. La Valutazione Delle Politiche Agricole Sul Ricambio Generazionale; ISPA L’informazione Statistica e le Politiche Agricole: Cassino, Italy, 2004. [Google Scholar]
- Vagnozzi, A.; Di Paolo, I. Il Sistema della Ricerca Agricola in Italia e le Dinamiche del Processo di Innovazione; Inea: Rome, Italy, 2014. [Google Scholar]
- Fanelli, R.M. Seeking Gastronomic, Healthy, and Social Experiences in Tuscan Agritourism Facilities. Soc. Sci. 2020, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Pechrová, M.Š.; Šimpach, O. Do the Subsidies Help the Young Farmers? The Case Study of the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 255–262. [Google Scholar] [CrossRef] [Green Version]
- ISMEA. La Competitività dell’Agroalimentare Italiano: Check Up 2012; ISMEA: Rome, Italy, 2012. [Google Scholar]
- European Commission. Financial Needs in the Agriculture and Agri-Food Sectors in Italy. 2020. Available online: https://www.fi-compass.eu/publication/publications/financial-needs-agriculture-and-agri-food-sectors-italy (accessed on 30 May 2023).
(I) Size by type of farms (ha/n. of farms) | |
S1 | Size of farms |
S2 | Size of privately owned farms |
S3 | Size of rented farms |
S4 | Size of farms for free use |
(II) Education and experience in the agricultural sector (% of the total) | |
E1 | No school |
E2 | Elementary |
E3 | Middle |
E4 | Agricultural diploma (2–3 years) |
E5 | Nonagricultural diploma (2–3 years) |
E6 | High school diploma in agriculture |
E7 | High school diploma not in agriculture |
E8 | Agricultural degree |
E9 | No agricultural degree |
E10 | Training courses |
E11 | Experience in agriculture < 3 years |
E12 | Experience in agriculture from 3 to 10 years |
E13 | Experience in agriculture > 10 years |
(III) Organic (% of the total) | |
O1 | Livestock farms with organic farms |
O2 | Farms with organic crops |
(IV) Innovation and computerisation (% of the total) | |
IC1 | Farms with at least one innovative investment in the three-year period 2018–2020 |
IC2 | Waste management |
IC3 | Mechanisation |
IC4 | Organisation and business management |
IC5 | Sales and marketing of products |
IC6 | Connected activities |
IC7 | Computerised agricultural farms |
IC8 | Accounting |
IC9 | Crop management |
IC10 | Farm management |
IC11 | Management of connected activities |
Size (y = Young; o = Old) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Min. | Max. | Std. Err. | Std. Dev. | CV | Diff = Mean Size Young − Old | |||
sy1 | 19.272 | 5.070 | 44.099 | 2.114 | 9.686 | 0.503 | diff = mean (sy1) − mean (so1) | |||
so1 | 11.096 | 3.070 | 22.093 | 1.223 | 5.604 | 0.505 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 8.176 | 2.442 | 5.410 | 0.662 | 6.9248 | 1.000 | 0.000 | 0.000 | ||
sy2 | 9.293 | 2.322 | 21.261 | 0.947 | 4.339 | 0.467 | diff = mean (sy2) − mean (so2) | |||
so2 | 6.437 | 1.846 | 13.071 | 0.639 | 2.928 | 0.455 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 2.856 | 0.443 | 2.028 | 0.710 | 6.4529 | 1.000 | 0.000 | 0.000 | ||
sy3 | 20.445 | 4.336 | 50.942 | 2.398 | 10.991 | 0.538 | diff = mean (sy3) − mean (so3) | |||
so3 | 15.606 | 4.108 | 32.344 | 1.618 | 7.416 | 0.475 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 4.839 | 1.054 | 4.830 | 0.998 | 4.5911 | 0.9999 | 0.0002 | 0.0001 | ||
sy4 | 9.145 | 2.071 | 25.222 | 1.127 | 5.163 | 0.565 | diff = mean (sy4) − mean (so4) | |||
so4 | 5.813 | 1.532 | 15.847 | 0.732 | 3.355 | 0.577 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 3.332 | 0.577 | 2.646 | 0.794 | 5.7711 | 1.000 | 0.000 | 0.000 |
Organic (y = Young; o = Old) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Min. | Max. | Std. Err. | Std. Dev. | CV | Diff = Mean Young – Mean Old | |||
oy1 | 23.002 | 7.407 | 35.065 | 1.343 | 6.155 | 0.268 | diff = mean (oy1) − mean (oo1) | |||
oo1 | 76.998 | 64.935 | 92.593 | 1.343 | 6.155 | 0.080 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −53.995 | 2.686 | 12.310 | −0.228 | −20.0997 | 0.000 | 0.000 | 1.000 | ||
oy2 | 20.341 | 14.754 | 32.880 | 1.021 | 4.678 | 0.230 | diff = mean (oy2) − mean (oo2) | |||
oo2 | 79.659 | 64.935 | 92.593 | 1.021 | 4.678 | 0.059 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −59.318 | 2.041 | 9.355 | −0.158 | −29.0568 | 0.5342 | 0.9317 | 0.4658 |
Educational Level and Experience in the Agricultural Sector | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Min. | Max. | Std. Err. | Std. Dev. | CV | Diff. Mean Young – Mean Old | |||
ey1 | 1.883 | 0.000 | 10.088 | 0.488 | 2.236 | 1.187 | diff = mean (ey1) − mean (eo1) | |||
eo1 | 98.117 | 89.912 | 100.000 | 0.488 | 2.236 | 0.023 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −96.234 | 0.976 | 4.472 | −0.046 | −98.622 | 0.000 | 0.000 | 1.000 | ||
ey2 | 6.928 | 2.284 | 28.571 | 1.266 | 5.804 | 0.838 | diff = mean (ey2) − mean (eo2) | |||
eo2 | 1717.940 | 489.277 | 5600.000 | 250.592 | 1148.354 | 0.668 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −1711.012 | 249.622 | 1143.913 | −0.669 | −6.8544 | 0.000 | 0.000 | 1.000 | ||
ey3 | 208.857 | 36.612 | 1514.286 | 69.555 | 318.742 | 1.526 | diff = mean (ey3) − mean (eo3) | |||
eo3 | 3068.777 | 687.373 | 13100.000 | 601.309 | 2755.544 | 0.898 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −2859.920 | 536.161 | 2456.997 | −0.859 | −5.3341 | 0.000 | 0.000 | 1.000 | ||
ey4 | 59.666 | 4.348 | 296.053 | 20.157 | 92.371 | 1.548 | diff = mean (ey4) − mean (eo4) | |||
eo4 | 290.060 | 26.624 | 1476.754 | 83.824 | 384.130 | 1.324 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −230.394 | 64.380 | 295.026 | −1.281 | −3.5787 | 0.0009 | 0.0019 | 0.99910 | ||
ey5 | 95.194 | 7.716 | 485.714 | 30.181 | 138.307 | 1.453 | diff = mean (ey5) − mean (eo5) | |||
eo5 | 565.527 | 54.445 | 2400.000 | 145.240 | 665.575 | 1.177 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −470.333 | 116.234 | 532.652 | −1.132 | −4.0464 | 0.0003 | 0.0006 | 0.99970 | ||
ey6 | 200.711 | 18.356 | 1371.429 | 66.152 | 303.147 | 1.510 | diff = mean (ey6) − mean (eo6) | |||
eo6 | 423.285 | 66.954 | 1428.571 | 81.891 | 375.271 | 0.887 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −222.575 | 39.427 | 180.675 | −0.812 | −5.6453 | 0.000 | 0.000 | 1.000 | ||
ey7 | 318.239 | 80.802 | 1385.714 | 64.219 | 294.289 | 0.925 | diff = mean (ey7) − mean (eo7) | |||
eo7 | 1415.011 | 321.701 | 4642.857 | 223.818 | 1025.662 | 0.725 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −1096.772 | 162.567 | 744.977 | −0.679 | −6.7466 | 0.000 | 0.000 | 1.000 | ||
ey8 | 51.310 | 5.943 | 214.286 | 11.409 | 52.281 | 1.019 | diff = mean (ey8) − mean (eo8) | |||
eo8 | 113.571 | 18.428 | 314.286 | 19.509 | 89.401 | 0.787 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 62.261 | 10.270 | 47.064 | 0.756 | 6.0622 | 0.000 | 0.000 | 1.000 | ||
ey9 | 125.160 | 30.786 | 371.429 | 19.492 | 89.322 | 0.714 | diff = mean (ey9) − mean (eo9) | |||
eo9 | 546.680 | 125.508 | 1557.143 | 77.583 | 355.532 | 0.650 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −421.520 | −59.180 | 271.199 | −0.643 | −7.1226 | 0.000 | 0.000 | 1.000 | ||
ey10 | 20.341 | 14.754 | 32.880 | 1.021 | 4.678 | 0.230 | diff = mean (ey10) − mean (eo10) | |||
eo10 | 79.659 | 67.120 | 85.246 | 1.021 | 4.678 | 0.059 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −59.318 | 2.041 | 9.355 | −0.158 | −29.0568 | 0.000 | 0.000 | 1.000 | ||
ey11 | 183.303 | 26.264 | 942.857 | 45.279 | 207.492 | 1.132 | diff = mean (ey11) − mean (eo11) | |||
eo11 | 309.183 | 59.454 | 1142.857 | 53.905 | 247.024 | 0.799 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | 125.880 | 15.837 | 72.573 | 0.577 | 0.0000 | 0.5000 | 1.0000 | 0.50000 | ||
ey12 | 531.563 | 94.752 | 2814.286 | 133.505 | 611.796 | 1.151 | diff = mean (ey12) − mean (eo12) | |||
eo12 | 1331.308 | 316.942 | 4914.286 | 224.378 | 1028.228 | 0.772 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −799.745 | 100.899 | 462.375 | −0.578 | −7.9262 | 0.000 | 0.000 | 1.000 | ||
ey13 | 333.576 | 64.467 | 1814.286 | 86.035 | 394.263 | 1.182 | diff = mean (ey13) − mean (eo13) | |||
eo13 | 6483.323 | 1531.472 | 23528.570 | 1104.571 | 5061.780 | 0.781 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −6149.747 | 1021.754 | 4682.266 | −0.761 | −6.0188 | 0.000 | 0.000 | 1.000 |
Innovation and Computerisation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Min. | Max. | Std. Err. | Std. Dev. | CV | Diff. Mean Young − Mean Old | |||
icy1 | 21.741 | 15.768 | 29.637 | 0.824 | 3.776 | 0.174 | diff = mean (icy1) − mean (ico1) | |||
ico1 | 111.322 | 85.824 | 146.177 | 3.517 | 16.116 | 0.145 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −89.581 | 3.684 | 16.881 | −0.188 | −24.318 | 0.000 | 0.000 | 1.000 | ||
icy2 | 0.404 | 0.180 | 0.973 | 0.042 | 0.191 | 0.473 | diff = mean (icy2) − mean (ico2) | |||
ico2 | 80.377 | 58.341 | 112.352 | 3.059 | 14.018 | 0.174 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −79.973 | 3.063 | 14.037 | −0.176 | −26.108 | 0.000 | 0.000 | 1.000 | ||
icy3 | 12.744 | 7.984 | 18.750 | 0.542 | 2.483 | 0.195 | diff = mean (icy3) − mean (ico3) | |||
ico3 | 30.196 | 10.685 | 38.318 | 1.382 | 6.334 | 0.210 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −17.453 | 1.705 | 7.811 | −0.448 | −10.239 | 0.000 | 0.000 | 1.000 | ||
icy4 | 2.296 | 1.008 | 3.710 | 0.158 | 0.726 | 0.316 | diff = mean (icy4) − mean (ico4) | |||
ico4 | 18.155 | 6.532 | 46.334 | 2.126 | 9.743 | 0.537 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −15.858 | 2.134 | 9.778 | −0.617 | −7.4319 | 0.000 | 0.000 | 1.000 | ||
icy5 | 1.900 | 0.629 | 3.933 | 0.157 | 0.721 | 0.380 | diff = mean (icy5) − mean (ico5) | |||
ico5 | 17.918 | 9.588 | 40.741 | 1.506 | 6.901 | 0.385 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −16.018 | 1.496 | 6.855 | −0.428 | −12.897 | 0.000 | 0.000 | 1.000 | ||
icy6 | 1.691 | 0.952 | 2.883 | 0.119 | 0.544 | 0.321 | diff = mean (icy6) − mean (ico6) | |||
ico6 | 5.983 | 3.099 | 10.593 | 0.372 | 1.703 | 0.285 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −4.291 | 0.271 | 1.244 | −0.290 | −15.813 | 0.000 | 0.000 | 1.000 | ||
icy7 | 29.811 | 20.608 | 47.246 | 1.518 | 6.956 | 0.233 | diff = mean (icy7) − mean (ico7) | |||
ico7 | 111.322 | 85.824 | 146.177 | 3.517 | 16.116 | 0.145 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −81.511 | 3.677 | 16.852 | −0.207 | −22.165 | 0.000 | 0.000 | 1.000 | ||
icy8 | 22.039 | 15.370 | 34.274 | 1.054 | 4.831 | 0.219 | diff = mean (icy8) − mean (ico8) | |||
ico8 | 80.377 | 58.341 | 112.352 | 3.059 | 14.018 | 0.174 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −58.338 | 3.001 | 13.751 | −0.236 | −19.442 | 0.000 | 0.000 | 1.000 | ||
icy9 | 9.123 | 5.198 | 17.153 | 0.589 | 2.700 | 0.296 | diff = mean (icy9) − mean (ico9) | |||
ico9 | 30.196 | 10.685 | 38.318 | 1.382 | 6.334 | 0.210 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −21.073 | 1.269 | 5.815 | −0.276 | −16.607 | 0.000 | 0.000 | 1.000 | ||
icy10 | 6.439 | 1.827 | 18.548 | 0.936 | 4.291 | 0.666 | diff = mean (icy10) − mean (ico10) | |||
ico10 | 18.155 | 6.532 | 46.334 | 2.126 | 9.743 | 0.537 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −11.715 | 1.515 | 6.943 | −0.593 | −7.7324 | 0.000 | 0.000 | 1.000 | ||
icy11 | 4.610 | 2.613 | 8.035 | 0.309 | 1.415 | 0.307 | diff = mean (icy11) − mean (ico11) | |||
ico11 | 17.918 | 9.588 | 40.741 | 1.506 | 6.901 | 0.385 | t | Pr (T < t) | Pr (ITI > t) | Pr (T > t) |
Difference | −13.308 | 1.276 | 5.848 | −0.439 | −10.428 | 0.000 | 0.000 | 1.000 |
Size | |||||||
---|---|---|---|---|---|---|---|
SI | Estimate | Std. Err. | t Value | Pr > (ItI) | Number of obs. | = | 21 |
(Intercep) | 0.114 | 0.016 | 7.030 | 0.000 | F(4,16) | = | 3.580 |
S1 | 0.012 | 0.004 | 3.000 | 0.009 | Prob > F | = | 0.029 |
S2 | −0.014 | 0.005 | −2.710 | 0.016 | R-squared | = | 0.472 |
S3 | −0.005 | 0.003 | −1.900 | 0.075 | Adj. R-squared | = | 0.340 |
S4 | 0.005 | 0.003 | 1.480 | 0.158 | Root MSE | = | 0.027 |
Educational level and Experience in the Agricultural Sector | |||||||
SI | Estimate | Std. Err. | T Value | Pr > (ItI) | Number of obs. | = | 21 |
(Intercep) | 0.139 | 0.015 | 9.200 | 0.000 | F(13,7) | = | 2.130 |
E1 | 0.018 | 0.016 | 1.160 | 0.284 | Prob > F | = | 0.160 |
E2 | 0.055 | 0.109 | 0.500 | 0.631 | R-squared | = | 0.7982 |
E3 | 0.211 | 0.178 | 1.180 | 0.275 | Adj. R-squared | = | 0.4235 |
E4 | 0.002 | 0.012 | 0.200 | 0.850 | Root MSE | = | 0.02532 |
E5 | 0.033 | 0.028 | 1.150 | 0.287 | |||
E6 | 0.026 | 0.031 | 0.840 | 0.428 | |||
E7 | 0.012 | 0.091 | 0.130 | 0.902 | |||
E8 | −0.017 | 0.014 | −1.230 | 0.257 | |||
E9 | 0.069 | 0.042 | 1.660 | 0.141 | |||
E10 | 0.008 | 0.006 | 1.410 | 0.202 | |||
E11 | 0.000 | 0.023 | 0.020 | 0.983 | |||
E12 | −0.104 | 0.110 | −0.950 | 0.374 | |||
E13 | −0.318 | 0.367 | −0.870 | 0.415 | |||
Organic | |||||||
SI | Estimate | Std. Err. | T Value | Pr > (ItI) | Number of obs. | = | 21 |
(Intercep) | 0.127 | 0.010 | 12.270 | 0.000 | F(2,18) | = | 3.780 |
O1 | 0.003 | 0.002 | 1.750 | 0.097 | Prob > F | = | 0.043 |
O2 | −0.006 | 0.002 | −2.750 | 0.013 | R-squared | = | 0.296 |
Adj. R-squared | = | 0.217 | |||||
Root MSE | = | 0.030 | |||||
Innovation and Computerisation | |||||||
SI | Estimate | Std. Err. | t Value | Pr > (ItI) | Number of obs. | = | 21 |
(Intercep) | 0.130 | 0.015 | 8.510 | 0.000 | F(11,9) | = | 1.060 |
IC1 | 0.019 | 0.024 | 0.790 | 0.450 | Prob > F | = | 0.476 |
IC2 | 0.000 | 0.006 | 0.010 | 0.993 | R-squared | = | 0.563 |
IC3 | −0.027 | 0.021 | −1.250 | 0.243 | Adj. R-squared | = | 0.030 |
IC4 | −0.027 | 0.033 | −0.830 | 0.430 | Root MSE | = | 0.033 |
IC5 | 0.018 | 0.019 | 0.940 | 0.371 | |||
IC6 | −0.018 | 0.032 | −0.560 | 0.586 | |||
IC7 | 0.121 | 0.108 | 1.120 | 0.292 | |||
IC8 | −0.057 | 0.081 | −0.700 | 0.499 | |||
IC9 | −0.043 | 0.025 | −1.690 | 0.125 | |||
IC10 | 0.005 | 0.009 | 0.550 | 0.594 | |||
IC11 | 0.006 | 0.022 | 0.250 | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, R.M. Barriers and Drivers Underpinning Newcomers in Agriculture: Evidence from Italian Census Data. Sustainability 2023, 15, 10755. https://doi.org/10.3390/su151410755
Fanelli RM. Barriers and Drivers Underpinning Newcomers in Agriculture: Evidence from Italian Census Data. Sustainability. 2023; 15(14):10755. https://doi.org/10.3390/su151410755
Chicago/Turabian StyleFanelli, Rosa Maria. 2023. "Barriers and Drivers Underpinning Newcomers in Agriculture: Evidence from Italian Census Data" Sustainability 15, no. 14: 10755. https://doi.org/10.3390/su151410755
APA StyleFanelli, R. M. (2023). Barriers and Drivers Underpinning Newcomers in Agriculture: Evidence from Italian Census Data. Sustainability, 15(14), 10755. https://doi.org/10.3390/su151410755