The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Literature Review
1.3. Contribution and Innovation
2. Model Construction and Data Sources
2.1. Tapio Decoupling Model
2.2. IPAT Extension Model
2.3. LMDI Decomposition Model
2.4. Overview of the Study Area
2.5. Data Sources
3. Results and Discussion
3.1. Statistical Characteristics of Fertilizer Application in China
3.2. The Coupling Relationship between China’s Fertilizer Consumption, Economic Development and Crop Output
3.2.1. China’s Overall Coupling Relationship
3.2.2. Coupling Relationship between Different Provinces
3.3. Factors Driving Factors China’s Fertilizer Consumption
3.3.1. Factors Driving National Fertilizer Consumption
3.3.2. Factors Driving Regional Fertilizer Consumption
4. Conclusions and Suggestions for Policies
4.1. Research Conclusions
4.2. Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Halbrendt, C.; Johnson, S.R. Grain production and environmental management in China’s fertilizer economy. J. Environ. Manag. 1996, 47, 283–296. [Google Scholar] [CrossRef]
- Xi, Z.B. On the assessment of the contribution of chemical fertilizers to crop yields. Phosphate Compd. Fertil. 2004, 3, 68–71. [Google Scholar]
- Edwin, D.O.; Zhang, X.L.; Yu, T. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2009, 158, 1159–1168. [Google Scholar]
- Li, G.; Bai, Y.L.; Wang, L.; Lu, Y.L.; Zhang, J.J.; Zhang, Y.J. Effects of fertilizer under different dripline spacings on summer maize in northern China. Sci. Rep. 2021, 11, 18922. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Riaz, M.; Zhang, M.Y.; Liu, B.; Li, Y.X.; Desouki, Z.; Jiang, C.C. Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes. Chemosphere 2022, 286, 131594. [Google Scholar] [CrossRef]
- Philippe, A.; Howitt, P. A model of growth through creative destruction. Econometrica 1992, 60, 323–351. [Google Scholar]
- OECD (Organization for Economic Cooperation and Development). Indicators to Measure Decoupling of Environmental Pressure from Economic Growth; OECD: Paris, France, 2002. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Abid, M. The close relationship between informal economic growth and carbon emissions in Tunisia since 1980: The (ir)relevance of structural breaks. Sustain. Cities Soc. 2015, 15, 11–21. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, J.; Ye, Y. Spatial–temporal analysis of the relationships between agricultural production and use of agrochemicals in eastern China and related environmental and political implications (based on decoupling approach and LMDI decomposition analysis). Sustainability 2018, 10, 917. [Google Scholar] [CrossRef]
- He, R.; Shao, C.; Shi, R.; Zhang, Z.; Zhao, R. Development trend and driving factors of agricultural chemical fertilizer efficiency in China. Sustainability 2020, 12, 4607. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y. Spatiotemporal evolution and driving factors of fertilizer reduction control in Zhejiang Province. Sci. Total Environ. 2019, 660, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Yin, Y.; Xing, W.; Wang, W.; Zhou, C.; Li, J. Spatial-temporal characteristics and driving factors of the chemical fertilizer supply/demand correlation network in China. Environ. Sci. Pollut. Res. 2022, 29, 80532–80548. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lin, Y. Driving factors of total-factor substitution efficiency of chemical fertilizer input and related environmental regulation policy: A case study of Zhejiang Province. Environ. Pollut. 2020, 263, 114541. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, H.; Shi, Y. Will China’s fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer types. PLoS ONE 2020, 15, e0237234. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Han, J. Driving Factors for the Change of Fertilizer Use Intensity in China and Its Six Major Regions. Int. Bus. Res. 2021, 14, 1–71. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Li, Q.; Li, Y. Driving factor decomposition of fertilizer application growth in China’s main grain producing areas. Res. Agric. Mod. 2017, 38, 658–665. [Google Scholar]
- Pan, D. The driving forces of fertilizer use intensity by crops in China: A complete decomposition model. Sci. Res. Essays 2014, 9, 229–237. [Google Scholar]
- Zhang, L.G.; LIU, C.; Chen, S. A Study of the Spatio-Temporal Evolution and Driving Factors of Fertilizer Application Intensity in Southern Rice Cultivation Area. J. Jiangxi Univ. Financ. Econ. 2021, 1, 104. [Google Scholar]
- Niu, M.; Tan, X.; Guo, J.; Li, G.C. Driving factors and growth potential of provincial carbon productivity in China. Sustainability 2021, 13, 9759. [Google Scholar] [CrossRef]
- Wei, Z.H.; QI, L.X.; Wang, R.M. The relationship between farm size and fertilizer use efficiency: Evidence from China. J. Integr. Agric. 2022, 21, 273–281. [Google Scholar]
- Zeng, Y.; Zhang, J.; He, K. Driving factors of rice farmers’ willingness to adopt organic fertilizer from the perspective of multidimensional family capital. J. Ecol. Rural. Environ. 2019, 35, 332–338. [Google Scholar]
- Zhang, J.; Manske, G.; Zhou, P.Q.; Tischbein, B.; Becker, M.; Li, Z.H. Factors influencing farmers’ decisions on nitrogen fertilizer application in the Liangzihu Lake basin, Central China. Environ. Dev. Sustain. 2017, 19, 791–805. [Google Scholar] [CrossRef]
- Gao, Y.; Song, X.; Zheng, W.; Wu, L.; Chen, Q.; Yu, X.; Zhang, M. The controlled-release nitrogen fertilizer driving the symbiosis of microbial communities to improve wheat productivity and soil fertility. Field Crops Res. 2022, 289, 108712. [Google Scholar] [CrossRef]
- Li, G.; Yu, W.; Meng, F.; Zhang, J.; Lu, C. Pathways and Drivers of Gross N Transformation in Different Soil Types under Long-Term Chemical Fertilizer Treatments. Agriculture 2023, 13, 300. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Hu, H.; Xiu, W.M.; Li, G.; Zhao, J.N.; Wang, X.Y. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in fluvo-aquic soil. Huanjing Kexue 2020, 41, 4669–4681. [Google Scholar] [PubMed]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Zhao, X.; Song, L. Research on influential factors of agricultural carbon emission in Hunan Province based on LMDI model. Environ. Sci. Technol. 2018, 41, 177–183. [Google Scholar]
- Huang, W.; Li, H.; Chen, K.; Teng, X.; Cui, Y.; Yu, H.; Tang, Y. Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model. Appl. Sci. 2022, 13, 521. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, T.Y.; Tu, W.; Pu, L. Analysis on the changes of fertilization intensity and efficiency in China’s grain production from 1980 to 2019. J. Sci. Food Agric. 2023, 103, 908–916. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, T.Y.; Pu, L.; Sun, J. Comparison of fertilizer use efficiency in grain production between developing countries and developed countries. J. Sci. Food Agric. 2022, 102, 2404–2412. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tu, W.; Pu, L.; Zhou, L. Regional Differences and Key Influencing Factors of Fertilizer Integrated Efficiency in China. Sustainability 2022, 14, 12974. [Google Scholar] [CrossRef]
- Shao, Y.H.; Chi, Y.Y.; Yush, L.C.; Ching, C.L. Agricultural Efficiency in Different Regions of China: An Empirical Analysis Based on Dynamic SBM-DEA Model. Sustainability 2023, 15, 7340. [Google Scholar]
- Ehrlich, P.; Holden, J. One-dimensional economy. Bull. At. Sci. 1972, 28, 16–27. [Google Scholar] [CrossRef]
- Commoner, B. Making Peace with the Planet; New Press: New York, NY, USA, 1992. [Google Scholar]
- Da Silva, B.A.; Constantino, M.; de Moraes, P.M.; Herrera, G.P.; de Oliveira, O.S.; dos Santos, S.A.L.; Kulevicz, R.A.; Porfírio, G.; da Costa, R.B. Econometric analysis of IPAT-e: A new tool for the environmental impact assessment of publicly traded companies. Environ. Impact Assess. Rev. 2021, 89, 106586. [Google Scholar] [CrossRef]
- Zhong, X.J.; Long, S.H. Recognition of the IPAT Model of Environmental Impact. China Popul. Resour. Environ. 2016, 26, 61–68. [Google Scholar]
- Qu, C.; Chen, T. Estimation and Calculation of China’s Carbon Emission Intensity Reduction Potential in 2030. China Popul. Resour. Environ. 2016, 26, 62–69. [Google Scholar]
- Jaruwan, C. Driving Forces of Energy-Related CO2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries. Energies 2019, 12, 764. [Google Scholar]
- Cai, Z.; Zhang, C.C. Decomposition and Spatial Cluster Analysis of Driving Effect of China’s Per Capita Water Footprint. J. North China Univ. Water Resour. Electr. Power Nat. Sci. Ed. 2018, 39, 1–11. [Google Scholar]
- Zhu, J.; Liu, X.M.; Chu, Z.P. Scenario Analysis of Energy Demand and Carbon Emissions in Low-Carbon Cities. China Popul. Resour. Environ. 2015, 25, 48–55. [Google Scholar]
- Tian, Y.H.; Ruth, M.; Zhu, D.J. Using the IPAT identity and decoupling analysis to estimate wa-ter footprint variations for five major food crops in China from 1978 to 2010. Environ. Dev. Sustain. 2017, 19, 2355–2375. [Google Scholar] [CrossRef]
- Hou, M.Y.; Zhang, L.; Wang, Z.W. Estimation of fertilizer consumption for main crops in China. J. Agric. Resour. Environ. 2017, 34, 360–367. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.J.; Ju, X.T.; Wu, Y.Y.; Erisman, J.W.; Bleeker, A.; Reis, S.; Sutton, M.A.; Lam, S.K.; Smith, P.; Oenema, O.; et al. Cleaning up nitrogen pollution may reduce future carbon sinks. Glob. Environ. Change 2018, 48, 56–66. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.; Vitousek, P.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.J.; Chen, Q.H.; Liu, Y.F.; Zhang, Y.S. Laws of fertilizer consumption and forecast of China’s demand for fertilizer and minerals. Resour. Sci. 2015, 37, 977–987. [Google Scholar]
- Huang, Y.Z.; Luo, X.F. Fertilizer Reduction and Substitution: Farmers’ Strategy Choice and Influencing Factors. J. South China Agric. Univ. Soc. Sci. Ed. 2020, 19, 77–87. [Google Scholar]
- Wang, Z.Y.; Li, G.C.; Zhou, X.S. Structure change of rural labor force, grain production and fertilizer using efficiency promotion: An empirical study based on stochastic frontier production function and Tobit model. J. China Agric. Univ. 2018, 23, 158–168. [Google Scholar]
- Cai, R.; Chen, P. Does agricultural machinery service improve fertilizer input efficiency: Take wheat as example. J. China Agric. Univ. 2021, 26, 265–274. [Google Scholar]
- Shi, C.L.; Zhu, J.F.; Luan, J. Analysis of wheat chemical fertilizer input efficiency and its influencing factors in China—Based on the 15 major wheat producing provinces in China. Agric. Technol. Econ. 2015, 11, 69–78. [Google Scholar]
- Cai, R.; Tao, S.M. Spatial difference and dynamic change of agricultural fertilizer input efficiency in China. J. Huazhong Agric. Univ. 2020, 6, 57–66. [Google Scholar]
Influencing Factors | Study Area | Methodology | Time | References |
---|---|---|---|---|
Fertilization intensity; planting structure; sowing area | China | LMDI | 2020 | He, R. [11] |
Agricultural scale; intensification; fertilizer use efficiency; labor productivity | Zhejiang | LMDI | 2019 | Yang, J. [12] |
Fertilizer-related policies; rural labor force scale; agricultural mechanization scale; agricultural planting structure; population; urbanization level | China | Gravity model | 2022 | Qu, H. [13] |
Technical efficiency; substitution efficiency; comprehensive efficiency | Zhejiang | DEA (Data Envelopment Analysis) model, Panel Tobit model | 2020 | Yang, J. [14] |
Scale effect; intensity effect; structure effect | China | LMDI | 2020 | Ji, Y. [15] |
Fertilizer input–output ratio; unit labor output; unit sown area labor input | China | Exponential Decomposition Analysis (IDA) and Raspeer’s Exponential Decomposition | 2021 | Qu, H. [16] |
Planting structure; fertilization intensity; sowing area | China | Factorization | 2017 | Wang, S. [17] |
Fertilizer use efficiency effect; crop structure change effect; production efficiency effect | China | Complete decomposition | 2014 | Pan, D. [18] |
Per capita income of rural residents; per capita arable land area; agricultural planting structure; agricultural technology | South part of China | ESDA and SDM methods | 2021 | Zhang, L. [19] |
Public Agricultural Extension Service (PAES) | China | Field investigation | 2022 | Lin, Y. [20] |
farm size | China | Field investigation | 2022 | Wei, Z.H. [21] |
Household labor force; household economic capital; household land size; household work structure; land natural status | Hubei Province | Field investigation | 2020 | Zeng, Y. [22] |
Planting structure; household income; education level; farmland productivity | Liangzi Lake Basin | Field investigation | 2016 | Zhang, J. [23] |
Soil microbial community | China | Amplicon sequencing; co-occurrence networks | 2022 | Gao, Y. [24] |
Soil type; temperature; precipitation | Jilin, Henan, Hunan | 15 N tracer method | 2023 | Li, G. [25] |
Fertilization pattern; tillage pattern | Ninghe District, Tianjin | Field test | 2020 | Wu, X. [26] |
Decoupling Status | ΔF | ΔG | Index Range | |
---|---|---|---|---|
Decoupling | Strong decoupling | ΔF < 0 | ΔG > 0 | Index < 0 |
Weak decoupling | ΔF > 0 | ΔG > 0 | 0 < index < 0.8 | |
Recessive decoupling | ΔF < 0 | ΔG < 0 | Index > 1.2 | |
Strong negative decoupling | ΔF > 0 | ΔG < 0 | Index < 0 | |
Negative decoupling | Weak negative decoupling | ΔF < 0 | ΔG < 0 | 0 < index < 0.8 |
Expansive negative decoupling | ΔF > 0 | ΔG > 0 | Index > 1.2 | |
Coupling | Expansive coupling | ΔF > 0 | ΔG > 0 | 0.8 < exponent < 1.2 |
Recessive coupling | ΔC < 0 | ΔGDP < 0 | 0.8 < exponent < 1.2 |
Area | Provinces Contained |
---|---|
Northeast China | Heilongjiang, Liaoning, Jilin |
North China | Beijing, Hebei, Tianjin, Shanxi, Shandong |
Central China | Henan, Hubei, Hunan |
East China | Shanghai, Jiangsu, Anhui, Jiangxi, Zhejiang |
South China | Guangdong, Guangxi, Fujian |
Northwest China | Xinjiang, Inner Mongolia, Jiangxi, Gansu, Ningxia, Shaanxi, Qinghai |
Southwest China | Chongqing, Sichuan, Guizhou, Yunnan, Tibet |
Time | E (F G) | E (N G) | E (F N) | |||
---|---|---|---|---|---|---|
Elastic Coefficient | Decoupling State | Elastic Coefficient | Decoupling State | Elastic Coefficient | Decoupling State | |
1980–1985 | 0.45 | Weak decoupling | 0.28 | Weak decoupling | 1.63 | Expansive negative decoupling |
1985–1990 | 0.50 | Weak decoupling | 0.23 | Weak decoupling | 2.15 | Expansive negative decoupling |
1990–1995 | 0.19 | Weak decoupling | 0.06 | Weak decoupling | 3.01 | Expansive negative decoupling |
1995–2000 | 0.29 | Weak decoupling | 0.46 | Weak decoupling | 0.64 | Weak decoupling |
2000–2005 | 0.15 | Weak decoupling | 0.19 | Weak decoupling | 0.82 | Weak decoupling |
2005–2010 | 0.17 | Weak decoupling | 0.12 | Weak decoupling | 1.41 | Expansive negative decoupling |
2010–2015 | 0.13 | Weak decoupling | 0.27 | Weak decoupling | 0.48 | Weak decoupling |
2015–2020 | −0.29 | Strong decoupling | 0.20 | Weak decoupling | −1.48 | Strong decoupling |
Region | E (F G) | E (N G) | E (F N) | |||
---|---|---|---|---|---|---|
Elastic Coefficient | Decoupling Status | Elastic Coefficient | Decoupling Status | Elastic Coefficient | Decoupling State | |
Beijing | −0.97 | Strong decoupling | −0.81 | Strong decoupling | 1.19 | Recessive coupling |
Tianjing | −1.11 | Strong decoupling | 0.20 | Strong negative decoupling | −5.48 | Strong decoupling |
Hebei | −0.44 | Strong decoupling | 0.11 | Weak decoupling | −3.89 | Strong decoupling |
Shanxi | −0.23 | Strong decoupling | 0.12 | Weak decoupling | −1.93 | Strong decoupling |
Inner Mongolia | −0.29 | Strong decoupling | 0.37 | Weak decoupling | −0.78 | Strong decoupling |
Liaoning | −0.38 | Strong decoupling | 0.05 | Weak decoupling | −7.42 | Strong decoupling |
Jilin | −0.09 | Strong decoupling | −0.05 | Strong decoupling | 1.62 | Recessive coupling |
Heilongjiang | −0.56 | Strong decoupling | −0.11 | Strong decoupling | 5.10 | Recessive coupling |
Shanghai | −0.71 | Strong decoupling | −0.55 | Strong decoupling | 1.29 | Recessive coupling |
Jiangsu | −0.29 | Strong decoupling | 0.09 | Weak decoupling | −3.09 | Strong decoupling |
Zhejiang | −0.54 | Strong decoupling | −0.05 | Strong decoupling | 11.80 | Recessive coupling |
Anhui | −0.27 | Strong decoupling | −0.12 | Strong decoupling | 2.27 | Recessive coupling |
Fujian | −0.33 | Strong decoupling | 0.27 | Weak decoupling | −1.22 | Strong decoupling |
Jiangxi | −0.49 | Strong decoupling | 0.10 | Weak decoupling | −4.83 | Strong decoupling |
Shandong | −0.63 | Strong decoupling | 0.20 | Weak decoupling | −3.13 | Strong decoupling |
Henan | −0.22 | Strong decoupling | 0.18 | Weak decoupling | −1.25 | Strong decoupling |
Hubei | −0.45 | Strong decoupling | 0.09 | Weak decoupling | −4.82 | Strong decoupling |
Hunan | −0.22 | Strong decoupling | 0.27 | Weak decoupling | −0.83 | Strong decoupling |
Guangdong | −0.44 | Strong decoupling | 0.50 | Weak decoupling | −0.87 | Strong decoupling |
Guangxi | −0.11 | Strong decoupling | 0.42 | Weak decoupling | −0.25 | Strong decoupling |
Hainan | −0.40 | Strong decoupling | −0.13 | Strong decoupling | 3.16 | Recessive coupling |
Chongqing | −0.17 | Strong decoupling | 0.37 | Weak decoupling | −0.46 | Strong decoupling |
Sichuan | −0.28 | Strong decoupling | 0.27 | Weak decoupling | −1.02 | Strong decoupling |
Guizhou | −0.38 | Strong decoupling | 0.59 | Weak decoupling | −0.63 | Strong decoupling |
Yunnan | −0.25 | Strong decoupling | 0.20 | Weak decoupling | −1.26 | Strong decoupling |
Tibet | −0.40 | Strong decoupling | 1.25 | Expansive negative decoupling | −0.32 | Strong decoupling |
Shaanxi | −0.31 | Strong decoupling | 0.37 | Weak decoupling | −0.83 | Strong decoupling |
Gansu | −0.51 | Strong decoupling | 0.65 | Weak decoupling | −0.79 | Strong decoupling |
Qinghai | −1.03 | Strong decoupling | 0.07 | Weak decoupling | −15.57 | Strong decoupling |
Region | Promoting Factors | Inhibitory Factors | ||
---|---|---|---|---|
The Most Influential | Second Influential | The Most Influential | Second Influential | |
North China | Economic level | Fertilizer efficiency | Industrial structure | Crop value |
Northeast China | Economic level | Per capita cultivated land area | Industrial structure | Agricultural population |
East China | Economic level | Fertilizer efficiency | Industrial structure | Technological level |
Central China | Economic level | Fertilizer efficiency | Industrial structure | Technological level |
South China | Economic level | Crop value | Technological level | Industrial structure |
Southwest China | Crop value | Fertilizer efficiency | Technological level | Fertilization intensity |
Northwest China | Economic level | Fertilizer efficiency | Technological level | Industrial structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, X.; Mao, Y.; Wei, Y.; Xu, J.; Wu, L. The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China. Sustainability 2023, 15, 7851. https://doi.org/10.3390/su15107851
Zhang Y, Fan X, Mao Y, Wei Y, Xu J, Wu L. The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China. Sustainability. 2023; 15(10):7851. https://doi.org/10.3390/su15107851
Chicago/Turabian StyleZhang, Yansong, Xiaolei Fan, Yu Mao, Yujie Wei, Jianming Xu, and Lili Wu. 2023. "The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China" Sustainability 15, no. 10: 7851. https://doi.org/10.3390/su15107851
APA StyleZhang, Y., Fan, X., Mao, Y., Wei, Y., Xu, J., & Wu, L. (2023). The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China. Sustainability, 15(10), 7851. https://doi.org/10.3390/su15107851