We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam
Abstract
:1. Introduction
2. Eating the Rivers
2.1. Background
2.2. Installed Hydropower in Vietnam
2.3. Can We Eat More?
3. Histories of Hydropower
3.1. Early Water Control
3.2. The Origins of a Hydro-Developmentalist Ideology
3.3. The Turn to Megaprojects
3.4. Hydropower and Energy Security
3.5. The Evolution of a Hydro-Industrial Complex
3.6. The Wages of Hydropower
3.7. Sustainable Hydropower?
3.8. Powering a Nation
3.9. Overview
4. Consequences of Hydropower Development
4.1. Carbon Footprint
4.2. Forest Loss and Degradation
4.3. Disruption of Environmental Flows and Ecological Habitat
4.4. Natural and Anthropogenic Hazards
4.5. Societal Impacts
5. The Theater of Decarbonization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Condominas, G. Nous Avons Mangé La Forêt; Mercure de France: Paris, France, 1957. [Google Scholar]
- Bakker, K. The Politics of Hydropower: Developing the Mekong. Political Geogr. 1999, 18, 209–232. [Google Scholar] [CrossRef]
- Hirsch, P. The Changing Political Dynamics of Dam Building on the Mekong. Water Altern. 2010, 3, 312–323. [Google Scholar]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower Dams of the Mekong River Basin: A Review of Their Hydrological Impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Soukhaphon, A.; Baird, I.G.; Hogan, Z.S. The Impacts of Hydropower Dams in the Mekong River Basin: A Review. Water 2021, 13, 265. [Google Scholar] [CrossRef]
- Middleton, C.; Allouche, J. Watershed or Powershed? Critical Hydropolitics, China and the ‘Lancang-Mekong Cooperation Framework.’ Int. Spect. 2016, 51, 100–117. [Google Scholar] [CrossRef]
- IHA. Hydropower Status Report; International Hydropower Association: Paris, France, 2022. [Google Scholar]
- White, R. The Organic Machine: The Remaking of the Columbia River; A Critical Issue; 6. Printing; Hill and Wang: New York, NY, USA, 2001; ISBN 978-0-8090-1583-2. [Google Scholar]
- Pritchard, S.B. Confluence: The Nature of Technology and the Remaking of the Rhône; Harvard Historical Studies; Harvard University Press: Cambridge, MA, USA, 2011; ISBN 978-0-674-04965-9. [Google Scholar]
- Carew-Reid, J.; Kempinski, J.; Clausen, A. Biodiversity and Development of the Hydropower Sector: Lessons from the Vietnamese Experience—Volume I: Review of the Effects of Hydropower Development on Biodiversity in Vietnam; International Centre for Environmental Management: Hanoi, Vietnam, 2010. [Google Scholar]
- Dao, N. Damming Rivers in Vietnam: A Lesson Learned in the Tây Bắc Region. J. Vietnam. Stud. 2011, 6, 106–140. [Google Scholar] [CrossRef]
- Pham, H.T. Dilemmas of Hydropower Development in Vietnam: Between Dam-Induced Displacement and Sustainable Development. Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands, 2014. [Google Scholar]
- Ministry of Natural Resources and Environment. Danh Mục Giá Trị Dòng Chảy Tối Thiểu ở Hạ Du Các Hồ Chứa, Đập Dâng Ban Hành Kèm Theo Quyết Định Số 1609/QĐ-BTNMT (List of Maximum and Miminum Flow Standards of Reservoirs and Barrages); Appendix to Decree Number 1609/QĐ-BTNMT of the Ministry of Natural Resources and the Environment; Ministry of Natural Resources and the Environment: Hanoi, Vietnam, 2022.
- RFA Bộ Công Thương Nói Loại Bỏ Hàng Trăm Thủy Điện Nhỏ Khỏi Quy Hoạch: Chạy Tội Phá Rừng? (Ministry of Industry and Trade Said to Remove Hundreds of Small Hydroelectricity from Planning: Will It Effect the Crime of Deforestation?). Radio Free Asia 2020. Available online: https://www.rfa.org/vietnamese/in_depth/eliminate-many-small-hydroelectricity-but-who-is-responsible-for-deforestation-10202020132758.html (accessed on 20 October 2022).
- IEA. Hydropower Data Explore; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Nguyen, V.D.S. The Political Economy of Hydropower Dam Construction in Vietnam; Stimson Center: Washington, DC, USA, 2008. [Google Scholar]
- Middleton, C.; Grundy-Warr, C.; Yong, M. Neoliberalizing Hydropower in the Mekong Basin: The Political Economy of Partial Enclosure. Soc. Sci. J. 2013, 43, 299–334. [Google Scholar]
- Baird, I.G. Non-Government Organizations, Villagers, Political Culture and the Lower Sesan 2 Dam in Northeastern Cambodia. Crit. Asian Stud. 2016, 48, 257–277. [Google Scholar] [CrossRef]
- Wyatt, A.B.; Baird, I.G. Transboundary Impact Assessment in the Sesan River Basin: The Case of the Yali Falls Dam. Int. J. Water Resour. Dev. 2007, 23, 427–442. [Google Scholar] [CrossRef]
- IHA. Vietnam Profile; International Hydropower Association: Paris, France, 2014. [Google Scholar]
- Dang, D.T. Phát Triển Thủy Điện ở Việt Nam: Tiềm Năng và Thách Thức (Hydropower Development in Vietnam: Potential and Challenges). Năng lượng Việt Nam 2017. Available online: https://nangluongvietnam.vn/phat-trien-thuy-dien-o-viet-nam-tiem-nang-va-thach-thuc-19934.html (accessed on 20 October 2022).
- EVN. Overview of Hydropower in Vietnam; Electricity Vietnam: Hanoi, Vietnam, 2019. [Google Scholar]
- Xu, R.; Zeng, Z.; Pan, M.; Ziegler, A.D.; Holden, J. A Global-Scale Framework for Hydropower Development Incorporating Strict Environmental Constraints. Nat. Water 2023, 1, 113–122. [Google Scholar] [CrossRef]
- Tana, L. The Sea Becomes Mulberry Fields and Mulberry Fields Become the Sea’: Dikes in the Eastern Red River Delta, c.200 BCE to the Twenty-First Century CE. In Natural Hazards and Peoples in the Indian Ocean World; Bankoff, G., Christensen, J., Eds.; Palgrave Series in Indian Ocean World Studies; Palgrave Macmillan US: New York, NY, USA, 2016; pp. 55–78. ISBN 978-1-349-94856-7. [Google Scholar]
- Biggs, D. Problematic Progress: Reading Environmental and Social Change in the Mekong Delta. J. Southeast Asian Stud. 2003, 34, 77–96. [Google Scholar] [CrossRef]
- Biggs, D.A. Quagmire: Nation-Building and Nature in the Mekong Delta; Weyerhaeuser Environmental Books; First Paperback Edition; University of Washington Press: Seattle, WA, USA; London, UK, 2012; ISBN 978-0-295-99199-3. [Google Scholar]
- EVN Khi Nhân Vật Lịch Sử... Chép Sử Ngành Điện (When Historical Figures... Record the History of the Electricity Industry). Văn hoá EVN 2019. Available online: https://www.evn.com.vn/d6/news/Khi-nhan-vat-lich-su-chep-su-nganh-Dien-6-12-24805.aspx (accessed on 20 October 2022).
- Phạm, V.T. Bài Học Lớn Điạ Chất Công Trình Từ Thuỷ Điện Hoà Bình. In Tiếng vọng Sông Đà; Nguyễn, T.Á.N., Ed.; Nhà xuất bản Phụ nữ Việt Nam: Hanoi, Vietnam, 2022; pp. 179–184. ISBN 978-604-3-48072-6. [Google Scholar]
- Josephson, P.R. Industrialized Nature: Brute Force Technology and the Transformation of the Natural World; Island Press/Shearwater Books: Washington, DC, USA, 2002; ISBN 978-1-55963-777-0. [Google Scholar]
- Sasges, G. Construire le Socialisme Hydraulique en Combattant: L’hydroélectricité, le Barrage de Thac Ba et la Construction du Vietnam 1957–1973. In In Proceedings of the IrAsia Seminar Series, Aix-Marseille University, Marseille, France, 2 December 2022. [Google Scholar]
- ADB. Energy for All: Viet Nam’s Success in Increasing Access to Energy through Rural Electrification; Asian Development Bank: Manila, Philiphines, 2011; pp. 1–9. [Google Scholar]
- Thin, V.D.; Skofteland, E.; Lifwenborg, G. National Hydropower Plan NHP Study in Vietnam. In Hydropower in the New Millenium; Balkerma, A.A., Ed.; Swets & Zeitlinger Publishers: Bergen, Norway, 2001. [Google Scholar]
- Middleton, C.; Garcia, J.; Foran, T. Old and New Hydropower Players in the Mekong Region: Agendas and Strategies. In Contested Waterscapes in the Mekong Region: “Hydropower, Livelihoods and Governance”; Molle, F., Ed.; Taylor and Francis: Hoboken, NJ, USA, 2012; pp. 23–54. ISBN 978-1-84977-086-6. [Google Scholar]
- Malesky, E. Researching Vietnamese Politics. J. Vietnam. Stud. 2018, 13, 127–162. [Google Scholar] [CrossRef]
- WB. Enabling Private Capital to Unlock Vietnam’s Small Hydropower Potential; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Le, A.T.; Dao, T.V.N. Phát Triển Thuỷ Điện ở Việt Nam: Thách Thức và Giải Pháp; NXB Khoa học và Kỹ thuật: Hanoi, Vietnam, 2016. [Google Scholar]
- Wells-Dang, A. Civil Society Networks in Cambodia and Vietnam. In Southeast Asia and the Civil Society Gaze: Scoping a Contested Concept in Cambodia and Vietnam; Waibel, G., Ehlert, J., Feuer, H., Eds.; Routledge studies on civil society in Asia; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2014; pp. 61–76. ISBN 978-0-415-70966-8. [Google Scholar]
- Wells-Dang, A. Civil Society and Advocacy Networks in Vietnam. In Routledge Handbook of Contemporary Vietnam; London, J.D., Ed.; Routledge: Oxford, UK.; New York, NY, USA, 2022; pp. 73–87. ISBN 978-1-138-79225-8. [Google Scholar]
- Kummu, M.; Sarkkula, J. Impact of the Mekong River Flow Alteration on the Tonle Sap Flood Pulse. AMBIO A J. Hum. Environ. 2008, 37, 185–192. [Google Scholar] [CrossRef]
- Arias, M.E.; Piman, T.; Lauri, H.; Cochrane, T.A.; Kummu, M. Dams on Mekong Tributaries as Significant Contributors of Hydrological Alterations to the Tonle Sap Floodplain in Cambodia. Hydrol. Earth Syst. Sci. 2014, 18, 5303–5315. [Google Scholar] [CrossRef]
- Campbell, I.; Barlow, C. Hydropower Development and the Loss of Fisheries in the Mekong River Basin. Front. Environ. Sci. 2020, 8, 566509. [Google Scholar] [CrossRef]
- Binh, D.V.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-Term Alterations of Flow Regimes of the Mekong River and Adaptation Strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar] [CrossRef]
- Poindexter, G. Vietnam Reduces Number of Hydropower Plants in Its Power Development Plan 7. Available online: https://www.hydroreview.com/business-finance/vietnam-reduces-number-of-hydropower-plants-in-its-power-development-plan-7/#gref (accessed on 20 October 2022).
- Middleton, C.; Matthews, N. Whose Risky Business? Public–Private Partnerships, Build-Operate-Transfer and Large Hydropower Dams in the Mekong Region. In Hydropower development in the Mekong Region: Political, Socio-Economic, and Environmental Perspectives; Matthews, N., Geheb, K., Eds.; Earthscan studies in water resource management; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2015; p. 26. ISBN 978-0-415-71913-1. [Google Scholar]
- Ha-Duong, M.; Nguyen, H.-S. Subjective Satisfaction and Objective Electricity Poverty Reduction in Vietnam, 2008–2018. FREP 2021, 1, 43–60. [Google Scholar] [CrossRef]
- Roome, J. Hydropower in Vietnam: The Right Way to Do It.; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- OWID. Vietnam: How Much Electricity Does the Country Consume Each Year? Our World in Data: Oxford, UK, 2022. [Google Scholar]
- Burke, F.; Nguyen, T.H. Vietnam: Key Highlights of New Draft of National Power Development Plan (Draft PDP8); Baker McKenzie: Chicago, IL, USA, 2021. [Google Scholar]
- EVN Import of Electricity: Solution to Ensure National Energy Security; Electricity Vietnam: Hanoi, Vietnam, 2020.
- Lan, N. Vietnam to Increase Electricity Imports from Laos, Cambodia, China. Saigon Times 2020. Available online: https://english.thesaigontimes.vn/vietnam-to-increase-electricity-imports-from-laos-cambodia-china/ (accessed on 20 October 2022).
- Von Sperling, E. Hydropower in Brazil: Overview of Positive and Negative Environmental Aspects. Energy Procedia 2012, 18, 110–118. [Google Scholar] [CrossRef]
- Okuku, E.O.; Bouillon, S.; Ochiewo, J.O.; Munyi, F.; Kiteresi, L.I.; Tole, M. The Impacts of Hydropower Development on Rural Livelihood Sustenance. Int. J. Water Resour. Dev. 2016, 32, 267–285. [Google Scholar] [CrossRef]
- ASTAE. Cumulative Impacts and Joint Operation of Small-Scale Hydropower Cascades: Case Studies for Selected River Basins in Northwest Vietnam; Asia Sustainable and Alternative Energy Program: Washington, DC, USA, 2014. [Google Scholar]
- McCully, P. Silenced Rivers: The Ecology and Politics of Large Dams; Zed Books: London, UK; New York, NY, USA, 2001; ISBN 978-1-85649-901-9. [Google Scholar]
- Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M. Framing Hydropower as Green Energy: Assessing Drivers, Risks and Tensions in the Eastern Himalayas. Earth Syst. Dynam. 2015, 6, 195–204. [Google Scholar] [CrossRef]
- Räsänen, T.A.; Varis, O.; Scherer, L.; Kummu, M. Greenhouse Gas Emissions of Hydropower in the Mekong River Basin. Environ. Res. Lett. 2018, 13, 034030. [Google Scholar] [CrossRef]
- Richter, B.D.; Postel, S.; Revenga, C.; Scudder, T.; Lehner, B.; Churchill, A.; Chow, M. Lost in Development’s Shadow: The Downstream Human Consequences of Dams. Water Altern. 2010, 3, 14–42. [Google Scholar]
- Siciliano, G.; Del Bene, D.; Scheidel, A.; Liu, J.; Urban, F. Environmental Justice and Chinese Dam-Building in the Global South. Curr. Opin. Environ. Sustain. 2019, 37, 20–27. [Google Scholar] [CrossRef]
- Lang, C. The National Hydropower Plan Study: Planning and Damming in Vietnam. Watershed 2000, 5, 48. [Google Scholar]
- Luu, C.; Von Meding, J. Hydropower Development and Environmental Impact Assessments in Vietnam: Current Practice and Shortcomings. In Proceedings of the Sustainable Water and Sanitation Services for All in a Fast Changing World, Hanoi, Vietnam, 15–19 September 2014. [Google Scholar]
- Jackson, S.; Sleigh, A. Resettlement for China’s Three Gorges Dam: Socio-Economic Impact and Institutional Tensions. Communist Post-Communist Stud. 2000, 33, 223–241. [Google Scholar] [CrossRef]
- Cross, W.F.; Baxter, C.V.; Donner, K.C.; Rosi-Marshall, E.J.; Kennedy, T.A.; Hall, R.O.; Kelly, H.A.W.; Rogers, R.S. Ecosystem Ecology Meets Adaptive Management: Food Web Response to a Controlled Flood on the Colorado River, Glen Canyon. Ecol. Appl. 2011, 21, 2016–2033. [Google Scholar] [CrossRef]
- Giles, J. Methane Quashes Green Credentials of Hydropower. Nature 2006, 444, 524. [Google Scholar] [CrossRef]
- Yan, X.; Thieu, V.; Garnier, J. Long-Term Evolution of Greenhouse Gas Emissions From Global Reservoirs. Front. Environ. Sci. 2021, 9, 705477. [Google Scholar] [CrossRef]
- Ubierna, M.; Santos, C.D.; Mercier-Blais, S. Water Security and Climate Change: Hydropower Reservoir Greenhouse Gas Emissions. In Water Security Under Climate Change; Biswas, A.K., Tortajada, C., Eds.; Water Resources Development and Management; Springer Singapore: Singapore, 2022; pp. 69–94. ISBN 9789811654923. [Google Scholar]
- WB. Greenhouse Gases from Reservoirs Caused by Biogeochemical Processes; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Jager, H.I.; Griffiths, N.A.; Hansen, C.H.; King, A.W.; Matson, P.G.; Singh, D.; Pilla, R.M. Getting Lost Tracking the Carbon Footprint of Hydropower. Renew. Sustain. Energy Rev. 2022, 162, 112408. [Google Scholar] [CrossRef]
- Schloemer, S.; Bruckner, T.; Fulton, L.; Hertwich, E. Annex III: Technology-Specific Cost and Performance Parameters. In Climate Change 2014: Mitigation of Climate Change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Ed.; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-05821-7. [Google Scholar]
- Pham, H.T.; Tran, H.N. Hydropower Plant Development and Forest Recompensing Plantation in Viet Nam; Tropenbos International: Hue, Vietnam, 2017. [Google Scholar]
- Dang, T.K.P. The Discourse of Forest Cover in Vietnam and Its Policy Implications. Sustainability 2022, 14, 10976. [Google Scholar] [CrossRef]
- Truong, N.; Nguyen, H.; Kondoh, A. Land Use and Land Cover Changes and Their Effect on the Flow Regime in the Upstream Dong Nai River Basin, Vietnam. Water 2018, 10, 1206. [Google Scholar] [CrossRef]
- Nguyen, H.; Pham, T.; Lobry de Bruyn, L. Impact of Hydroelectric Dam Development and Resettlement on the Natural and Social Capital of Rural Livelihoods in Bo Hon Village in Central Vietnam. Sustainability 2017, 9, 1422. [Google Scholar] [CrossRef]
- Trædal, L.T.; Angelsen, A. Policies Drive Sub-National Forest Transitions in Vietnam. Forests 2020, 11, 1038. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, N. Confessions of a Hydropower Calamity in Vietnam. Available online: https://e.vnexpress.net/projects/confessions-of-a-hydropower-calamity-in-vietnam-3655314/index.html (accessed on 20 October 2022).
- Butler, R. Hydro Projects a Front for Logging in Vietnam. Available online: https://news.mongabay.com/2013/09/hydro-projects-a-front-for-logging-in-vietnam/ (accessed on 20 October 2022).
- Trieu, X. Thêm 5 Tỷ Đồng Cho Công Trình Thuỷ Điện Hàm Thuận (An Additional 5 Billion Đồng for the Hàm Thuận Hydroelectric Project). Quân đội Nhân dân 1991, 4. [Google Scholar]
- Stickler, C.M.; Coe, M.T.; Costa, M.H.; Nepstad, D.C.; McGrath, D.G.; Dias, L.C.P.; Rodrigues, H.O.; Soares-Filho, B.S. Dependence of Hydropower Energy Generation on Forests in the Amazon Basin at Local and Regional Scales. Proc. Natl. Acad. Sci. USA 2013, 110, 9601–9606. [Google Scholar] [CrossRef] [PubMed]
- Magilligan, F.J.; Nislow, K.H. Changes in Hydrologic Regime by Dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K.H. Ecological Responses to Altered Flow Regimes: A Literature Review to Inform the Science and Management of Environmental Flows: Review of Altered Flow Regimes. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Acreman, M.; Arthington, A.H.; Colloff, M.J.; Couch, C.; Crossman, N.D.; Dyer, F.; Overton, I.; Pollino, C.A.; Stewardson, M.J.; Young, W. Environmental Flows for Natural, Hybrid, and Novel Riverine Ecosystems in a Changing World. Front. Ecol. Environ. 2014, 12, 466–473. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the Rivers of the Amazon Basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef]
- Ely, P.; Fantin-Cruz, I.; Tritico, H.M.; Girard, P.; Kaplan, D. Dam-Induced Hydrologic Alterations in the Rivers Feeding the Pantanal. Front. Environ. Sci. 2020, 8, 579031. [Google Scholar] [CrossRef]
- Pham, L. Comparison between Water Quality Index (WQI) and Biological Indices, Based on Planktonic Diatom for Water Quality Assessment in the Dong Nai River, Vietnam. Pollution 2017, 3, 311–323. [Google Scholar]
- Yen, C.; Picco, L.; Bao, T. Hydopower Dam and Hydrological Alternation on the Da River in Son La, Vietnam. J. For. Sci. Technol. 2019, 7, 124–132. [Google Scholar]
- Chantha, O.; Ty, S. Assessing Changes in Flow and Water Quality Emerging from Hydropower Development and Operation in the Sesan River Basin of the Lower Mekong Region. Sustain. Water Resour. Manag. 2020, 6, 27. [Google Scholar] [CrossRef]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate Change and the Hydropower Sector: A Global Review. WIREs Clim. Chang. 2022, 13, e757. [Google Scholar] [CrossRef]
- Trung, L.D.; Duc, N.A.; Nguyen, L.T.; Thai, T.H.; Khan, A.; Rautenstrauch, K.; Schmidt, C. Assessing Cumulative Impacts of the Proposed Lower Mekong Basin Hydropower Cascade on the Mekong River Floodplains and Delta–Overview of Integrated Modeling Methods and Results. J. Hydrol. 2020, 581, 122511. [Google Scholar] [CrossRef]
- Brunier, G.; Anthony, E.J.; Goichot, M.; Provansal, M.; Dussouillez, P. Recent Morphological Changes in the Mekong and Bassac River Channels, Mekong Delta: The Marked Impact of River-Bed Mining and Implications for Delta Destabilisation. Geomorphology 2014, 224, 177–191. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking Rapid Erosion of the Mekong River Delta to Human Activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- Loc, H.H.; Van Binh, D.; Park, E.; Shrestha, S.; Dung, T.D.; Son, V.H.; Truc, N.H.T.; Mai, N.P.; Seijger, C. Intensifying Saline Water Intrusion and Drought in the Mekong Delta: From Physical Evidence to Policy Outlooks. Sci. Total Environ. 2021, 757, 143919. [Google Scholar] [CrossRef]
- Le Huy, B.; Le, H.; Xuan, H.N. The Harmful Effect of the Hydro-Electric Dams Upstream of the Mekong River: Effect on the Ecosystems and Livelihoods of People in Mekong Delta, Vietnam. Water Conserv. Sci. Eng. 2022, 7, 1–20. [Google Scholar] [CrossRef]
- Piman, T.; Manish, S. Case Study on Sediment in the Mekong River Basin: Current State and Future Trends; Stockholm Environment Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Ziv, G.; Baran, E.; Nam, S.; Rodríguez-Iturbe, I.; Levin, S.A. Trading-off Fish Biodiversity, Food Security, and Hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef]
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; King, H.; Schipper, A.M. Impacts of Current and Future Large Dams on the Geographic Range Connectivity of Freshwater Fish Worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 3648–3655. [Google Scholar] [CrossRef]
- Dugan, P.J.; Barlow, C.; Agostinho, A.A.; Baran, E.; Cada, G.F.; Chen, D.; Cowx, I.G.; Ferguson, J.W.; Jutagate, T.; Mallen-Cooper, M.; et al. Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin. AMBIO 2010, 39, 344–348. [Google Scholar] [CrossRef]
- Baumgartner, L.J.; Marsden, T.; Duffy, D.; Horta, A.; Ning, N. Optimizing Efforts to Restore Aquatic Ecosystem Connectivity Requires Thinking beyond Large Dams. Environ. Res. Lett. 2022, 17, 014008. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. Ecological Connectivity in Alluvial River Ecosystems and Its Disruption by Flow Regulation. Regul. Rivers: Res. Manag. 1995, 11, 105–119. [Google Scholar] [CrossRef]
- Richter, B.D.; Thomas, G.A. Restoring Environmental Flows by Modifying Dam Operations. Ecol. Soc. 2007, 12, 12. [Google Scholar] [CrossRef]
- Bradford, M.J.; Heinonen, J.S. Low Flows, Instream Flow Needs and Fish Ecology in Small Streams. Can. Water Resour. J. 2008, 33, 165–180. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Dou, M.; Li, H.; Ming, B.; Gong, Y.; Yang, Z. Reservoir Ecological Operation Considering Outflow Variations across Different Time Scales. Ecol. Indic. 2021, 125, 107582. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam Effects on Droughts Magnitude and Duration in a Transboundary Basin: The Lower River Tagus, Spain and Portugal: Droughts magnitude and duration. Water Resour. Res. 2009, 45, W02405. [Google Scholar] [CrossRef]
- Firoz, A.B.M.; Nauditt, A.; Fink, M.; Ribbe, L. Quantifying Human Impacts on Hydrological Drought Using a Combined Modelling Approach in a Tropical River Basin in Central Vietnam. Hydrol. Earth Syst. Sci. 2018, 22, 547–565. [Google Scholar] [CrossRef]
- Tuấn, S. Yêu Cầu Thủy Điện Thác Giềng 1 Vận Hành Đúng Quy Trình (Requesting Thác Giềng 1 Hydroelectric Facility Operate According to Procedures). Available online: https://nhandan.vn/yeu-cau-thuy-dien-thac-gieng-1-van-hanh-dung-quy-trinh-post637302.html (accessed on 20 October 2022).
- Opperman, J. Crocodiles Are Not Geckos: The Realities Of Run-Of-River Hydropower. Forbes. June 6 2019. Available online: https://www.forbes.com/sites/jeffopperman/2019/06/06/crocodiles-are-not-geckos-the-realities-of-run-of-river-hydropower/?sh=54b749a86371 (accessed on 20 October 2022).
- Babel, M.S.; Nguyen Dinh, C.; Mullick, M.R.A.; Nanduri, U.V. Operation of a Hydropower System Considering Environmental Flow Requirements: A Case Study in La Nga River Basin, Vietnam. J. Hydro-Environ. Res. 2012, 6, 63–73. [Google Scholar] [CrossRef]
- Nguyen-Tien, V.; Elliott, R.J.R.; Strobl, E.A. Hydropower Generation, Flood Control and Dam Cascades: A National Assessment for Vietnam. J. Hydrol. 2018, 560, 109–126. [Google Scholar] [CrossRef]
- Branche, E. The Multipurpose Water Uses of Hydropower Reservoir: The SHARE Concept. Comptes Rendus Phys. 2017, 18, 469–478. [Google Scholar] [CrossRef]
- EVN. Hòa Bình Hydropower Plant Controls More Than 100 Floods with Peak of 5000 M3/s. 2016. Available online: https://en.evn.com.vn/d6/news/Hoa-Binh-Hydropower-Plant-Controls-more-than-100-Floods-with-Peak-of-5000-m3s--66-163-468.aspx (accessed on 20 October 2022).
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. A Paradigm for River Conservation and Restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ishizawa, K.; Ito, O. Evolution and Mechanisms of Plant Tolerance to Flooding Stress. Ann. Bot. 2009, 103, 137–142. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Spark, R.E. The Flood Pulse Concept in River-Floodplain Systems. Can. Spec. Publ. Fish Aquat. Sci. 1989, 106, 110–112. [Google Scholar]
- Poff, N.L. Ecological Response to and Management of Increased Flooding Caused by Climate Change. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Young, P.S.; Cech, J.J.; Thompson, L.C. Hydropower-Related Pulsed-Flow Impacts on Stream Fishes: A Brief Review, Conceptual Model, Knowledge Gaps, and Research Needs. Rev. Fish Biol. Fish. 2011, 21, 713–731. [Google Scholar] [CrossRef]
- Talbot, C.J.; Bennett, E.M.; Cassell, K.; Hanes, D.M.; Minor, E.C.; Paerl, H.; Raymond, P.A.; Vargas, R.; Vidon, P.G.; Wollheim, W.; et al. The Impact of Flooding on Aquatic Ecosystem Services. Biogeochemistry 2018, 141, 439–461. [Google Scholar] [CrossRef]
- Dam, T.T.; Pisaniello, J.D.; Burritt, R.L. Small Dam Safety Problems in Vietnam and Associated Responsibility and Accountability: Evidence from a Rural Commune. J. Asia-Pac. Cent. Environ. Account. 2011, 3, 154–181. [Google Scholar]
- Lempérière, F. Dams and Floods. Engineering 2017, 3, 144–149. [Google Scholar] [CrossRef]
- Thang, T. Tăng Cường Ứng Dụng Công Nghệ Trong Phòng Chống Lũ Quét, Sạt Lở Đất (Increasing the Application of Technology Flood and Landslide Prevention). Hà Nội mới 2018. Available online: https://hanoimoi.com.vn/ban-in/Xa-hoi/906984/tang-cuong-ung-dung-cong-nghe-trong-phong-chong-lu-quet-sat-lo-dat (accessed on 20 October 2022).
- Tran, T.A. Small Hydropower Plants Should Not Be Blamed for Floods: Industry Minister. Vietnam News 2020. Available online: https://vietnamnews.vn/society/804276/small-hydropower-plants-should-not-be-blamed-for-floods-industry-minister.html (accessed on 20 October 2022).
- Nhat, L. Trở Lại Nơi Thảm Họa Rào Trăng (Returning to the Site of the Rào Trăng Disaster). Tuổi Trẻ Online 2021. Available online: https://tuoitre.vn/tro-lai-noi-tham-hoa-rao-trang-20211012095148412.htm (accessed on 20 October 2022).
- Nguyen, D.; Dac, T. Recompense for Flood Losses Caused by Dam Discharge, Hydropower Plant Told. VNExpress International 2020. Available online: https://e.vnexpress.net/news/news/recompense-for-flood-losses-caused-by-dam-discharge-hydropower-plant-told-4187613.html (accessed on 20 October 2022).
- Xuan, N. Hydropower Plants Worsen Central Vietnam Flooding. VNExpress 2021. Available online: https://e.vnexpress.net/news/news/hydropower-plants-worsen-central-vietnam-flooding-4397690.html (accessed on 20 October 2022).
- RFA Water Release from Vietnamese Dam Floods Villages in Southern Laos. Radio Free Asia 2022. Available online: https://www.rfa.org/english/news/laos/vietnam-04042022194110.html (accessed on 20 October 2022).
- Wild, T.B.; Loucks, D.P. Managing Flow, Sediment, and Hydropower Regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong Basin. Water Resour. Res. 2014, 50, 5141–5157. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Sidle, R.C.; Phang, V.X.H.; Wood, S.H.; Tantasirin, C. Bedload Transport in SE Asian Streams—Uncertainties and Implications for Reservoir Management. Geomorphology 2014, 227, 31–48. [Google Scholar] [CrossRef]
- Warfe, D.M.; Pettit, N.E.; Davies, P.M.; Pusey, B.J.; Hamilton, S.K.; Kennard, M.J.; Townsend, S.A.; Bayliss, P.; Ward, D.P.; Douglas, M.M.; et al. The ‘Wet-Dry’ in the Wet-Dry Tropics Drives River Ecosystem Structure and Processes in Northern Australia: Flow Drivers of Tropical Australian Rivers. Freshw. Biol. 2011, 56, 2169–2195. [Google Scholar] [CrossRef]
- Keller, K.; Allsop, Q.; Brim Box, J.; Buckle, D.; Crook, D.A.; Douglas, M.M.; Jackson, S.; Kennard, M.J.; Luiz, O.J.; Pusey, B.J.; et al. Dry Season Habitat Use of Fishes in an Australian Tropical River. Sci. Rep. 2019, 9, 5677. [Google Scholar] [CrossRef] [PubMed]
- Rangecroft, S.; Van Loon, A.F.; Maureira, H.; Verbist, K.; Hannah, D.M. Multi-Method Assessment of Reservoir Effects on Hydrological Droughts in an Arid Region. Dynamics of the Earth system: Interactions. 2016. Available online: https://esd.copernicus.org/preprints/esd-2016-57/ (accessed on 20 October 2022).
- Wu, J.; Yuan, X.; Yao, H.; Chen, X.; Wang, G. Reservoirs Regulate the Relationship between Hydrological Drought Recovery Water and Drought Characteristics. J. Hydrol. 2021, 603, 127127. [Google Scholar] [CrossRef]
- Daniel, R. Dams and Droughts, Data and Diplomacy in the Mekong; Stockholm Environmental Institute: Bangkok, Thailand, 2021. [Google Scholar]
- Tatarski, M. Vietnam Struggles to Find Solutions for Extreme Dry Seasons in Mekong. Available online: https://www.thethirdpole.net/en/livelihoods/vietnam-solutions-dry-seasons-mekong-delta/ (accessed on 20 October 2022).
- Dinh, T.C.; Dinh, T.C.; Anh, T.T.; Quoc, V.D.; Le Van, D.; Thanh, H.D.; Xuan, B.M.; Nam, H.P.; Huu, T.N. Overview of the Characteristics of Reservoir-Triggered Seismic Activity at Some Hydropower Reservoirs in Vietnam. J Geol Soc India 2021, 97, 1574–1582. [Google Scholar] [CrossRef]
- Telesca, L.; Thai, A.T.; Cao, D.T.; Ha, T.G. Spectral Evidence for Reservoir-Triggered Seismicity at Song Tranh 2 Reservoir (Vietnam). Pure Appl. Geophys. 2021, 178, 3817–3828. [Google Scholar] [CrossRef]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable Hydropower in the 21st Century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef]
- Nguyen, N.Q.; Lenihan, M.; Saint-Pierre, C.; Nguyen, T.M.P.; Phan, H.D. Managing Social Risks and Impacts from Hydropower Development: Sharing Experience from a Medium-Sized Dam Project in Vietnam; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Huang, Y.; Lin, W.; Li, S.; Ning, Y. Social Impacts of Dam-Induced Displacement and Resettlement: A Comparative Case Study in China. Sustainability 2018, 10, 4018. [Google Scholar] [CrossRef]
- Wallace, C.P. Is Asia Robbing Rural Poor to Power the Rich? Vietnam’s Hoa Binh Dam Displaced 50,000 and Wrecked Forests. Critics Ask Whether Hydroelectric Energy Is Worth It. Los Angeles Times 1992. Available online: https://www.latimes.com/archives/la-xpm-1992-02-18-wr-2322-story.html (accessed on 20 October 2022).
- Hirsch, P.; Sinh, B.T. Social and Environmental Implications of Resource Development in Vietnam: The Case of Hoa Binh Reservoir; RIAP Occasional Paper; University of Sydney, Research Institute for Asia and the Pacific: Sydney, Australia, 1992. [Google Scholar]
- Dao, N. Dam Development in Vietnam: The Evolution of Dam-Induced Resettlement Policy. Water Altern. 2010, 3, 324–340. [Google Scholar]
- Dimanchev, E.G.; Hodge, J.L.; Parsons, J.E. The Role of Hydropower Reservoirs in Deep Decarbonization Policy. Energy Policy 2021, 155, 112369. [Google Scholar] [CrossRef]
- AFD. Green Energy In Vietnam: Expanded Hòa Bình Hydropower Plant Will Reduce Co2 Emissions; Agence Française de Développement: Paris, France, 2021.
- Petchkaew, K. Unraveling the Mystery of Laos’ U-Turn from Renewables to Coal to Power the Battery of Southeast Asia. Available online: https://earthjournalism.net/stories/unraveling-the-mystery-of-laos-u-turn-from-renewables-to-coal-to-power-the-battery-of (accessed on 20 October 2022).
- Luong, B. Conditions for Vietnam to Become High-Income Country by 2045. VNExpress International 2022. Available online: https://vietnamnet.vn/en/conditions-for-vietnam-to-become-high-income-country-by-2045-2060733.html (accessed on 20 October 2022).
- Fitzgerald, M. Vietnam’s Declining Hydropower Gen Has EVN Sourcing Alt Power. Available online: https://www.enlit-asia.com/generation/vietnams-declining-hydropower-gen-has-evn-sourcing-alt-power/ (accessed on 20 November 2022).
- OXFAM. Economic Evaluation of Hydropower Projects in the Lower Mekong Basin; Mae Fah Luang University: Chiang Rai, Thailand, 2017. [Google Scholar]
- Williams, J.M. The Hydropower Myth. Env. Sci Pollut Res 2020, 27, 12882–12888. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Webb, E.L.; Padoch, C.; Leisz, S.J.; Cramb, R.A.; Mertz, O.; Bruun, T.B.; Vien, T.D. Recognizing Contemporary Roles of Swidden Agriculture in Transforming Landscapes of Southeast Asia: Swidden Agriculture in Southeast Asia. Conserv. Biol. 2011, 25, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S.; et al. Trends, Drivers and Impacts of Changes in Swidden Cultivation in Tropical Forest-Agriculture Frontiers: A Global Assessment. Glob. Environ. Chang. 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Borstein, D.; Yuen JiaQi, Y.J. The Viability of Swidden Agriculture and Its Uncertain Role in REDD+. In Shifting Cultivation Policies: Balancing Environmental and Social Sustainability; Cairns, M., Ed.; CABI: Wallingford, UK, 2017; pp. 194–206. ISBN 978-1-78639-179-7. [Google Scholar]
- Middleton, C. The Political Ecology of Large Hydropower Dams in the Mekong Basin: A Comprehensive Review. Water Altern. 2022, 15, 251–289. [Google Scholar]
Nominal Category | IC Range (MW) | Number of HPFs | Fraction of Total HPFs | IC Total (MW) | Median IC (MW) | Fraction of Total IC | Power Generation (TWh) * |
---|---|---|---|---|---|---|---|
Mega | >=1000 | 3 | 0.01 | 5520 | 1920 | 0.25 | 26 (20–31) |
Very Large | 300–999 | 9 | 0.02 | 3602 | 18 | 0.16 | 14 (11–17) |
Large | 100–299 | 29 | 0.05 | 4914 | 11 | 0.22 | 21 (17–25) |
Medium | 30–99 | 79 | 0.15 | 4109 | 15 | 0.18 | 16 (12–19) |
Small (Large) | 8–29 | 219 | 0.41 | 3435 | 12 | 0.15 | 14 (11–16) |
Small (Small) | <8 | 193 | 0.36 | 802 | 10 | 0.04 | 3.2 (2.6–3.8) |
Total | NR | 532 | NR | 22,383 | 12 | NR | 93 (74–112) |
Total (all) ** | NR | 721 | NR | 26,161 | NR | NR | NR |
Source/Year | 2020 * | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
Total (MW; all sources) | 69,258 | 102,193 | 137,663 | 190,391 | 233,816 |
Coal-fired thermal power | 29% | 29% | 27% | 23% | 21% |
a. Domestic | 0.70 | 0.57 | 0.45 | 0.40 | 0.34 |
b. Import | 0.30 | 0.43 | 0.55 | 0.60 | 0.66 |
Gas, Oil, Diesel | 13% | 14% | 21% | 24% | 24% |
a. LNG (mixed technologies) | 0.79 | 0.94 | 1.00 | 1.00 | 1.00 |
b. Thermal + diesel | 0.21 | 0.06 | 0.00 | 0.00 | 0.00 |
Hydropower | 30% | 25% | 19% | 16% | 13% |
a. Hydro-large | 0.83 | 0.80 | 0.76 | 0.67 | 0.63 |
b. Hydro-small | 0.17 | 0.20 | 0.19 | 0.18 | 0.18 |
c. Hydro-pumped | 0.00 | 0.00 | 0.05 | 0.15 | 0.19 |
Wind | 1% | 11% | 13% | 17% | 20% |
Solar | 24% | 17% | 14% | 16% | 18% |
Biomass and other | 1% | 2% | 2% | 2% | 2% |
Power import (China, Laos) | 2% | 3% | 4% | 3% | 2% |
Positive | Negative |
---|---|
Drought resilience | Reduced electricity generation in dry periods Man-made hydrological droughts |
Flood control (especially small events) | Floods during: Unanticipated water release Breaches on poorly designed/managed dams Increased surface runoff on degraded lands |
Support irrigation farming | Loss of croplands & reduction of irrigation water |
Increased water supply for domestic/municipal use | Reduced river flow for use downstream, affecting: Hydropower generation Navigation & general use Saltwater intrusion |
Reduction in river turbidity/sediment | Sediment issues including: Accumulation behind dam (reduce lifetime) Insufficient sediment to maintain deltas High sediment/turbidity during construction Sand mining issues (construction) |
Renewable energy production from: Hydropower Pumped Storage Floating solar | Loss of natural river functioning including: Seasonal base flows and flood waves Sediment, nutrient, organic material transport Hyporheic exchange, recharge Fluctuations related to hydropeaking |
Offsetting the impacts of traditional fossil fuel HPFs: Less GHG emissions Less air pollution (SO2, NOx, PM2.5) Less noise pollution and water loss Reservoirs store carbon in sediments | Associated impacts of reservoirs: GHG footprint of HPF Noise and air pollution during construction Sand mining (construction) Anoxia potential |
Creation of new jobs in construction phases Post-building operations and development | Illegal activities & vice (drugs, prostitution) Livelihood losses to fisheries and farming |
New uses including: Recreation, aesthetics & photography Fishing & hunting | Loss of traditional uses/functions such as: Recreation & landmarks (e.g., waterfalls) Fishing & Farming |
Infrastructure improvements: e.g., Roads, bridges, schools, etc. Power grid improvements | Land degradation Forest loss/damage Road-related erosion & landslides Roads increase accessibility to exploit forest |
Create new reservoir habitats | Aquatic habitat degradation/alteration affecting: Streambed, floodplains, wetlands Disease ecology implications Invasive species potential; algal blooms Obstruction to migrating fish |
Local & national benefits: e.g., Renewable energy Nation building Investment opportunities | Geopolitical implications Limited lifetime of reservoirs Exacerbation of hazard impacts Human displacement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasges, G.; Ziegler, A.D. We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam. Sustainability 2023, 15, 8969. https://doi.org/10.3390/su15118969
Sasges G, Ziegler AD. We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam. Sustainability. 2023; 15(11):8969. https://doi.org/10.3390/su15118969
Chicago/Turabian StyleSasges, Gerard, and Alan D. Ziegler. 2023. "We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam" Sustainability 15, no. 11: 8969. https://doi.org/10.3390/su15118969
APA StyleSasges, G., & Ziegler, A. D. (2023). We Have Eaten the Rivers: The Past, Present, and Unsustainable Future of Hydroelectricity in Vietnam. Sustainability, 15(11), 8969. https://doi.org/10.3390/su15118969