Recruitment of Oysters by Different Collection Devices at a Longline Shellfish Farm in the Central Adriatic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study and Water Temperature Monitoring
2.2. Types of Collectors Assayed
2.3. Sampling Activities
2.4. Statistics
3. Results
3.1. Temperature Monitoring
3.2. Recruitment Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cranford, P.J. Magnitude and Extent of Water Clarification Services Provided by Bivalve Suspension Feeding; Smaal, A., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Goods and Services of Marine Bivalves; Springer Nature: Cham, Switzerland, 2019; pp. 119–141. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022. In Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO annuaire. In Statistiques des Pêches et de L’aquaculture 2019/FAO Anuario. Estadísticas de pesca y Acuicultura 2019; FAO: Rome, Italy, 2021. [Google Scholar]
- Martinez-Castro, C.; Fernandez, R.; Villalba, A.; Martinez, P.; Culloty, S.C.; Kamermans, P.; Longshaw, M.; O’Boyle, N. OYSTERECOVER Project. An opportunity towards the recovery of the European flat oyster production. In Proceedings of the EAS Conference, Rotterdam, The Netherlands, 20–23 October 2015. [Google Scholar]
- Canier, L.; Dubreuil, C.; Noyer, M.; Serpin, D.; Chollet, B.; Garcia, C.; Arzul, I. A new multiplex real-time PCR assay to improve the diagnosis of shellfish regulated parasites of the genus Marteilia and Bonamia. Prev. Vet. Med. 2020, 183, 105126. [Google Scholar]
- Cocci, P.; Roncarati, A.; Capriotti, M.; Mosconi, G.; Palermo, F.A. Transcriptional alteration of gene biomarkers in hemocytes of wild Ostrea edulis with molecular evidence of infections with Bonamia spp. and/or Marteilia refringens parasites. Pathogens 2020, 9, 323. [Google Scholar] [CrossRef]
- Colsoul, B.; Boudry, P.; Pérez-Parallé, M.L.; Bratos Cetinic, A.; Hugh-Jones, T.; Arzul, I.; Merou, N.; Wegner, K.M.; Peter, C.; Merk, V.; et al. Sustainable large-scale production of European flat oyster (Ostrea edulis) seed for ecological restoration and aquaculture: A review. Rev. Aquac. 2021, 13, 1423–1468. [Google Scholar]
- da Silva, P.M.; Fuentes, J.; Villalba, A. Differences in gametogenic cycle among strains of the European flat oyster Ostrea edulis and relationship between gametogenesis and bonamiosis. Aquaculture 2009, 287, 253–265. [Google Scholar] [CrossRef]
- Rico-Villa, B.; Pouvreau, S.; Robert, R. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 2009, 287, 395–401. [Google Scholar]
- Lagarde, F.; Roque d’Orbcastel, E.; Ubertini, M.; Mortreux, S.; Bernard, I.; Fiandrino, A.; Chiantella, C.; Bec, B.; Roques, C.; Bonnet, D.; et al. Recruitment of the Pacific oyster Crassostrea gigas in a shellfish-exploited Mediterranean lagoon. Mar. Ecol. Prog. Ser. 2017, 578, 1–17. [Google Scholar] [CrossRef]
- González-Araya, R.; Quéau, I.; Quéré, C.; Moal, J.; Robert, R. A physiological and biochemical approach to selecting the ideal diet for Ostrea edulis (L.) broodstock conditioning (Part A). Aquac. Res. 2011, 42, 710–726. [Google Scholar]
- González-Araya, R.; Lebrun, L.; Quéré, C.; Robert, R. The selection of the ideal diet for Ostrea edulis (L.) broodstock conditioning (Part B). Aquaculture 2012, 362, 55–66. [Google Scholar] [CrossRef]
- Kesarcodi-Watson, A.; Klumpp, D.W.; Lucas, J.S. Comparative feeding and physiological energetics in diploid and triploid Sydney rock oysters (Saccostrea commercialis): II. Influences of food concentration and tissue energy distribution. Aquac 2001, 203, 195–216. [Google Scholar] [CrossRef]
- Jacobs, P.; Greeve, Y.; Sikkema, M.; Dubbeldam, M.; Philippart, C.M. Successful rearing of Ostrea edulis from parents originating from the Wadden Sea, the Netherlands. Aquac. Rep. 2020, 18, 100537. [Google Scholar]
- Sornin, J.M.; Collos, Y.; Delmas, D.; Feullet-Girard, M.; Gouleau, D. Nitrogenous nutrient transfers in oyster ponds: Role of sediment in deferred primary production. Mar. Ecol. Prog. Ser. 1990, 68, 15–22. [Google Scholar] [CrossRef]
- Himmelstein, J.; Vinent, O.D.; Temmerman, S.; Kirwan, M.L. Mechanisms of Pond Expansion in a Rapidly Submerging Marsh. Front. Mar. Sci. 2021, 8, 704768. [Google Scholar] [CrossRef]
- Colsoul, B.; Pouvreau, S.; Di Poi, C.; Pouil, S.; Merk, V.; Peter, C.; Boersma, M.; Pogoda, B. Addressing critical limitations of oyster (Ostrea edulis) restoration: Identification of nature-based substrates for hatchery production and recruitment in the field. Aquatic Conserv: Mar. Freshw. Ecosyst. 2020, 30, 2101–2115. [Google Scholar] [CrossRef]
- Funo da Silva Almeida, I.C.; Gomes Antonio, I.; Ferreira Marinho, Y.; Sampaio Monteles, J.; Lopes, R.G.P.S.; Galvez, A.O. Recruitment of oyster in artificial collectors on the Amazon macrotidal Mangrove coast. Ciėnc. Rural. 2019, 49, e20180482. [Google Scholar] [CrossRef]
- Van den Brink, A.M.; Maathuis, M.A.M.; Kamermans, P. Optimization of off-bottom spat collectors for restoration and production of the European flat oyster (Ostrea edulis) in Dutch coastal waters. Aquatic Conserv.: Mar. Freshw. Ecosyst. 2020, 30, 2087–2100. [Google Scholar] [CrossRef]
- Potet, M.; Fabien, A.; Chaudemanche, S.; Sebaibi, N.; Guillet, T.; Gachelin, S.; Cochet, H.; Boutouil, M.; Pouvreau, S. Which concrete substrate suits you? Ostrea edulis larval preferences and implications for shellfish restoration in Europe. Ecol. Eng. 2021, 162, 106159. [Google Scholar]
- Chuku, E.O.; Yankson, K.; Obodai, E.A.; Acheampong, E.; Boahemaa-Kobil, E.E. Effectiveness of different substrates for collecting wild spat of the oyster Crassostrea tulipa along the coast of Ghana. Aquac. Rep. 2021, 18, 100493. [Google Scholar] [CrossRef]
- Smyth, D.; Mahon, A.M.; Roberts, D.; Kregting, L. Settlement of Ostrea edulis is determined by the availability of hard substrata rather than by its nature: Implications for stock recovery and restoration of the European oyster. Aquat. Conserv. Mar. Freshwat. Ecosyst. 2018, 28, 662–671. [Google Scholar] [CrossRef]
- Soniat, T.M.; Burton, G.M. A comparison of the effectiveness of sandstone and limestone as cultch for oysters, Crassostrea virginica. J. Shellfish Res. 2005, 24, 483–485. [Google Scholar]
- Mizuta, D.D.; Wikfors, G.H. Seeking the perfect oyster shell: A brief review of current knowledge. Rev. Aquac. 2019, 11, 586–602. [Google Scholar] [CrossRef]
- Roncarati, A.; Gennari, L.; Felici, A.; Melotti, P. Development of the oyster farming in the middle Adriatic Sea. Aquac. Eur. 2012, 37, 26–32. [Google Scholar]
- zu Ermgassen, P.S.E.; Bonačić, K.; Boudry, P.; Bromley, C.A.; Cameron, T.C.; Colsoul, B.; Coolen, J.W.P.; Frankić, A.; Hancock, B.; van der Have, T.M.; et al. Forty questions of importance to the policy and practice of native oyster reef restoration in Europe. Aquatic Conserv: Mar. Freshw. Ecosyst. 2019, 30, 2038–2049. [Google Scholar] [CrossRef]
- Chapman, E.C.N.; Rodriguez-Perez, A.; Hugh-Jones, T.; Bromley, C.; James, M.A.; Diele, K.; Snderson, W.G. Optimising recruitment in habitat creation for the native European oyster (Ostrea edulis): Implications of temporal and spatial variability in larval abundance. Mar. Pollut. Bull. 2021, 170, 112579. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, E.; Alvarado, D. A highly efficient oyster spat collector made with recycled materials. Aquac. Eng. 2005, 33, 63–72. [Google Scholar] [CrossRef]
- Devakie, M.N.; Ali, A.B. Effects of storage temperature and duration on the setting and post-set spat survival of the tropical oyster, Crassostrea iredalei (Faustino). Aquaculture 2000, 190, 369–376. [Google Scholar] [CrossRef]
- Holliday, J.E.; Geoff, L.A.; Nell, J.A. Effects of stocking density on juvenile Sydney rock oysters, Saccostrea commercialis (Iredale & Roughley), in cylinders. Aquaculture 1993, 109, 13–26. [Google Scholar]
- Stagličić, N.; Šegvić-Bubića, T.; Ezgeta-Balića, D.; Bojanić Varezić, D.; Grubišić, L.; Žuvić, L.; Lin, Y.; Briski, E. Distribution patterns of two co-existing oyster species in the northern Adriatic Sea: The native European flat oyster Ostrea edulis and the non-native Pacific oyster Magallana gigas. Ecol. Indic. 2020, 113, 106233. [Google Scholar] [CrossRef]
- Lunetta, A.; Albentosa, M.; Nebot-Colomer, E.; Pardo, B.G.; Martinez, P.; Villaba, A.; Donato, G.; Akinyemi, M.I.; Vazquez-Luis, M. Assessment of Ostrea sentina recruitment and performance in the Mar Menor lagoon (SE Spain). Reg. Stud. Mar. Sci. 2023, 58, 102760. [Google Scholar]
- Heral, M. Traditional oyster culture in France. In Aquaculture; Bernabè, G., Ed.; Open Access: London, UK, 2001; Volume I, pp. 342–387. [Google Scholar]
Total Available Surface (dm2) | % Filling of the Compartment | Expected Tumbling | Recruitment Efficiency (N° Oyster/dm2) | |
---|---|---|---|---|
Lantern 1: | ||||
Ribbon | 140 | 100% | 0 | 0.62–0.60 |
Cupped oyster shells N°3 | 95 | 33% | 1–2 | 0.18 |
Flat oyster shells | 35 | 10% | 4–5 | 0.18 |
Lantern 2: | ||||
Ribbon | 140 | 100% | 0 | 0.19–0.59 |
Cupped oyster shells N°1 | 235 | 66% | 0–1 | 0.71 |
Cupped oyster shells N°3 | 95 | 33% | 1–2 | 0.66 |
Flat oyster shells | 35 | 10% | 4–5 | 0.24 |
N° Spat/dm2 | Tumbling Evaluation | Presence of Mud | |
---|---|---|---|
Wrinkled ribbon | 0.53 | 0 | 0 |
Cupped oyster shells N°1 | 0.52 | 0–1 | 2–3 |
Cupped oyster shells N°3 | 1–2 | 1–2 | |
Flat oyster shells | 0.21 | 4–5 | 0–1 |
Df | Sum Square | Mean Square | F Value | Pr (>F) | |
---|---|---|---|---|---|
Start Time | 1 | 0.00125 | 0.001250 | 0.0205 | 0.8932 |
Substrate | 2 | 0.11255 | 0.056275 | 0.9212 | 0.4687 |
Residuals | 117 | 0.24435 | 0.061088 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncarati, A.; Mosconi, G.; Palermo, F.A.; Magi, G.E.; Galosi, L.; Gennari, L. Recruitment of Oysters by Different Collection Devices at a Longline Shellfish Farm in the Central Adriatic Sea. Sustainability 2023, 15, 8685. https://doi.org/10.3390/su15118685
Roncarati A, Mosconi G, Palermo FA, Magi GE, Galosi L, Gennari L. Recruitment of Oysters by Different Collection Devices at a Longline Shellfish Farm in the Central Adriatic Sea. Sustainability. 2023; 15(11):8685. https://doi.org/10.3390/su15118685
Chicago/Turabian StyleRoncarati, Alessandra, Gilberto Mosconi, Francesco Alessandro Palermo, Gian Enrico Magi, Livio Galosi, and Lorenzo Gennari. 2023. "Recruitment of Oysters by Different Collection Devices at a Longline Shellfish Farm in the Central Adriatic Sea" Sustainability 15, no. 11: 8685. https://doi.org/10.3390/su15118685
APA StyleRoncarati, A., Mosconi, G., Palermo, F. A., Magi, G. E., Galosi, L., & Gennari, L. (2023). Recruitment of Oysters by Different Collection Devices at a Longline Shellfish Farm in the Central Adriatic Sea. Sustainability, 15(11), 8685. https://doi.org/10.3390/su15118685