Sustainable Development in the Export Trade from a Symbiotic Perspective on Carbon Emissions, Exemplified by the Case of Guangdong, China
Abstract
:1. Introduction
2. Literature Review
2.1. Carbon Emissions Hypothesis in Foreign Trade
2.2. The Relationship between Foreign Trade and Carbon Emissions
2.3. Pathways for Carbon Reduction in Foreign Trade
3. Methods and Data
3.1. Research Samples
3.1.1. Carbon Emission Measurement Methods
3.1.2. Carbon Emission Measurement and Descriptive Analysis
3.2. An Empirical Study on the Relationship between Export Trade and Carbon Emissions
3.2.1. Econometric Model Construction and Description of Variables
3.2.2. OLS Model Estimation and Significance Test
3.2.3. Management Insights
3.3. Symbiotic Systems for Export Trade and Carbon Emissions
- (1)
- When β12 = 0, β21 = 0, the two variables develop independently and the variables have no influence on each other.
- (2)
- When β12 < 0, β21 < 0, these two variables are in competition with each other. One grows while the other declines.
- (3)
- When β12 > 0, β21 < 0, or β12 < 0, β21 > 0, one variable is dependent on the other during the symbiotic evolution of the variables, exhibiting a parasitic pattern.
- (4)
- When β12 > 0, β21 = 0, or β12 = 0, β21 > 0, the ecosystem is currently in a partially beneficial symbiotic mode.
- (5)
- When β12 > 0 and β21 > 0, the variables are in a mutually beneficial symbiosis mode.
3.4. Optimization of the Symbiotic System of Export Trade and Carbon Emissions Based on LV MCGP Model
3.4.1. Energy Consumption Scale and Structure Optimization under the Dual Constraints of Export Trade and Carbon Emissions
3.4.2. Optimization of Export Trade Scale under Carbon Emission Constraints
3.4.3. Optimization of the Carbon Emissions Scale under Export Trade Constraints
4. Discussion
5. Conclusions
5.1. Results
5.2. Management Inspiration
5.3. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walter, I.; Ugelow, J. Environment Policies in Developing Countries. Ambio 1979, 8, 102–109. [Google Scholar]
- Baumol, W.J.; Baumol, W.J.; Oates, W.E.; Bawa, V.S.; Bawa, W.S.; Bradford, D.F. The Theory of Environmental Policy; Cambridge University Press: Cambridge, UK, 1988; p. 11. [Google Scholar]
- Leonard, H.J.; Duerksen, C.J. Environmental Regulations and the Location of Industry: An International Perspective. Environ. Manag. 1981, 5, 385–395. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a North American free trade agreement. Natl. Bur. Econ. Res. 1991, w3914, 1–57. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; ILO Working Paper, No 292778; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Lopez, R. The environment as a factor of production: The effects of economic growth and trade liberalization. J. Environ. Econ. Manag. 1994, 27, 163–184. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. Trade, Growth, and the Environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. North-South Trade and the Environment. Q. J. Econ. 1994, 109, 755–787. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is Free Trade Good for the Environment. Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Managi, S. Trade liberalization and the environment: Carbon Dioxide for 1960–1999. Econ. Bull. 2004, 17, 1–5. [Google Scholar]
- Pu, Z.; Yue, S.; Gao, P. The driving factors of China’s embodied carbon emissions: A study from the perspectives of inter-provincial trade and international trade. Technol. Forecast. Soc. Chang. 2020, 153, 119930. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, L.; Cheng, B.; Yu, C. How does foreign trade influence China’s carbon productivity? Based on panel spatial lag model analysis. Struct. Chang. Econ. Dyn. 2018, 47, 171–179. [Google Scholar] [CrossRef]
- Kim, D.H.; Suen, Y.B.; Lin, S.-C. Carbon dioxide emissions and trade: Evidence from disaggregate trade data. Energy Econ. 2018, 78, 13–28. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Tang, Y. Drivers of carbon emission transfer in China—An analysis of international trade from 2004 to 2011. Sci. Total Environ. 2020, 709, 135924. [Google Scholar] [CrossRef]
- Essandoh, O.K.; Islam, M.; Kakinaka, M. Linking international trade and foreign direct investment to CO2 emissions: Any differences between developed and developing countries. Sci. Total Environ. 2020, 712, 136437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, F. The effects of trade openness on decoupling carbon emissions from economic growth—Evidence from 182 countries. J. Clean. Prod. 2020, 279, 123838. [Google Scholar] [CrossRef]
- Aller, C.; Ductor, L.; Herrerias, M.J. The world trade network and the environment. Energy Econ. 2015, 52, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.C. Measurement and Comparison of Emission Transfer and Employment Transfer from the Perspective of Global Value Chain. Master’s Thesis, Hunan University, Changsha, China, 2018. [Google Scholar]
- Jiang, X.M.; Liu, Y.F. Research on the Pattern Change of Carbon Emission Embodied in International Trade and Its Determinants. Stat. Res. 2013, 30, 31–36. [Google Scholar]
- Meng, B.; Peters, G.P.; Wang, Z.; Li, M. Tracing CO2 emissions in global value chains. Energy Econ. 2018, 73, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, Y.; Liao, C.; Ai, H.; Yang, X. What contributes to the growth of China’s embodied CO2 emissions? Incorporating the global value chains concept. Appl. Econ. 2022, 54, 1335–1351. [Google Scholar] [CrossRef]
- Bai, S.K.; Ning, Y.D.; Zhang, B.Y. Estimating the environmental and employment impacts of China’s value-added trade from the perspective of value chain routes. Environ. Sci. Pollut. Res. 2022, 29, 73414–73443. [Google Scholar] [CrossRef]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.M.; Chen, Q.R.; Guan, D.B.; Zhu, K.; Yang, C. Revisiting the Global Net Carbon Dioxide Emission Transfers by International Trade the Impact of Trade Heterogeneity of China. Ind. Ecol. 2016, 20, 506–514. [Google Scholar] [CrossRef]
- Duan, Y.W.; Jiang, X.M. Pollution Haven or Pollution Halo? A Re-Evaluation on the Role of Multinational Enterprises in Global CO2 Emissions. Energy Econ. 2021, 97, 105181. [Google Scholar] [CrossRef]
- López, L.A.; Arce, G.; Kronenberg, T.; Rodrigues, J.F. Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. J. Clean. Prod. 2018, 175, 599–611. [Google Scholar] [CrossRef]
- Zhang, J. Carbon emission, energy consumption and intermediate goods trade: A regional study of East Asia. Energy Policy 2015, 86, 118–122. [Google Scholar] [CrossRef]
- Liu, W.; Ning, Y.; Bai, S.; Zhang, B. The Impact of Trade on Carbon Emissions and Employment from the Perspective of Global Value Chains—A Case Study of Chinese–Japanese–Korean Trade. Energies 2023, 16, 2378. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Fang, Y.; Song, A. Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China. Sustainability 2022, 14, 8034. [Google Scholar] [CrossRef]
- Li, G.; Hou, C.; Zhou, X. Carbon Neutrality, International Trade, and Agricultural Carbon Emission Performance in China. Front. Environ. Sci. 2022, 10, 931937. [Google Scholar] [CrossRef]
- Guangdong Provincial Statistical Yearbook. Available online: http://stats.gd.gov.cn/tjsj186/index.html (accessed on 1 April 2023).
- Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 1926, 118, 558–560. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Daniel, A.; Mc Adams, V. Technology evolution prediction using Lotka-Volterra Equations. J. Mech. Des. 2018, 140, 61–101. [Google Scholar] [CrossRef] [Green Version]
- Modis, T. Technological forecasting at the stock market. Technol. Forecast. Soc. Chang. 1999, 62, 173–202. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Ku, C.; Ho, H. Fuzzy multi-choice goal programming for supplier selection. Int. J. Oper. Res. Inf. Syst. 2010, 1, 28–52. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Chen, W.M.; Liu, Y. Collaborative Product Portfolio Design Based on the Approach of Multi choice Goal Programming. Math. Probl. Eng. 2021, 2021, 6678533. [Google Scholar]
- Wu, X.L.; Wang, S.Y.; Liu, Y.Z.; Ling, J.; Yu, X. Competition Equilibrium Analysis of China’s Luxury Car Market Based on Three-Dimensional Grey Lotka–Volterra Model. Complexity 2021, 2021, 7566653. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, W.M.; Wang, R.; Zhao, T. Study on the Coordinated Development of Urbanization and Water Resources Utilization Efficiency in China. Water Supply 2022, 22, 749–765. [Google Scholar] [CrossRef]
- Wang, S.Y. Exploring the Sustainability of China’s New Energy Vehicle Development: Fresh Evidence from Population Symbiosis. Sustainability 2022, 14, 10796. [Google Scholar] [CrossRef]
Year | Total Imports and Exports (CNY Billion) | Exports (CNY Billion) | Export Growth Rate |
---|---|---|---|
2000 | 14,082.06 | 7609.42 | 18.29% |
2001 | 14,608.01 | 7898.09 | 3.79% |
2002 | 18,299.78 | 9804.77 | 24.14% |
2003 | 23,467.12 | 12,651.23 | 29.03% |
2004 | 29,559.57 | 15,856.17 | 25.33% |
2005 | 35,121.8 | 19,542.06 | 23.25% |
2006 | 42,114.53 | 24,119.13 | 23.42% |
2007 | 48,445.43 | 28,210.96 | 16.97% |
2008 | 47,869.07 | 28,342.66 | 0.47% |
2009 | 41,736.14 | 24,517.4 | −13.50% |
2010 | 53,203.22 | 30,718.98 | 25.29% |
2011 | 59,276.15 | 34,519.93 | 12.37% |
2012 | 62,123.46 | 36,242.5 | 4.99% |
2013 | 67,806.1 | 39,513.95 | 9.03% |
2014 | 66,137.28 | 39,693.38 | 0.45% |
2015 | 63,559.7 | 39,983.1 | 0.73% |
2016 | 63,099.68 | 39,520.54 | −1.16% |
2017 | 68,168.86 | 42,192.86 | 6.76% |
2018 | 71,645.73 | 42,744.06 | 1.31% |
2019 | 71,484.39 | 43,416.04 | 1.57% |
2020 | 70,862.64 | 43,493.07 | 0.18% |
2021 | 82,681.56 | 50,525.46 | 16.17% |
Energy Types | Coal | Oil | Natural Gas | Gasoline | Paraffin | Diesel | Fuel Oil |
---|---|---|---|---|---|---|---|
Carbon emission factor | 0.75 | 0.84 | 0.60 | 0.81 | 0.84 | 0.86 | 0.88 |
Year | Coal Consumption (Million Tons of Standard Coal) | Oil Consumption (Million Tons of Standard Coal) | Natural Gas Consumption (Million Tons of Standard Coal) | Carbon Emissions (Million Tons of Standard Coal) |
---|---|---|---|---|
2000 | 4167.37 | 2794.21 | 15.97 | 5459.33 |
2001 | 4289.04 | 2777.66 | 17.00 | 5526.87 |
2002 | 4689.89 | 2801.28 | 18.50 | 5846.06 |
2003 | 5597.22 | 2992.16 | 20.92 | 6695.93 |
2004 | 6174.75 | 3411.73 | 24.03 | 7480.08 |
2005 | 6909.71 | 3415.60 | 39.26 | 8041.40 |
2006 | 7701.62 | 4003.62 | 198.65 | 9219.66 |
2007 | 9018.93 | 4197.27 | 607.04 | 10,608.88 |
2008 | 8981.00 | 4349.07 | 724.84 | 10,777.65 |
2009 | 8944.67 | 5289.86 | 1038.74 | 11,724.25 |
2010 | 9917.85 | 6363.22 | 1250.70 | 13,475.12 |
2011 | 11,705.86 | 6295.98 | 1492.38 | 14,898.46 |
2012 | 11,036.98 | 6446.17 | 1522.34 | 14,542.26 |
2013 | 11,567.95 | 6756.28 | 1620.51 | 15,256.71 |
2014 | 11,203.06 | 6819.25 | 1743.27 | 15,109.92 |
2015 | 10,853.86 | 6992.91 | 1916.97 | 15,097.75 |
2016 | 10,764.44 | 7213.87 | 2197.98 | 15,383.11 |
2017 | 11,321.20 | 7430.45 | 2398.81 | 16,099.75 |
2018 | 11,217.53 | 8473.46 | 2502.84 | 16,956.54 |
2019 | 10,644.06 | 8060.85 | 2707.70 | 16,305.11 |
2020 | 10,272.10 | 8926.56 | 3380.28 | 17,151.83 |
2021 | 12,677.46 | 9707.31 | 4129.23 | 20,047.66 |
Variables | Test Type (C T K) | ADF Test | T | P | Test Results |
---|---|---|---|---|---|
LNY | (C, NT, 4) | −1.58 | −3.01 | 0.47 | stationary |
LNEX | (C, T, 4) | −3.90 | −3.66 | 0.03 | stationary ** |
LNS | (C, T, 4) | −1.43 | −3.64 | 0.82 | non-stationary |
LNT | (C, T, 4) | −3.46 | −3.66 | 0.07 | non-stationary |
DLNY | (C, NT, 4) | −2.91 | −3.02 | 0.06 | stationary *** |
DLNEX | (NC, NT, 4) | −2.87 | −1.96 | 0.01 | stationary ** |
DLNS | (NC, NT, 4) | −2.43 | −1.96 | 0.02 | stationary ** |
DLNT | (C, NT, 4) | −4.17 | −3.03 | 0.01 | stationary ** |
Hypothesized No. of CE(s) | Eigenvalue | Trace Statistics | 5% Critical Value | P | Maximum Eigenvalue | 5% Critical Value | P |
---|---|---|---|---|---|---|---|
none * | 0.97 | 103.17 | 47.86 | 0.00 | 65.73 | 27.58 | 0.00 |
At most 1 * | 0.71 | 37.44 | 29.80 | 0.01 | 23.80 | 21.13 | 0.02 |
At most 2 | 0.41 | 13.63 | 15.49 | 0.09 | 10.12 | 14.26 | 0.20 |
At most 3 | 0.17 | 3.52 | 3.84 | 0.06 | 3.52 | 3.84 | 0.06 |
LNY | LNEX | LNS | LNT |
---|---|---|---|
1.00 | −0.53 | 3.79 | 1.66 |
−0.03 | −0.06 | −0.02 |
Time Series | α | γ1 | γ2 | Equilibrium Point | |
---|---|---|---|---|---|
2000–2020 | N1 | 0.093 (0.983) | −2.682 × 10−5 (−3.091) *** | 6.543 × 10−5 (2.598) *** | 60,173 |
N2 | 0.125 (1.507) * | 3.209 × 10−6 (0.142) | −3.329 × 10−6 (−0.440) | 23,238 |
Year | Equilibrium Value | Actual Observations | Year | Equilibrium Value | Actual Observations |
---|---|---|---|---|---|
2000 | 14,134 | 7609 | 2011 | 38,572 | 34,520 |
2001 | 14,309 | 7898 | 2012 | 37,650 | 36,243 |
2002 | 15,135 | 9805 | 2013 | 39,500 | 39,514 |
2003 | 17,336 | 12,651 | 2014 | 39,120 | 39,693 |
2004 | 19,366 | 15,856 | 2015 | 39,088 | 39,983 |
2005 | 20,819 | 19,542 | 2016 | 39,827 | 39,521 |
2006 | 23,870 | 24,119 | 2017 | 41,682 | 42,193 |
2007 | 27,466 | 28,211 | 2018 | 43,900 | 42,744 |
2008 | 27,903 | 28,343 | 2019 | 42,214 | 43,416 |
2009 | 30,354 | 24,517 | 2020 | 44,406 | 43,493 |
2010 | 34,887 | 30,719 | 2021 | 51,903 | 50,525 |
α | γ1 | γ2 | γ3 | γ4 |
---|---|---|---|---|
0.313 (2.258) ** | −2.543 × 10−5 (−3.234) *** | 7.323 × 10−6 (0.284) | 7.558 × 10−5 (1.613) * | 4.957 × 10−5 (0.599) |
Year | Export (CNY 100 Million) | Carbon Emissions (10 Thousand Tons) | Coal Consumption (10,000 Tons of SCE) | Oil Consumption (10,000 Tons of SCE) | Natural Gas Consumption (10,000 Tons of SCE) | |||
---|---|---|---|---|---|---|---|---|
Actual Value | Actual Value | Actual Value | Optimization Value | Actual Value | Optimization Value | Actual Value | Optimization Value | |
2021 | 50,525 | 20,048 | 12,677 | 13,834 | 9707 | 11,514 | 4129 | 0 |
2020 | 43,493 | 17,152 | 10,272 | 12,475 | 8927 | 9280 | 3380 | 0 |
2019 | 43,416 | 16,305 | 10,644 | 11,241 | 8061 | 9373 | 2708 | 0 |
2018 | 42,744 | 16,957 | 11,218 | 12,500 | 8473 | 9025 | 2503 | 0 |
2017 | 42,193 | 16,100 | 11,321 | 11,451 | 7430 | 8941 | 2399 | 0 |
2016 | 39,521 | 15,383 | 10,764 | 11,508 | 7214 | 8037 | 2198 | 0 |
2015 | 39,983 | 15,098 | 10,854 | 10,877 | 6993 | 8252 | 1917 | 0 |
2014 | 39,693 | 15,110 | 11,203 | 11,027 | 6819 | 8141 | 1743 | 0 |
2013 | 39,514 | 15,257 | 11,568 | 11,323 | 6756 | 8052 | 1621 | 0 |
2012 | 36,243 | 14,542 | 11,037 | 11,636 | 6446 | 6922 | 1522 | 0 |
2011 | 34,520 | 14,898 | 11,706 | 12,896 | 6296 | 6220 | 1492 | 0 |
2010 | 30,719 | 13,475 | 9918 | 12,375 | 6363 | 4992 | 1251 | 0 |
2009 | 24,517 | 11,724 | 8945 | 12,377 | 5290 | 2905 | 1039 | 0 |
2008 | 28,343 | 10,778 | 8981 | 9346 | 4349 | 4485 | 725 | 0 |
2007 | 28,211 | 10,609 | 9019 | 9149 | 4197 | 4460 | 607 | 0 |
2006 | 24,119 | 9220 | 7702 | 8801 | 4004 | 3117 | 199 | 0 |
2005 | 19,542 | 8041 | 6910 | 8972 | 3416 | 1561 | 39 | 0 |
2004 | 15,856 | 7480 | 6175 | 9691 | 3412 | 251 | 24 | 0 |
2003 | 12,651 | 6696 | 5597 | 8928 | 2992 | 0 | 21 | 0 |
2002 | 9805 | 5846 | 4690 | 7794 | 2801 | 0 | 19 | 0 |
2001 | 7898 | 5527 | 4289 | 7369 | 2778 | 0 | 17 | 0 |
2000 | 7609 | 5459 | 4167 | 7278 | 2794 | 0 | 16 | 0 |
Year | Carbon Emissions (10,000 Tons) | Export (CNY 100 Million) | Coal Consumption (10,000 Tons of SCE) | Oil Consumption (10,000 Tons of SCE) | Natural Gas Consumption (10,000 Tons of SCE) | ||||
---|---|---|---|---|---|---|---|---|---|
Actual Value | Actual Value | Optimization Value | Actual Value | Optimization Value | Actual Value | Optimization Value | Actual Value | Optimization Value | |
2021 | 20,048 | 50,525 | 84,938 | 12,677 | 2564 | 9707 | 21,577 | 4129 | 3972 |
2020 | 17,152 | 43,493 | 75,472 | 10,272 | 2059 | 8927 | 18,580 | 3380 | 3760 |
2019 | 16,305 | 43,416 | 72,518 | 10,644 | 2049 | 8061 | 17,580 | 2708 | 3771 |
2018 | 16,957 | 42,744 | 74,852 | 11,218 | 2006 | 8473 | 18,395 | 2503 | 3732 |
2017 | 16,100 | 42,193 | 71,870 | 11,321 | 2000 | 7430 | 17,380 | 2399 | 3750 |
2016 | 15,383 | 39,521 | 69,374 | 10,764 | 1995 | 7214 | 16,531 | 2198 | 3766 |
2015 | 15,098 | 39,983 | 68,382 | 10,854 | 1993 | 6993 | 16,193 | 1917 | 3772 |
2014 | 15,110 | 39,693 | 68,424 | 11,203 | 1993 | 6819 | 16,207 | 1743 | 3772 |
2013 | 15,257 | 39,514 | 68,936 | 11,568 | 1994 | 6756 | 16,382 | 1621 | 3769 |
2012 | 14,542 | 36,243 | 66,447 | 11,037 | 1990 | 6446 | 15,535 | 1522 | 3784 |
2011 | 14,898 | 34,520 | 67,686 | 11,706 | 1992 | 6296 | 15,956 | 1492 | 3777 |
2010 | 13,475 | 30,719 | 62,734 | 9918 | 1983 | 6363 | 14,271 | 1251 | 3808 |
2009 | 11,724 | 24,517 | 53,244 | 8945 | 1276 | 5290 | 12,817 | 1039 | 1259 |
2008 | 10,778 | 28,343 | 49,995 | 8981 | 1251 | 4349 | 11,713 | 725 | 1280 |
2007 | 10,609 | 28,211 | 49,414 | 9019 | 1247 | 4197 | 11,516 | 607 | 1283 |
2006 | 9220 | 24,119 | 44,643 | 7702 | 1210 | 4004 | 9895 | 199 | 1313 |
2005 | 8041 | 19,542 | 40,593 | 6910 | 1180 | 3416 | 8519 | 39 | 1339 |
2004 | 7480 | 15,856 | 38,473 | 6175 | 321 | 3412 | 8617 | 24 | 227 |
2003 | 6696 | 12,651 | 35,713 | 5597 | 316 | 2992 | 7688 | 21 | 228 |
2002 | 5846 | 9805 | 32,721 | 4690 | 310 | 2801 | 6681 | 19 | 229 |
2001 | 5527 | 7898 | 24,145 | 4289 | 3268 | 2778 | 3661 | 17 | 0 |
2000 | 5459 | 7609 | 23,999 | 4167 | 3228 | 2794 | 3616 | 16 | 0 |
Year | Export (CNY 100 Million) | Carbon Emissions (10 Thousand Tons) | Carbon Emissions (10 Thousand Tons) | Coal Consumption (10,000 Tons of SCE) | Oil Consumption (10,000 Tons of SCE) | Natural Gas Consumption (10,000 Tons of SCE) | |||
---|---|---|---|---|---|---|---|---|---|
Actual Value | Actual Value | Optimization Value | Actual Value | Optimization Value | Actual Value | Optimization Value | Actual Value | Optimization Value | |
2021 | 50,525 | 20,048 | 8463 | 12,677 | 761 | 9707 | 9396 | 4129 | 5158 |
2020 | 43,493 | 17,152 | 6862 | 10,272 | 635 | 8927 | 7602 | 3380 | 4305 |
2019 | 43,416 | 16,305 | 6844 | 10,644 | 633 | 8061 | 7582 | 2708 | 4296 |
2018 | 42,744 | 16,957 | 6691 | 11,218 | 621 | 8473 | 7411 | 2503 | 4213 |
2017 | 42,193 | 16,100 | 6566 | 11,321 | 611 | 7430 | 7271 | 2399 | 4146 |
2016 | 39,521 | 15,383 | 5960 | 10,764 | 563 | 7214 | 6592 | 2198 | 3817 |
2015 | 39,983 | 15,098 | 6065 | 10,854 | 571 | 6993 | 6709 | 1917 | 3874 |
2014 | 39,693 | 15,110 | 5999 | 11,203 | 566 | 6819 | 6636 | 1743 | 3838 |
2013 | 39,514 | 15,257 | 5958 | 11,568 | 563 | 6756 | 6590 | 1621 | 3816 |
2012 | 36,243 | 14,542 | 5218 | 11,037 | 503 | 6446 | 5762 | 1522 | 3410 |
2011 | 34,520 | 14,898 | 4828 | 11,706 | 471 | 6296 | 5327 | 1492 | 3194 |
2010 | 30,719 | 13,475 | 3973 | 9918 | 400 | 6363 | 4372 | 1251 | 2711 |
2009 | 24,517 | 11,724 | 2601 | 8945 | 275 | 5290 | 2850 | 1039 | 1868 |
2008 | 28,343 | 10,778 | 3417 | 8981 | 362 | 4349 | 3744 | 725 | 2455 |
2007 | 28,211 | 10,609 | 3389 | 9019 | 359 | 4197 | 3713 | 607 | 2434 |
2006 | 24,119 | 9220 | 2516 | 7702 | 266 | 4004 | 2757 | 199 | 1807 |
2005 | 19,542 | 8041 | 1540 | 6910 | 163 | 3416 | 1687 | 39 | 1106 |
2004 | 15,856 | 7480 | 1500 | 6175 | 887 | 3412 | 993 | 24 | 0 |
2003 | 12,651 | 6696 | 1400 | 5597 | 828 | 2992 | 927 | 21 | 50 |
2002 | 9805 | 5846 | 1231 | 4690 | 728 | 2801 | 815 | 19 | 0 |
2001 | 7898 | 5527 | 1101 | 4289 | 651 | 2778 | 729 | 17 | 0 |
2000 | 7609 | 5459 | 930 | 4167 | 550 | 2794 | 616 | 16 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Pan, M.; Wu, X. Sustainable Development in the Export Trade from a Symbiotic Perspective on Carbon Emissions, Exemplified by the Case of Guangdong, China. Sustainability 2023, 15, 9667. https://doi.org/10.3390/su15129667
Wang S, Pan M, Wu X. Sustainable Development in the Export Trade from a Symbiotic Perspective on Carbon Emissions, Exemplified by the Case of Guangdong, China. Sustainability. 2023; 15(12):9667. https://doi.org/10.3390/su15129667
Chicago/Turabian StyleWang, Shengyuan, Meixia Pan, and Xiaolan Wu. 2023. "Sustainable Development in the Export Trade from a Symbiotic Perspective on Carbon Emissions, Exemplified by the Case of Guangdong, China" Sustainability 15, no. 12: 9667. https://doi.org/10.3390/su15129667
APA StyleWang, S., Pan, M., & Wu, X. (2023). Sustainable Development in the Export Trade from a Symbiotic Perspective on Carbon Emissions, Exemplified by the Case of Guangdong, China. Sustainability, 15(12), 9667. https://doi.org/10.3390/su15129667