Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage
Abstract
:1. Introduction
Biological Systems | Physical Damages | Chemical Damages | Cultural Heritage Materials | References |
---|---|---|---|---|
Algae and cyanobacteria | Surface alteration | Stone fragmentation, staining | Stone, frescoes, and wood | [6,7,19] |
Bacteria | Surface alteration | Release of acids (inorganic and organic), biofilm formation, chromatic alterations | Stone, frescoes, wood, paper, parchment, leather, fibers of vegetal and animal origin. | [2,3,11] |
Fungi | Surface alteration | Release of acids (inorganic and organic) and pigments, chelating action | Stone, frescoes, wood, paper, parchment, leather, fibers of vegetal and animal origin. | [4,5] |
Mosses and liverworts | Physical intrusion by rhizoids | Production of carbonic acid | Stone (natural, artificial) | [8] |
Lichens | Cracks and fissures | Production of organic acids (highly corrosive) | Limestone, sandstone | [5] |
Animals and insects | Weathering processes, holes, digging nets, structural damages | Release of metabolic activity products | Parchment and leather paper, stone, wood, fibers of vegetal and animal origin. | [2] |
Higher plants | Cracks, detachment, structural changes | Roots excrete organic acids | Natural and artificial stone | [9,10] |
2. Brief Historical Notes on Plant EOs
3. Antimicrobial Effects of EOs: In Vitro Assays
4. Antimicrobial Activity of EOs on Organic Cultural Asset
5. Antimicrobial Activity of EOs in Inorganic Cultural Assets
6. Use of Mixed EOs Compared with Single Ones on Cultural Heritage and Food
7. Discussion, Conclusions, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allsopp, D.; Seal, K.J.; Gaylarde, C.C. Introduction to Biodeterioration, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780521528870. [Google Scholar]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, E.; Chisesi, R.; Barresi, G.; Barbaro, S.; Lombardo, G.; Rotolo, V.; Sebastianelli, M.; Travagliato, G.; Palla, F. Fungi and Bacteria in Indoor Cultural Heritage Environments: Microbial-related Risks for Artworks and Human Health. Environ. Ecol. Res. 2016, 4, 257–264. [Google Scholar] [CrossRef]
- Sterflinger, K.; Pinzari, F. The revenge of time: Fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ. Microbiol. 2012, 14, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, O.; Municchia, A.C. The Role of Fungi and Lichens in the Biodeterioration of Stone Monuments. Open Conf. Proc. J. 2016, 7, 39–54. [Google Scholar] [CrossRef]
- Crispim, C.A.; Gaylarde, C.C. Cyanobacteria and biodeterioration of cultural heritage: A review. Microb. Ecol. 2005, 49, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.F.; Miller, A.Z.; Dionísio, A.; Saiz-Jimenez, C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology 2009, 155, 3476–3490. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, S.; Candotto Carniel, F.; Pipan, G.; Tretiach, M. Devitalization of poikilohydric lithobionts of open-air monuments by heat shock treatments: A new case study centred on bryophytes. Int. Biodeterior. Biodegrad. 2013, 84, 44–53. [Google Scholar] [CrossRef]
- Lisci, M.; Monte, M.; Pacini, E. Lichens and higher plants on stone: A review. Int. Biodeterior. Biodegrad. 2003, 51, 1–17. [Google Scholar] [CrossRef]
- Cicinelli, E.; Benelli, F.; Bartoli, F.; Traversetti, L.; Caneva, G. Trends of plant communities growing on the Etruscan tombs (Cerveteri, Italy) related to different management practices. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 154, 158–164. [Google Scholar] [CrossRef]
- Schröer, L.; Boon, N.; De Kock, T.; Cnudde, V. The capabilities of bacteria and archaea to alter natural building stones—A review. Int. Biodeterior. Biodegrad. 2021, 165, 105329. [Google Scholar] [CrossRef]
- Gulotta, D.; Saviello, D.; Gherardi, F.; Toniolo, L.; Anzani, M.; Rabbolini, A.; Goidanich, S. Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan. Herit. Sci. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Pasquarella, C.; Balocco, C.; Saccani, E.; Capobianco, E.; Viani, I.; Veronesi, L.; Pavani, F.; Pasquariello, G.; Rotolo, V.; Palla, F.; et al. Biological and microclimatic monitoring for conservation of cultural heritage: A case study at the De Rossi room of the Palatina library in Parma. Aerobiologia 2020, 36, 105–111. [Google Scholar] [CrossRef]
- Srikanth, P.; Sudharsanam, S.; Steinberg, R. Bio-aerosols in indoor environment: Composition, health effects and analysis. Indian J. Med. Microbiol. 2008, 26, 302–312. [Google Scholar] [CrossRef]
- Ruga, L.; Orlandi, F.; Fornaciari, M. Preventive conservation of cultural heritage: Biodeteriogens control by aerobiological monitoring. Sensors 2019, 19, 3647. [Google Scholar] [CrossRef]
- Pasquarella, C.; Balocco, C.; Pasquariello, G.; Petrone, G.; Saccani, E.; Manotti, P.; Ugolotti, M.; Palla, F.; Maggi, O.; Albertini, R. A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma. Sci. Total Environ. 2015, 536, 557–567. [Google Scholar] [CrossRef]
- Petiti, C.; Toniolo, L.; Gulotta, D.; Mariani, B.; Goidanich, S. Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environ. Sci. Pollut. Res. Int. 2020, 27, 13081–13094. [Google Scholar] [CrossRef]
- Comite, V.; Miani, A.; Ricca, M.; La Russa, M.; Pulimeno, M.; Fermo, P. The impact of atmospheric pollution on outdoor cultural heritage: An analytic methodology for the characterization of the carbonaceous fraction in black crusts present on stone surfaces. Environ. Res. 2021, 201, 111565. [Google Scholar] [CrossRef]
- Russo, R.; Chiaramonte, M.; Palla, F. Freshwater cyanobacteria, identified by microscopic and molecular investigations on a colonized fountain surface: A case study in Palermo (Sicily, Italy). Conserv. Sci. Cult. Herit. 2021, 21, 205. [Google Scholar] [CrossRef]
- Palla, F.; Barresi, G. Biotechnology and Conservation of Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9783030975845. [Google Scholar]
- Cappitelli, F.; Cattò, C.; Villa, F. The control of cultural heritage microbial deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Matteucci, E.; Pinna, D.; Ruggiero, M.G.; Riminesi, C. Efficacy of the environmentally sustainable microwave heating compared to biocide applications in the devitalization of phototrophic communities colonizing rock engravings of Valle Camonica, UNESCO world heritage site, Italy. Int. Biodeterior. Biodegrad. 2021, 165, 105327. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Armijos, C.; Ramírez, J.; Vidari, G. Poorly Investigated Ecuadorian Medicinal Plants. Plants 2022, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Rotolo, V.; De Caro, M.L.; Giordano, A.; Palla, F. Solunto archaeological park in Sicily: Life under mosaic tesserae. Flora Mediterr. 2018, 28, 233–245. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef] [PubMed]
- Sparacello, S.; Gallo, G.; Faddetta, T.; Megna, B.; Nicotra, G.; Bruno, B.; Giambra, B.; Palla, F. Thymus vulgaris essential oil and hydro-alcoholic solutions to counteract wooden artwork microbial colonization. Appl. Sci. 2021, 11, 8704. [Google Scholar] [CrossRef]
- D’agostino, G.; Giambra, B.; Palla, F.; Bruno, M.; Badalamenti, N. The application of the essential oils of Thymus vulgaris L. and Crithmum maritimum L. as biocidal on two tholu bommalu indian leather puppets. Plants 2021, 10, 1508. [Google Scholar] [CrossRef]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—An overview. Forsch. Komplementmed. 2009, 16, 79–90. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Kumar, N.S.; Simon, N. In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. J. Pharmacogn. Phytochem. 2016, 5, 8234. [Google Scholar]
- Zhuang, X.; Zhang, Z.; Wang, Y.; Li, Y. The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources. Ind. Crops Prod. 2018, 126, 340–346. [Google Scholar] [CrossRef]
- Yeshi, K.; Wangchuk, P. Chapter 11—Essential oils and their bioactive molecules in healthcare. In Herbal Biomolecules in Healthcare Applications; Mandal, S.C., Nayak, A.K., Dhara, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 215–237. ISBN 978-0-323-85852-6. [Google Scholar]
- Ortega-Morales, B.; Gaylarde, C.C. Bioconservation of Historic Stone Buildings—An Updated Review. Appl. Sci. 2021, 11, 5695. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef]
- Belaiche, P. Traité de Phytothérapie et D’aromathérapie; Maloine: Paris, France, 1979; ISBN 9782224005207. [Google Scholar]
- Abu-Shanab, B.; Adwan, G.; Abu-safiya, D.; Naser Jarrar, K.A. Antibacterial Activities of Some Plant Extracts Utilized in Popular Medicine in Palestine. Turk. J. Biol. 2004, 28, 99–102. [Google Scholar]
- Farrar, A.J.; Farrar, F.C. Clinical Aromatherapy. Nurs. Clin. N. Am. 2020, 55, 489–504. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Stankovic, M. Lamiaceae Species: Biology, Ecology and Practical Uses; MDPI: Basel, Switerland, 2020; ISBN 9783039284184. [Google Scholar]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Hassanien, M.F.R.; Assiri, A.M.A.; Alzohairy, A.M.; Oraby, H.F. Health-promoting value and food applications of black cumin essential oil: An overview. J. Food Sci. Technol. 2015, 52, 6136–6142. [Google Scholar] [CrossRef]
- Hossain, F.; Mostofa, M.G.; Alam, A.K. Traditional uses and pharmacological activities of the genus leea and its phytochemicals: A review. Heliyon 2021, 7, e06222. [Google Scholar] [CrossRef]
- Do Nascimento, L.D.; de Moraes, A.A.B.; da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.D.A.; de Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; Van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zheng, X. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 2007, 18, 1126–1130. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Rotolo, V.; Barresi, G.; Di Carlo, E.; Giordano, A.; Lombardo, G.; Crimi, E.; Costa, E.; Bruno, M.; Palla, F. Plant extracts as green potential strategies to control the biodeterioration of cultural heritage. Int. J. Conserv. Sci. 2016, 7, 839–846. [Google Scholar]
- Intorasoot, A.; Chornchoem, P.; Sookkhee, S.; Intorasoot, S. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant acinetobacter baumannii. J. Intercult. Ethnopharmacol. 2017, 6, 218–222. [Google Scholar] [CrossRef]
- Karpinski, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef]
- Guiamet, P.; Arenas, P. Differential sensitivity of Bacillus sp. isolated from archive materials to plant extracts. Pharmacologyonline 2008, 3, 649–658. [Google Scholar]
- Lavin, P.; de Saravia, S.G.; Guiamet, P. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils. Microb. Ecol. 2016, 71, 628–633. [Google Scholar] [CrossRef]
- Borrego, S.; Valdés, O.; Vivar, I.; Lavin, P.; Guiamet, P.; Battistoni, P.; Gómez de Saravia, S.; Borges, P.; Fung, D.Y.C.; Velge, P. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage. Int. Scholarly Res. Notices 2012, 2012, 826786. [Google Scholar] [CrossRef]
- Fierascu, I.; Ion, R.M.; Radu, M.; Dima, S.O.; Bunghez, I.R.; Avramescu, S.M.; Fierascu, R.C. Comparative study of antifungal effect of natural extracts and essential oils of ocimum basilicum on selected artefacts. Rev. Roum. Chim. 2014, 59, 207–211. [Google Scholar]
- Casiglia, S.; Jemia, M.B.; Riccobono, L.; Bruno, M.; Scandolera, E.; Senatore, F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015, 29, 1201–1206. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Scandolera, E.; Senatore, F.; Senatore, F. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in Northern Sicily and its activity on microorganisms affecting historical art crafts. Arab. J. Chem. 2019, 12, 2704–2712. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Senatore, F.; Rosselli, S. Chemical composition of essential oils of Anthemis secundiramea Biv. subsp. secundiramea (Asteraceae) collected wild in Sicily and their activity on micro-organisms affecting historical art craft. Nat. Prod. Res. 2019, 33, 970–979. [Google Scholar] [CrossRef]
- Savković, Ž.D.; Stupar, M.; Grbić, M.V.L.; Vukojević, J.B. Comparison of anti-Aspergillus activity of Origanum vulgare L. essential oil and commercial biocide based on silver ions and hydrogen peroxide. Acta Bot. Croat. 2016, 75, 121–128. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential oils as natural biocides in conservation of cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef]
- Yang, V.W.; Clausen, C.A. Antifungal effect of essential oils on southern yellow pine. Int. Biodeterior. Biodegrad. 2007, 59, 302–306. [Google Scholar] [CrossRef]
- Antonelli, F.; Bartolini, M.; Plissonnier, M.L.; Esposito, A.; Galotta, G.; Ricci, S.; Petriaggi, B.D.; Pedone, C.; Di Giovanni, A.; Piazza, S.; et al. Essential oils as alternative biocides for the preservation of waterlogged archaeological wood. Microorganisms 2020, 8, 2015. [Google Scholar] [CrossRef]
- Ferreira, E.F.; Mouro, C.; Silva, L.; Gouveia, I.C. Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles. Polymers 2022, 14, 597. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Gatti, L.; Troiano, F.; Vacchini, V.; Cappitelli, F.; Balloi, A. An in vitro evaluation of the biocidal effect of oregano and cloves’ volatile compounds against microorganisms colonizing an oil painting—A pioneer study. Appl. Sci. 2021, 11, 78. [Google Scholar] [CrossRef]
- Sakr, A.; Ghaly, M.; Abdel-Haliem, M. The efficacy of specific essential oils on yeasts isolated from the royal tomb paintings at Tanis, Egypt. Int. J. Conserv. Sci. 2012, 3, 87–92. [Google Scholar]
- Verma, R.K.; Chaurasia, L.; Kumar, M. Antifungal activity of essential oils against selected building fungi. Indian J. Nat. Prod. Resour. 2011, 2, 448–451. [Google Scholar]
- Afifi, H. Comparative Efficacy of Some Plant Extracts against Fungal Deterioration of Stucco Ornaments in the Mihrab of Mostafa Pasha Ribate, Cairo, Egypt. Am. J. Biochem. Mol. Biol. 2011, 2, 40–47. [Google Scholar] [CrossRef]
- Stupar, M.; Grbić, M.L.; Džamić, A.; Unković, N.; Ristić, M.; Jelikić, A.; Vukojević, J. Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South Afr. J. Bot. 2014, 93, 118–124. [Google Scholar] [CrossRef]
- Candela, R.G.; Maggi, F.; Lazzara, G.; Rosselli, S.; Bruno, M. The essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces. Plants 2019, 8, 300. [Google Scholar] [CrossRef]
- Kakakhel, M.A.; Wu, F.; Gu, J.D.; Feng, H.; Shah, K.; Wang, W. Controlling biodeterioration of cultural heritage objects with biocides: A review. Int. Biodeterior. Biodegrad. 2019, 143, 104721. [Google Scholar] [CrossRef]
- Argyri, A.A.; Doulgeraki, A.I.; Varla, E.G.; Bikouli, V.C.; Natskoulis, P.I.; Haroutounian, S.A.; Moulas, G.A.; Tassou, C.C.; Chorianopoulos, N.G. Evaluation of plant origin essential oils as herbal biocides for the protection of caves belonging to natural and cultural heritage sites. Microorganisms 2021, 9, 1836. [Google Scholar] [CrossRef]
- Ranaldi, R.; Rugnini, L.; Gabriele, F.; Spreti, N.; Casieri, C.; Di Marco, G.; Gismondi, A.; Bruno, L. Plant essential oils suspended into hydrogel: Development of an easy-to-use protocol for the restoration of stone cultural heritage. Int. Biodeterior. Biodegrad. 2022, 172, 105436. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M.; Giovanelli, E.; Deans, S.G.; Eaglesham, E. Antibacterial and antioxidant properties of Mediterranean aromatic plants. Ind. Crops Prod. 1993, 2, 47–50. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, H.J.; Kim, D.W.; Chung, Y.J. New biocide for eco-friendly biofilm removal on outdoor stone monuments. Int. Biodeterior. Biodegrad. 2018, 131, 19–28. [Google Scholar] [CrossRef]
- Di Vito, M.; Vergari, L.; Mariotti, M.; Proto, M.R.; Barbanti, L.; Garzoli, S.; Sanguinetti, M.; Sabatini, L.; Peduzzi, A.; Bellardi, M.G.; et al. Anti-Mold Effectiveness of a Green Emulsion Based on Citrus aurantium Hydrolate and Cinnamomum zeylanicum Essential Oil for the Modern Paintings Restoration. Microorganisms 2022, 10, 205. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Prestileo, F.; Ortenzi, F.; Sellathurai, S.; Docci, A.; Cerafogli, E.; Colasanti, I.A.; Ricca, M.; La Russa, M.F. In-Situ Comparative Study of Eucalyptus, Basil, Cloves, Thyme, Pine Tree, and Tea Tree Essential Oil Biocide Efficacy. Methods Protoc. 2022, 5, 37. [Google Scholar] [CrossRef]
- Tomić, A.; Šovljanski, O.; Nikolić, V.; Pezo, L.; Aćimović, M.; Cvetković, M.; Stanojev, J.; Kuzmanović, N.; Markov, S. Screening of Antifungal Activity of Essential Oils in Controlling Biocontamination of Historical Papers in Archives. Antibiotics 2023, 12, 103. [Google Scholar] [CrossRef]
- Spada, M.; Cuzman, O.A.; Tosini, I.; Galeotti, M.; Sorella, F. Essential oils mixtures as an eco-friendly biocidal solution for a marble statue restoration. Int. Biodeterior. Biodegrad. 2021, 163, 105280. [Google Scholar] [CrossRef]
- Songsamoe, S.; Matan, N.; Matan, N. Antifungal activity of Michelia alba oil in the vapor phase and the synergistic effect of major essential oil components against Aspergillus flavus on brown rice. Food Control. 2017, 77, 150–157. [Google Scholar] [CrossRef]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Park, S.B.; Zheng, Y.; Chun, H.S. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics 2022, 11, 1727. [Google Scholar] [CrossRef]
- Crook, B.; Burton, N.C. Indoor moulds, Sick Building Syndrome and building related illness. Fungal Biol. Rev. 2010, 24, 106–113. [Google Scholar] [CrossRef]
- Pyzik, A.; Ciuchcinski, K.; Dziurzynski, M.; Dziewit, L. The bad and the good-microorganisms in cultural heritage environments-an update on biodeterioration and biotreatment approaches. Materials 2021, 14, 177. [Google Scholar] [CrossRef]
- Varnai, V.M.; Macan, J.; Ljubicić Calusić, A.; Prester, L.; Kanceljak Macan, B. Upper respiratory impairment in restorers of cultural heritage. Occup. Med. 2011, 61, 45–52. [Google Scholar] [CrossRef]
- Petraretti, M.; Siciliano, A.; Carraturo, F.; Cimmino, A.; De Natale, A.; Guida, M.; Pollio, A.; Evidente, A.; Masi, M. An Ecotoxicological Evaluation of Four Fungal Metabolites with Potential Application as Biocides for the Conservation of Cultural Heritage. Toxins 2022, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Rosado, T.; Teixeira, D.; Candeias, A.; Caldeira, A.T. Green mitigation strategy for cultural heritage: Bacterial potential for biocide production. Environ. Sci. Pollut. Res. 2017, 24, 4871–4881. [Google Scholar] [CrossRef]
- De Leo, F.; Jurado, V. Microbial Communities in Cultural Heritage and Their Control; MDPI: Basel, Switzerland, 2022; ISBN 9783036530505. [Google Scholar]
- Gu, J.-D.; Katayama, Y. Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection BT. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 37–58. ISBN 978-3-030-69411-1. [Google Scholar]
Plant Essential Oil | Common Name | Family Name | Artifact Material (References) |
---|---|---|---|
Allium sativum L. Arctium lappa L. Cichorium intybus L. Centaurea cyanus L. Eucalyptus citriodora (Hook) Medicago sativa L. Plantago major L. Pinus caribaea Morelet Piper auritum Kunth | Garlic Burdock Chicory Centaury Lemon-scent. gum Alfalfa Plantain Pine Mexican pepper | Amaryllidaceae Asteraceae Asteraceae Compositae Myrtaceae Fabaceae Plantaginaceae Pinaceae Piperaceae | Paper [53] |
Thymus vulgaris L. | Thyme | Lamiaceae | Leather [29] |
Origanum vulgare L. Thymus vulgaris L. | Oregano Thyme | Lamiaceae Lamiaceae | Paper [54] Wood [61] |
Allium sativum L. Citrus sinensis (L.) Osbeck Laurus nobilis L. Pimpinella anisum Origanum vulgare L. Syzygium aromaticum (L.) | Garlic Sweet orange Laurel Anise Oregano Clove | Amaryllidaceae Rutaceae Lauraceae Apiaceae Lamiaceae Myrtaceae | Repository air and documents [55] Stone [80] |
Ocimum basilicum L. | Basil | Lamiaceae | Paper [56] |
Anthemis secundiramea Biv. | Coastal chamomile | Asteraceae | Historical art crafts [59] |
Moluccella spinosa L. | Spiny lemon balm | Lamiaceae | Textile [57] |
Thymus capitata L. | Headed thyme | Lamiaceae | Historical art crafts [58,80] |
Origanum vulgare L. | Oregano | Lamiaceae | Paper, silk, stone [60] |
Pelargonium graveolens (Thunb.) Thymus vulgarus L. | Geranium Thyme | Lamiaceae Geraniaceae | Wood [62] |
Cinnamomum zeylanicum Blume Thymus serpyllum L.s.s, Thymus vulgaris L. | Cinnamon Wild thyme Thyme | Lauraceae Lamiaceae Lamiaceae | Stone [80], wood [63] |
Lavandula luisieri L. | Lavender | Lamiaceae | Textiles [64] |
Origanum vulgare L. Syzygium aromaticum L. | Oregano Clove | Lamiaceae Myrtaceae | Canvas paintings [66] |
Citrus limon (L.) Osbeck Menta piperita L. Foeniculum vulgare Mill. Origanum majorana L. Salvia rosmarinus Spenn. | Lemon Spearmint Wild fennel Marjoram Rosemary | Rutaceae Lamiaceae Apiaceae Lamiaceae Lamiaceae | Egypt Royal Tombs [67] |
Citrus limon (L.) Osbeck Menta piperita L. Syzygium aromaticum L. | Lemon Spearmint Clove | Myrtaceae Rutaceae Lamiaceae | Buildings [68] |
Melaleuca alternifolia Sm. | Tea tree | Myrtaceae | Stucco [69] |
Lavandula angustifolia Mill. Origanum vulgare L. Rosmarinus officinalis L. | Lavender Oregano Rosemary | Lamiaceae Lamiaceae Lamiaceae | Stone, wood [70] |
Thymus vulgaris L. Origanum vulgare L. | Thyme Oregano | Lamiaceae Lamiaceae | Mosaic tesserae [26] |
Thymus capitata L. | Headed thyme | Lamiaceae | Stone surface [71] |
Lavandula angustifolia Mill. Thymus vulgaris L. | Lavender Thyme | Lamiaceae Lamiaceae | Stone [74] |
Pathogenic Organisms Colonizing Organic Cultural Assets | ||
---|---|---|
Artifacts | Species | Kingdom |
Wooden sculpture [28] | Micrococcus sp. Aspergillus sp., Streptomyces sp. | Monera Fungi |
Leather puppets [29] | Bacillus sp., Georgenia sp., Ornithinibacillus sp. Streptomyces sp. | Monera Monera |
Photographic [53] Paper documents [54] | Bacillus sp., Scopulariopsis sp. Fusarium sp. | Monera Fungi Monera |
Repository air and paper documents [55] | Enterobacter agglomerans, Bacillus sp. Streptomyces sp., Aspergillus sp. | Monera Fungi |
Paper artifacts [56] | Aspergillus sp., Penicillium sp. Mucor sp. | Fungi Fungi |
Historical textiles [57] | Bacillus cereus, Bacillus subtilis, Staphylococcus epidermis | Monera |
Silk, paper [60] | Aspergillus sp. | Fungi |
Wooden sculptures [61] | Aspergillus flavus | Fungi |
Pinewood [62] | Aspergillus niger, Penicillium chrysogenum, Trichoderma viride | Fungi |
Paper artifacts [63] | Chaetomium sp., Fusarium sp., Aspergillus japonicus Stachybotrys chartarum | Fungi Fungi |
Oil paintings [66] | Bacillus sp. Aspergillus sp., Cephaloteca sp., Penicillium sp. | Monera Fungi |
Modern paintings [77] | Rhizopus stolonifer Penicillium spp., Alternaria alternate, Aspergillus sp. | Fungi Fungi |
Historical papers [79] | Cladosporium cladosporides, Aspergillus fumigatus Penicillium chrysogenum | Fungi Fungi |
Inorganic Cultural Assets | ||
---|---|---|
Artifacts | Species | Kingdom |
Mosaic tesserae (Sicily) [26] | Bacillus sp. Alternaria sp., Aspergillus sp. Chroococcus sp. Chlorella sp. | Monera Fungi Cyanobacteria Green algae |
Limestone, granite block [67] | Candida albicans, C. lipolytica, Lodderomyces elongsporus, Saccharomyces cerivisie | Protists |
Building and indoor environment [68] | Aspergillus niger, Geotrichum candidum | Fungi |
Stucco ornaments [69] | Alternaria alternata, Aspergillus niger, Fusarium oxysporium | Fungi |
Cement grit, ceramic, marble [71] | Apatococcus lobatus, Chlorella ellipsoidea, Nostoc sp., Chroococcus lithophilus, Gleocapsa compacta | Green algae Cyanobacteria |
Caves and hypogea [73] | Firmicutes sp., Actinobacteria sp., Bacillus sp. Rhodococcus sp. Fusarium sp., Clonostachys sp., Acremonium sp., Doratomyces sp., Cephalotrichum sp., Cladosporium sp., Penicillium sp., Talaromyces sp., Xenoacremonium sp. | Monera Monera Fungi Fungi Fungi Fungi |
Mosaic tesserae (Rome) [78] | Chlorella sp. | Green alga |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, R.; Palla, F. Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage. Sustainability 2023, 15, 8522. https://doi.org/10.3390/su15118522
Russo R, Palla F. Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage. Sustainability. 2023; 15(11):8522. https://doi.org/10.3390/su15118522
Chicago/Turabian StyleRusso, Roberta, and Franco Palla. 2023. "Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage" Sustainability 15, no. 11: 8522. https://doi.org/10.3390/su15118522
APA StyleRusso, R., & Palla, F. (2023). Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage. Sustainability, 15(11), 8522. https://doi.org/10.3390/su15118522