Determinants of Green Innovation: The Role of Monetary Policy and Central Bank Characteristics
Abstract
:1. Introduction
2. Theoretical Background
2.1. Monetary Policy Factors
2.2. Energy Policy Factors
2.3. Other Main Macroeconomic and Institutional Factors
3. Data and Methodology
3.1. Data and Variables
3.1.1. Data
3.1.2. Dependent Variable
3.1.3. Explanatory Variables
3.1.4. Control Variables
3.1.5. Data Quality
4. Results and Discussion
4.1. Preliminary Tests of Econometric Analysis (FM–OLS Methodology)
4.1.1. Unit Root Tests
4.1.2. Cross-Sectional Dependence (CSD) and Panel Cointegration Results
4.2. Empirical Results and Discussion
4.2.1. Key Conclusions of the Empirical Model
4.2.2. Robustness Checks
Econometric Methodologies and Endogeneity
Models of Different Variables
Alternative Dependent Variable
Low- and Medium-Low-Income Countries versus Medium-High and High-Income Countries
4.2.3. Heterogeneity Analysis
4.2.4. Moderating Effects
5. Conclusions and Policy Implications
5.1. Policy Recommendations
5.2. Limitations and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The 109 Countries Used in the Model
References
- Beckerman, W. Economic growth and the environment: Whose growth? Whose environment? World Dev. 1992, 20, 481–496. [Google Scholar] [CrossRef]
- Zhang, K.M.; Wen, Z.G. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhao, X.; Fu, Q.; Chang, C.P. The impact of financial risk on green innovation: Global evidence. Pac.-Basin Financ. J. 2023, 77, 101896. [Google Scholar] [CrossRef]
- Naustdalslid, J. Circular economy in China—The environmental dimension of the harmonious society. Int. J. Sustain. Dev. World Ecol. 2014, 21, 303–313. [Google Scholar] [CrossRef]
- Zhou, B.; Pei, J.; Xue, B.; Guo, F.; Wen, Y.; Zhang, J.; Li, R. Solar/road from ‘forced coexistence’to ‘harmonious symbiosis’. Appl. Energy 2019, 255, 113808. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Li, S.; Luo, S.; Jiang, X.; Shen, Z.; Wu, H. Towards achieving the sustainable development goal of industry: How does industrial agglomeration affect air pollution? Innov. Green Dev. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Malysheva, T.V.; Shinkevich, A.I.; Kharisova, G.M.; Nuretdinova, Y.V.; Khasyanov, O.R.; Nuretdinov, I.G.; Zaitseva, N.A.; Kudryavtseva, S.S. The sustainable development of competitive enterprises through the implementation of innovative development strategy. Int. J. Econ. Financ. Issues 2016, 6, 185–191. [Google Scholar]
- Zhang, N.; Lior, N.; Jin, H. The energy situation and its sustainable development strategy in China. Energy 2011, 36, 3639–3649. [Google Scholar] [CrossRef]
- Chen, Y.S. The driver of green innovation and green image–green core competence. J. Bus. Ethics 2008, 81, 531–543. [Google Scholar] [CrossRef]
- International Energy Agency Paris. Renewable Energy: Market and Policy Trends in IEA Countries; International Energy Agency Paris: Paris, France, 2004. [Google Scholar]
- International Energy Agency Paris. Energy Technology Perspectives 2012: Pathways to a Clean Energy System; International Energy Agency Paris: Paris, France, 2012. [Google Scholar]
- Wen, J.; Zhao, X.X.; Chang, C.P. The impact of extreme events on energy price risk. Energy Econ. 2021, 99, 105308. [Google Scholar] [CrossRef]
- Chang, C.H. The influence of corporate environmental ethics on competitive advantage: The mediation role of green innovation. J. Bus. Ethics 2011, 104, 361–370. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, Y.; Tan, J.; Liu, J.; Zheng, Z.; Zhang, X. Spatial-temporal heterogeneity of green development efficiency and its influencing factors in growing metropolitan area: A case study for the Xuzhou metropolitan area. Chin. Geogr. Sci. 2020, 30, 352–365. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Zhang, Q. Environmental regulation, economic policy uncertainty, and green technology innovation. Clean Technol. Environ. Policy 2021, 23, 2975–2988. [Google Scholar] [CrossRef]
- IPCC. Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways. 2021. Available online: https://www.ipcc.ch/sr15 (accessed on 6 January 2023).
- United Nations (UN). Bridging Climate Ambition and Finance Gaps. UN Climate Press Release 13 November 2017. Available online: https://unfccc.int/news/bridging-climate-ambitionand-finance-gaps (accessed on 6 January 2023).
- Bloomberg New Energy Finance (BloombergNEF). Energy Transition Investment Trends 2021. 2020. Available online: https://www.bnef.com/flagships/clean-energy-investment (accessed on 6 January 2023).
- Azhgaliyeva, D.; Beirne, J.; Mishra, R. What matters for private investment in renewable energy? Clim. Policy 2022, 23, 71–87. [Google Scholar] [CrossRef]
- Hashmi, S.M.; Syed, Q.R.; Inglesi-Lotz, R. Monetary and energy policy interlinkages: The case of renewable energy in the US. Renew. Energy 2022, 201, 141–147. [Google Scholar] [CrossRef]
- Ziaei, S.M. US interest rate spread and energy consumption by sector (evidence of pre and post implementation of the Fed’s LSAPs policy). Energy Rep. 2018, 4, 288–302. [Google Scholar] [CrossRef]
- Mughal, N.; Kashif, M.; Arif, A.; Guerrero, J.W.G.; Nabua, W.C.; Niedbała, G. Dynamic effects of fiscal and monetary policy instruments on environmental pollution in ASEAN. Environ. Sci. Pollut. Res. 2021, 28, 65116–65126. [Google Scholar] [CrossRef] [PubMed]
- Campiglio, E. Beyond carbon pricing: The role of banking and monetary policy in financing the transition to a low-carbon economy. Ecol. Econ. 2016, 121, 220–230. [Google Scholar] [CrossRef]
- Schoenmaker, D.; Van Tilburg, R. What role for financial supervisors in addressing environmental risks? Comp. Econ. Stud. 2016, 58, 317–334. [Google Scholar] [CrossRef]
- D’Orazio, P.; Popoyan, L. Fostering green investments and tackling climate-related financial risks: Which role for macroprudential policies? Ecol. Econ. 2019, 160, 25–37. [Google Scholar] [CrossRef]
- D’Orazio, P. Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries. Int. Econ. 2022, 169, 135–147. [Google Scholar] [CrossRef]
- D’Orazio, P.; Popoyan, L. Do monetary policy mandates and financial stability governance structures matter for the adoption of climate-related financial policies? Int. Econ. 2023, 173, 284–295. [Google Scholar] [CrossRef]
- Crowe, C.; Meade, E.E. Central bank independence and transparency: Evolution and effectiveness. Eur. J. Political Econ. 2008, 24, 763–777. [Google Scholar] [CrossRef]
- Ferreira de Mendonça, H.; Simão Filho, J. Economic transparency and effectiveness of monetary policy. J. Econ. Stud. 2007, 34, 497–514. [Google Scholar] [CrossRef]
- Garriga, A.C.; Rodriguez, C.M. More effective than we thought: Central bank independence and inflation in developing countries. Econ. Model. 2020, 85, 87–105. [Google Scholar] [CrossRef]
- Oikonomou, G.; Papadamou, S.; Spyromitros, E. The effect of central bank transparency on inflation persistence. Econ. Bus. Lett. 2021, 10, 58–68. [Google Scholar] [CrossRef]
- Papadamou, S.; Sidiropoulos, M.; Spyromitros, E. Central bank transparency and the interest rate channel: Evidence from emerging economies. Econ. Model. 2015, 48, 167–174. [Google Scholar] [CrossRef]
- Weber, C.S. Central bank transparency and inflation (volatility)–new evidence. Int. Econ. Econ. Policy 2018, 15, 21–67. [Google Scholar] [CrossRef]
- Dikau, S.; Volz, U. Central bank mandates, sustainability objectives and the promotion of green finance. Ecol. Econ. 2021, 184, 107022. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, J.; Jiang, D.; Sun, Y. Assessment of the spatial association network of green innovation: Role of energy resources in green recovery. Resour. Policy 2022, 79, 103072. [Google Scholar] [CrossRef]
- Wang, Q.J.; Wang, H.J.; Chang, C.P. Environmental performance, green finance and green innovation: What’s the long-run relationships among variables? Energy Econ. 2022, 110, 106004. [Google Scholar] [CrossRef]
- Wen, J.; Li, L.; Zhao, X.; Jiao, C.; Li, W. How government size expansion can affect green innovation—An empirical analysis of data on cross-country green patent filings. Int. J. Environ. Res. Public Health 2022, 19, 7328. [Google Scholar] [CrossRef] [PubMed]
- Kattel, R.; Drechsler, W.; Karo, E. How to Make an Entrepreneurial State: Why Innovation Needs Bureaucracy; Yale University Press: New Haven, CT, USA, 2022. [Google Scholar]
- Bourcet, C. Empirical determinants of renewable energy deployment: A systematic literature review. Energy Econ. 2020, 85, 104563. [Google Scholar] [CrossRef]
- Caglar, A.E.; Ulug, M. The role of government spending on energy efficiency R&D budgets in the green transformation process: Insight from the top-five countries. Environ. Sci. Pollut. Res. 2022, 29, 76472–76484. [Google Scholar]
- Yin, H.T.; Chang, C.P.; Wang, H. The impact of monetary policy on green innovation: Global evidence. Technol. Econ. Dev. Econ. 2022, 28, 1933–1953. [Google Scholar] [CrossRef]
- Galindo-Martín, M.A.; Castaño-Martínez, M.S.; Méndez-Picazo, M.T. The relationship between green innovation, social entrepreneurship, and sustainable development. Sustainability 2020, 12, 4467. [Google Scholar] [CrossRef]
- Peng, X.Y.; Zou, X.Y.; Zhao, X.X.; Chang, C.P. How does economic policy uncertainty affect green innovation? Technol. Econ. Dev. Econ. 2023, 29, 114–140. [Google Scholar] [CrossRef]
- Zheng, M.; Feng, G.F.; Wang, Q.J.; Chang, C.P. Financial globalisation and technological innovation: International evidence. Econ. Syst. 2022, 47, 101048. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2020, 191, 116583. [Google Scholar] [CrossRef]
- Sun, C.; Khan, A.; Liu, Y.; Lei, N. An analysis of the impact of fiscal and monetary policy fluctuations on the disaggregated level renewable energy generation in the G7 countries. Renew. Energy 2022, 189, 1154–1165. [Google Scholar] [CrossRef]
- McCollum, D.; Nagai, Y.U.; Riahi, K.; Marangoni, G.; Calvin, K.; Pietzcker, R.; Van Vliet, J.; Van Der Zwaan, B.O.B. Energy investments under climate policy: A comparison of global models. Clim. Chang. Econ. 2013, 4, 1340010. [Google Scholar] [CrossRef]
- Best, R. Switching towards coal or renewable energy? The effects of financial capital on energy transitions. Energy Econ. 2017, 63, 75–83. [Google Scholar] [CrossRef]
- Mazzucato, M.; Semieniuk, G. Public financing of innovation: New questions. Oxf. Rev. Econ. Policy 2017, 33, 24–48. [Google Scholar] [CrossRef]
- Lv, C.; Shao, C.; Lee, C.C. Green technology innovation and financial development: Do environmental regulation and innovation output matter? Energy Econ. 2021, 98, 105237. [Google Scholar] [CrossRef]
- Zhao, X.X.; Wen, J.; Wanaguru, S.; Chang, C.P. The impact of trade conflict on monetary policy in target economies. Singap. Econ. Rev. 2020, 1–24. [Google Scholar] [CrossRef]
- Egli, F.; Steffen, B.; Schmidt, T.S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 2018, 3, 1084–1092. [Google Scholar] [CrossRef]
- Qingquan, J.; Khattak, S.I.; Ahmad, M.; Ping, L. A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies. Sustain. Dev. 2020, 28, 1331–1346. [Google Scholar] [CrossRef]
- Mahmood, H.; Adow, A.H.; Abbas, M.; Iqbal, A.; Murshed, M.; Furqan, M. The fiscal and monetary policies and environment in GCC countries: Analysis of territory and consumption-based CO2 emissions. Sustainability 2022, 14, 1225. [Google Scholar] [CrossRef]
- Bird, L.; Bolinger, M.; Gagliano, T.; Wiser, R.; Brown, M.; Parsons, B. Policies and market factors driving wind power development in the United States. Energy Policy 2005, 33, 1397–1407. [Google Scholar] [CrossRef]
- Chang, T.H.; Huang, C.M.; Lee, M.C. Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries. Energy Policy 2009, 37, 5796–5802. [Google Scholar] [CrossRef]
- D’Orazio, P.; Popoyan, L. Taking Up the Climate Change Challenge: A New Perspective on Central Banking (No. 2020/19); LEM Working Paper Series; Laboratory of Economics and Management (LEM): Pisa, Italy, 2020. [Google Scholar]
- Boneva, L.; Ferrucci, G.; Mongelli, F.P. Climate change and central banks: What role for monetary policy? Clim. Policy 2022, 22, 770–787. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Chang, C.P.; Wen, J.; Zheng, M.; Dong, M.; Hao, Y. Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Econ. Model. 2018, 72, 65–77. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach. Energy Policy 2009, 37, 617–622. [Google Scholar] [CrossRef]
- Tang, E.; Peng, C.; Xu, Y. Changes of energy consumption with economic development when an economy becomes more productive. J. Clean. Prod. 2018, 196, 788–795. [Google Scholar] [CrossRef]
- Wu, X.F.; Chen, G.Q. Coal use embodied in globalised world economy: From source to sink through supply chain. Renew. Sustain. Energy Rev. 2018, 81, 978–993. [Google Scholar] [CrossRef]
- Su, H.N.; Moaniba, I.M. Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technol. Forecast. Soc. Chang. 2017, 122, 49–62. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F. Environmental regulation and the export dynamics of energy technologies. Ecol. Econ. 2008, 66, 447–460. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Wurlod, J.D.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef]
- Oseni, M.O. Households’ access to electricity and energy consumption pattern in Nigeria. Renew. Sustain. Energy Rev. 2012, 16, 990–995. [Google Scholar] [CrossRef]
- Dokas, I.; Panagiotidis, M.; Papadamou, S.; Spyromitros, E. The determinants of energy and electricity consumption in developed and developing countries: International evidence. Energies 2022, 15, 2558. [Google Scholar] [CrossRef]
- Shahbaz, M.; Zakaria, M.; Shahzad, S.J.H.; Mahalik, M.K. The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Econ. 2018, 71, 282–301. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. [Google Scholar] [CrossRef]
- Jin, C.; Shahzad, M.; Zafar, A.U.; Suki, N.M. Socio-economic and environmental drivers of green innovation: Evidence from nonlinear ARDL. Econ. Res.-Ekon. Istraživanja 2022, 35, 5336–5356. [Google Scholar] [CrossRef]
- Wang, P.; Dong, C.; Chen, N.; Qi, M.; Yang, S.; Nnenna, A.B.; Li, W. Environmental regulation, government subsidies, and green technology innovation—A provincial panel data analysis from China. Int. J. Environ. Res. Public Health 2021, 18, 11991. [Google Scholar] [CrossRef]
- Sun, Y.; Razzaq, A. Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries. Sustain. Dev. 2022, 30, 944–957. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Dynamic ARDL simulations effects of fiscal decentralisation, green technological innovation, trade openness, and institutional quality on environmental sustainability: Evidence from South Africa. Sustainability 2022, 14, 10268. [Google Scholar] [CrossRef]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Ibrahim, R.L.; Ajide, K.B. Disaggregated environmental impacts of non-renewable energy and trade openness in selected G-20 countries: The conditioning role of technological innovation. Environ. Sci. Pollut. Res. 2021, 28, 67496–67510. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.A.; Koondhar, M.A.; Khan, I.; Ali, U.; Tianjun, L. Dynamic linkage between industrialisation, energy consumption, carbon emission, and agricultural products export of Pakistan: An ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 43698–43710. [Google Scholar] [CrossRef]
- Van Tran, N. The environmental effects of trade openness in developing countries: Conflict or cooperation? Environ. Sci. Pollut. Res. 2020, 27, 19783–19797. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ozturk, I. Examining the direct and indirect effects of financial development on CO2 emissions for 88 developing countries. J. Environ. Manag. 2021, 293, 112812. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Feng, C. How Do Economic Freedom and Technological Innovation Affect Green Total-Factor Productivity? Cross-Country Evidence. Emerg. Mark. Financ. Trade 2022, 59, 1426–1443. [Google Scholar] [CrossRef]
- Berrone, P.; Fosfuri, A.; Gelabert, L.; Gomez-Mejia, L.R. Necessity as the mother of ‘green inventions: Institutional pressures and environmental innovations. Strateg. Manag. J. 2013, 34, 891–909. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Yin, H.; Zeng, M. Green innovation and China’s CO2 emissions–the moderating effect of institutional quality. J. Environ. Plan. Manag. 2022, 65, 877–906. [Google Scholar] [CrossRef]
- Garriga, A.C. Central bank independence in the world: A new data set. Int. Interact. 2016, 42, 849–868. [Google Scholar] [CrossRef]
- Dincer, N.N.; Eichengreen, B.; Geraats, P. Trends in monetary policy transparency: Further updates. Int. J. Cent. Bank. 2022, 18, 331–348. [Google Scholar]
- Griliches, Z. Patent statistics as economic indicators: A survey. J. Econ. Lit. 1990, 28, 1661–1707. [Google Scholar]
- Cai, X.; Zhu, B.; Zhang, H.; Li, L.; Xie, M. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci. Total Environ. 2020, 746, 140810. [Google Scholar] [CrossRef] [PubMed]
- Berger, H.; De Haan, J.; Eijffinger, S.C. Central bank independence: An update of theory and evidence. J. Econ. Surv. 2001, 15, 3–40. [Google Scholar] [CrossRef]
- Eijffinger, S.; de Haan, J. The Political Economy of Central-Bank Independence; Special Papers in International Economics 19; Princeton University International Finance Section: Princeton, NJ, USA, 1996. [Google Scholar]
- Afonso, A.; Furceri, D. Government size, composition, volatility and economic growth. Eur. J. Political Econ. 2010, 26, 517–532. [Google Scholar] [CrossRef]
- Geall, S.; Shen, W. Solar energy for poverty alleviation in China: State ambitions, bureaucratic interests, and local realities. Energy Res. Soc. Sci. 2018, 41, 238–248. [Google Scholar] [CrossRef]
- Lederer, M.; Wallbott, L.; Urban, F. Green transformations and state bureaucracy in the global south. In Handbook on Green Growth; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 404–424. [Google Scholar]
- Dafermos, Y.; Nikolaidi, M.; Galanis, G. Climate change, financial stability and monetary policy. Ecol. Econ. 2018, 152, 219–234. [Google Scholar] [CrossRef]
- Arminen, H.; Menegaki, A.N. Corruption, climate, and the energy-environment-growth nexus. Energy Econ. 2019, 80, 621–634. [Google Scholar] [CrossRef]
- Awijen, H.; Belaïd, F.; Zaied, Y.B.; Hussain, N.; Lahouel, B.B. Renewable energy deployment in the MENA region: Does innovation matter? Technol. Forecast. Soc. Chang. 2022, 179, 121633. [Google Scholar] [CrossRef]
- Hoechle, D. Robust standard errors for panel regressions with cross-sectional dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics with STATA; StataCorp LP: College Station, TX, USA, 2009. [Google Scholar]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001. [Google Scholar]
- Kao, C.; Chiang, M.H. On the estimation and inference of a cointegrated regression in panel data. Adv. Econom. 2000, 15, 7–51. [Google Scholar]
- Mark, N.C.; Sul, D. Cointegration Vector Estimation by Panel DOLS and Long-Run Money Demand. Oxf. Bull. Econ. Stat. 2003, 65, 655–680. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Gründler, K.; Potrafke, N. Corruption and economic growth: New empirical evidence. Eur. J. Political Econ. 2019, 60, 101810. [Google Scholar] [CrossRef]
- Baltagi, B.H. (Ed.) Panel Data Econometrics: Theoretical Contributions and Empirical Applications; Emerald Group Publishing: Bingley, UK, 2006. [Google Scholar]
- Costantini, M.; Destefanis, S. Cointegration analysis for cross-sectionally dependent panels: The case of regional production functions. Econ. Model. 2009, 26, 320–327. [Google Scholar] [CrossRef]
- Yu, C.H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Beaudry, P.; Caglayan, M.; Schiantarelli, F. Monetary instability, the predictability of prices, and the allocation of investment: An empirical investigation using UK panel data. Am. Econ. Rev. 2001, 91, 648–662. [Google Scholar] [CrossRef]
- Feng, G.F.; Zheng, M. Economic policy uncertainty and renewable energy innovation: International evidence. Innov. Green Dev. 2022, 1, 100010. [Google Scholar] [CrossRef]
Variables | Disambiguation | Source | Min. | Max. | Mean | St. Dev. |
---|---|---|---|---|---|---|
LENVPAT (per capita) | Ln(Total number of envir. Related techn. Patents p.c.) | OECD, WDI | −5.177741 | 6.438482 | 1.737711 | 2.103058 |
LPAT (p.c.) | Ln(Patent applications, all (per capita, per million)) | WDI | −3.248097 | 8.340181 | 3.650523 | 2.230593 |
BRM M3% GDP | Sum of narrow money and other assets-Broad Money | WDI | 10.10652 | 699.197 | 76.10276 | 73.81916 |
INTRT | Real interest rate (X 100) | WDI | −64.38082 | 52.43679 | 5.28662 | 8.03546 |
CBI | Central bank independence index (0 and 1) | Garriga [84] | 0 | 1 | 0.53313 | 0.49916 |
CBT | Central bank transparency index (Eichengreen’s online database) | DEG group [85] | 0.5 | 14.5 | 7.559123 | 3.537492 |
LGDP | GDP per capita fixed USD prices (2011) (PPP) | WDI | 6.49193 | 11.45042 | 9.451556 | 1.125927 |
GEXP (%GDP) | General Gov. Expenses (% of GDP) | WDI | 4.403315 | 73.57668 | 16.3179 | 6.037289 |
BUR | Bureaucracy index | Fraser Institute | 3.272567 | 9.2726 | 6.583437 | 1.130936 |
TEMPWIN | Average temperatures over three winter months | WB, CCKP | −25.42333 | 28.56333 | 11.08565 | 12.18566 |
CO2EMMS | CO2 emissions | WDI | 0.026146 | 22.61852 | 4.755074 | 4.571762 |
Variables | LLC | BREITUNG | ADF–FISHER | |||
---|---|---|---|---|---|---|
I (0) | I (1) | I (0) | I (1) | I (0) | I (1) | |
LENVPAT | −17.8638 *** (0.000) | −25.0319 *** (0.000) | −2.4942 *** (0.006) | −10.8627 *** (0.000) | −5.5783 *** (0.000) | −29.1441 *** (0.000) |
LPAT | −4.2199 *** (0.000) | −23.2980 *** (0.000) | 1.7826 (0.963) | −9.2141 *** (0.000) | −6.1754 *** (0.000) | −26.8931 *** (0.000) |
BRM | −6.8127 *** (0.000) | −18.5995 *** (0.000) | 5.2999 (1.000) | −8.0925 *** (0.000) | 4.1314 (1.000) | −20.1151 *** (0.000) |
INTRT | −0.1758 (0.430) | −19.2161 *** (0.000) | −2.586 *** (0.005) | −10.1021 *** (0.000) | −14.0642 *** (0.000) | −38.2400 *** (0.000) |
CBT | 7.6032 (1.000) | −5.795 *** (0.000) | 3.6651 (0.999) | −7.5163 *** (0.000) | 1.8560 (0.968) | −31.3916 *** (0.000) |
LGDP | −6.8053 *** (0.000) | −23.6136 *** (0.000) | 14.9109 (1.000) | −3.0600 *** (0.001) | −1.0350 (0.151) | −17.0195 *** (0.000) |
GEXP | −13.4925 *** (0.000) | −23.9109 *** (0.000) | 2.0076 (0.978) | −3.0600 *** (0.001) | −1.4094 * (0.080) | −22.5909 *** (0.000) |
BUR | −21.4848 *** (0.000) | −22.0046 *** (0.000) | 1.7007 (0.956) | −10.1051 *** (0.000) | −1.8740 ** (0.031) | −23.3768 *** (0.000) |
TEMPWIN | −10.2416 *** (0.000) | −24.8454 *** (0.000) | −6.8882 *** (0.000) | −8.9330 *** (0.000) | −23.3454 *** (0.000) | −38.4535 *** (0.000) |
CO2EMMS | −13.0539 *** (0.000) | −19.0209 *** (0.000) | 3.2047 *** (0.999) | −8.8778 *** (0.000) | −2.8411 *** (0.002) | −14.2553 *** (0.000) |
Dependent Variable | Green Innovation (LENVPAT) 981 Observations 109 Countries | ||||||
---|---|---|---|---|---|---|---|
Model | Model 1 FE | Model 2 RE | Model 3 PCSE | Model 4 PCSE (ar1) | Model 5 FM–OLS (5) | Model 6 FM–OLS (7) | Model 7 FM–OLS (10) |
BRM | 0.0007 (0.754) | 0.0015 (0.306) | 0.0016 *** (0.000) | 0.0013 (0.130) | 0.0095 *** (0.000) | 0.0020 *** (0.000) | 0.0023 *** (0.002) |
INTRT | −0.0779 *** (0.010) | −0.0644 *** (0.010) | −0.0294 *** (0.000) | −0.0122 (0.584) | −0.0459 *** (0.000) | −0.0560 *** (0.000) | −0.1012 *** (0.000) |
CBI | 0.7354 (0.164) | −0.1396 (0.542) | 0.0421 (0.878) | 0.0313 * (0.052) | 0.1101 (0.480) | 0.0124 (0.865) | 0.1303 (0.214) |
CBT | 0.0081 ** (0.025) | 0.0078 ** (0.030) | 0.0142 *** (0.002) | 0.0047 (0.148) | 0.0152 ** (0.011) | 0.0328 *** (0.000) | 0.0257 *** (0.000) |
LGDP | 0.6467 *** (0.008) | 1.1353 *** (0.000) | 1.2166 *** (0.000) | 1.2006 *** (0.000) | 1.6852 *** (0.000) | 1.3932 *** (0.000) | |
GEXP | 0.01413 *** (0.010) | 0.0123 ** (0.022) | 0.0145 *** (0.000) | 0.0078 (0.111) | 0.0473 *** (0.000) | 0.0249 *** (0.002) | |
BUR | 0.2023 *** (0.000) | 0.1783 *** (0.001) | 0.0913 ** (0.011) | 0.0662 (0.339) | 0.1502 ** (0.011) | ||
TEMPWIN | −0.0243 (0.150) | −0.0188 * (0.054) | −0.0048 ** (0.021) | −0.0054 * (0.099) | −0.0189 *** (0.000) | ||
CO2EMMS | 0.0309 (0.401) | 0.0753 *** (0.006) | 0.0612 *** (0.000) | 0.0780 *** (0.000) | 0.01335 (0.439) | ||
0.4341 | 0.5984 | 0.6288 | 0.4104 | 0.2088 | 0.2377 | 0.3109 |
981 Observations in 109 Countries (Total) | |||
---|---|---|---|
Dependent | (LENVPAT) for 35 Low-Mid Low-Income Countries (Sample 1) | (LENVPAT) for 74 High-Mid High-Income Countries (Sample 2) | Robustness Analysis with Dependent Var LPAT |
Models | Model 1 | Model 2 | Model 3 |
BRM | 0.018493 (0.140) | 0.01420 * (0.085) | 0.002496 *** (0.000) |
INTRT | −0.190777 * (0.054) | −0.055624 (0.119) | −0.021795 (0.061) * |
CBI | 0.837930 * (0.099) | −0.656027 *** (0.001) | 0.177315 ** (0.037) |
CBT | 0.023128 (0.295) | 0.066645 *** (0.000) | 0.028971 *** (0.000) |
LGDP | 0.879847 * (0.091) | 0.173666 (0.465) | 1.649686 *** (0.000) |
GEXP | 0.034636 (0.909) | 0.033528 (0.130) | 0.003866 (0.559) |
BUR | 0.063233 (0.857) | 0.350250 *** (0.002) | 0.001975 (0.967) |
TEMPWIN | −0.011203 (0.831) | −0.020769 ** (0.014) | −0.030779 *** (0.000) |
CO2EMMS | 0.496369 (0.269) | 0.082267 *** (0.002) | 0.014977 (0.285) |
0.3723 | 0.2602 | 0.3654 |
Dep. Var. | LENVPAT, 936 Observations in 104 Countries (Total) | ||||
---|---|---|---|---|---|
Model | Model 1 ECA | Model 2 LAC | Model 3 EAP | Model 4 MENA | Model 5 SSA |
BRM | 0.000555 (0.533) | 0.014159 *** (0.000) | 0.014692 *** (0.000) | −0.011983 *** (0.000) | 0.004348 *** (0.000) |
INTRT | −0.2965 ** (0.042) | −0.146979 *** (0.000) | −0.270896 *** (0.000) | −0.057659 *** (0.007) | −0.100880 (0.178) |
CBI | −0.627043 *** (0.002) | 0.718503 *** (0.000) | 3.041000 *** (0.000) | −0.465513 *** (0.000) | −0.460603 (0.309) |
CBT | 0.046643 *** (0.000) | 0.064394 *** (0.000) | 0.215479 *** (0.000) | −0.013750 *** (0.001) | 0.021373 (0.133) |
0.1430 | 0.1071 | 0.1805 | 0.3987 | 0.1502 | |
Obs. | 360 | 153 | 126 | 81 | 216 |
CVs. | Yes | Yes | Yes | Yes | Yes |
Dep. Var. | LENVPAT 109 Countries (Total) | |||||
Grouping Base | Institutional Quality (INSQL) | Energy Intensity (ENERINT) | Industry (INDUST) | |||
Low | High | Low | High | Low | High | |
BRM | 0.01485 *** (0.000) | 0.0224 * (0.078) | 0.00233 * (0.076) | 0.01985 *** (0.000) | −0.00283 *** (0.000) | 0.01961 *** (0.000) |
INTRT | −0.059479 *** (0.003) | −0.08763 * (0.092) | −0.01774 (0.613) | −0.06447 *** (0.001) | −0.07013 *** (0.001) | −0.06312 *** (0.002) |
CBI | 0.80064 *** (0.000) | 0.90084 *** (0.002) | 0.05009 (0.783) | 0.40188 *** (0.001) | −0.31368 *** (0.003) | 0.80955 *** (0.000) |
CBT | 0.01398 *** (0.005) | 0.06991 ** (0.030) | 0.03023 ** (0.034) | 0.01423 ** (0.011) | 0.03717 *** (0.000) | 0.00451 (0.532) |
0.0809 | 0.1351 | 0.1472 | 0.4712 | 0.2877 | 0.2455 | |
Obs. | 512 | 467 | 490 | 488 | 468 | 511 |
Grouping Base | Urban (URBAN) | Central Gov. Debt (CGDEBT) | Economic Freedom (ECFRD) | |||
Low | High | Low | High | Low | High | |
BRM | 0.02483 *** (0.000) | 0.00186 ** (0.029) | 0.00036 (0.638) | 0.00727 *** (0.002) | 0.015225 (0.112) | 0.00054 (0.479) |
INTRT | −0.00320 (0.918) | −0.01051 (0.680) | −0.01260 (0.638) | −0.04221 (0.137) | −0.05093 *** (0.008) | −0.08842 *** (0.010) |
CBI | 0.63183 *** (0.000) | 0.25735 * (0.069) | 0.39004 *** (0.003) | −0.17361 (0.339) | 0.63599 *** (0.000) | 0.95878 *** (0.000) |
CBT | 0.01386 ** (0.049) | 0.00771 (0.458) | 0.01308 ** (0.033) | 0.01690 * (0.071) | 0.01398 *** (0.007) | 0.04210 ** (0.030) |
0.1188 | 0.0877 | 0.1896 | 0.1589 | 0.3574 | 0.1836 | |
Obs. | 494 | 484 | 453 | 525 | 551 | 426 |
CVs. | Yes | Yes | Yes | Yes | Yes | Yes |
Dep. Var. | LENVPAT, 981 Observations in 109 Countries (Total) | |||
---|---|---|---|---|
Model | Model 1 | Model 2 | Model 3 | Model 4 |
BRM | 0.003939 *** (0.004) | 0.006792 *** (0.000) | 0.016645 *** (0.000) | 0.005982 *** (0.000) |
INTRT | −0.138968 *** (0.000) | −0.064365 *** (0.000) | −0.090848 *** (0.000) | −0.117240 *** (0.000) |
CBI | 0.099907 (0.564) | 0.126616 (0.125) | 0.209241 *** (0.000) | 0.085753 (0.493) |
CBT | 0.037457 *** (0.000) | 0.006311 (0.203) | 0.043332 *** (0.000) | 0.039971 *** (0.000) |
BRM×INFL | −0.002335 *** (0.000) | |||
BRM×POP | −0.002924 *** (0.000) | |||
BRM×TROP | −0.000040 *** (0.000) | |||
BRM×ENRGLOS | 0.000575 *** (0.000) | |||
0.2708 | 0.3489 | 0.2285 | 0.2325 | |
Control Variables | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyromitros, E. Determinants of Green Innovation: The Role of Monetary Policy and Central Bank Characteristics. Sustainability 2023, 15, 7907. https://doi.org/10.3390/su15107907
Spyromitros E. Determinants of Green Innovation: The Role of Monetary Policy and Central Bank Characteristics. Sustainability. 2023; 15(10):7907. https://doi.org/10.3390/su15107907
Chicago/Turabian StyleSpyromitros, Eleftherios. 2023. "Determinants of Green Innovation: The Role of Monetary Policy and Central Bank Characteristics" Sustainability 15, no. 10: 7907. https://doi.org/10.3390/su15107907
APA StyleSpyromitros, E. (2023). Determinants of Green Innovation: The Role of Monetary Policy and Central Bank Characteristics. Sustainability, 15(10), 7907. https://doi.org/10.3390/su15107907