Study of Water Resource Allocation and Optimization Considering Reclaimed Water in a Typical Chinese City
Abstract
:1. Introduction
2. Study Site
2.1. Characteristics of Yiwu City, China
2.2. Dual Water Supply System and Reclaimed Water Utilization in Yiwu City
3. Materials and Methods
3.1. Basic Equations
3.2. Simulation Parameters
4. Results and Discussion
4.1. Model Testing and Calibration
4.2. Simulation Results
4.3. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, X.; Sarkis, J.; Geng, Y.; Qian, Y.Y.; Gao, C.X.; Bleischwitz, R.; Xu, Y. Evolution of China’s water footprint and virtual water trade: A global trade assessment. Environ. Int. 2018, 121, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Jiang, X.; Lu, D.; Zhang, Y.; Li, J. Analysis of the potential of reclaimed water utilization in typical inland cities in northwest China via system dynamics. J. Environ. Manag. 2020, 270, 110878. [Google Scholar] [CrossRef] [PubMed]
- NBSM. Bureau of Statistics; Ministry of Environmental Protection of China. In China Environmental Statistical Yearbook; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Ao, D.; Chen, R.; Wang, X.C.; Liu, Y.; Dzakpasu, M.; Zhang, L.; Huang, Y.; Xue, T.; Wang, N. On the risks from sediment and overlying water by replenishing urban landscape ponds with reclaimed wastewater. Environ. Pollut. 2018, 236, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 2016, 50, 5143–5153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Ma, M.; Hu, Y.; Wu, W.; Xiao, J. Comparison of international standards for irrigation with reclaimed water. Agr. Water Manag. 2022, 274, 107974. [Google Scholar] [CrossRef]
- Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L. To trade or not to trade: Link prediction in the virtual water network. Adv. Water Resour. 2017, 110, 528–537. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Ren, H. Multi-omic studies on the toxicity variations in effluents from different units of reclaimed water treatment. Water Res. 2022, 208, 117874. [Google Scholar] [CrossRef]
- Sah, S.; Singh, R. Phylogenetical coherence of Pseudomonas in unexplored soils of Himalayan region. 3 Biotech. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zaibel, I.; Zilberg, D.; Groisman, L.; Arnon, S. Impact of treated wastewater reuse and floods on water quality and fish health within a water reservoir in an arid climate. Sci. Total Environ. 2016, 559, 268–281. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.B.; Zhang, Z.K.; Crittenden, J.C.; Lahr, M.L.; Moreno-Cruz, J.; Guan, D.; Mi, Z.F.; Zuo, J. Can virtual water trade save water resources? Water Res. 2019, 163, 114848. [Google Scholar] [CrossRef]
- Leong, C.; Mukhtarov, F. Global IWRM ideas and local context: Studying narratives in rural Cambodia. Water 2018, 10, 1643. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Chen, Z.; Xu, A.O.; Gao, Q.; Song, K.; Liu, J.; Hu, H.Y. Wastewater treatment and reuse situations and influential factors in major Asian countries. J. Environ. Manag. 2021, 282, 111976. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yuan, Z.X.; Liu, Y.Y.; Wu, Q.Y.; Sun, Y.X. Relative developmental toxicities of reclaimed water to zebrafish embryos and the relationship with relevant water quality parameters. Water Cycle 2021, 2, 85–90. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Masi, F.; Langergraber, G.; Santoni, M.; Istenic, D.; Atanasova, N.; Buttiglieri, G. Possibilities of nature-based and hybrid decentralized solutions for reclaimed water reuse. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–187. [Google Scholar]
- Santos, F.; Almeida, C.M.R.; Ribeiro, I.; Mucha, A.P. Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater. Ecol. Eng. 2019, 129, 45–53. [Google Scholar] [CrossRef]
- Santos, F.; Almeida, C.M.R.d.; Ribeiro, I.; Ferreira, A.C.; Mucha, A.P. Removal of veterinary antibiotics in constructed wetland microcosms–response of bacterial communities. Ecotoxicol. Environ. Saf. 2019, 169, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, G.; Wu, Y.; Wu, Q.; Shi, Q.; Ngo, H.H.; Vargas Saucedo, O.A.; Hu, H.Y. Water Eco-Nexus Cycle System (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas. Water Cycle 2020, 1, 71–77. [Google Scholar] [CrossRef]
- Pan, N.; Hou, Z.A.; Chen, W.P.; Jiao, W.T.; Peng, C.; Liu, W. Study on soil enzyme activities and microbial biomass carbon in Greenland irrigated with reclaimed water. Huan Jing Ke Xue= Huanjing Kexue 2012, 33, 4081–4087. [Google Scholar]
- Perdigao, R.; Almeida, C.M.R.; Santos, F.; Carvalho, M.F.; Mucha, A.P. Optimization of an autochthonous bacterial consortium obtained from beach sediments for bioremediation of petroleum hydrocarbons. Water 2021, 13, 66. [Google Scholar] [CrossRef]
- Wencki, K.; Thone, V.; Ante, A.; Hogen, T.; Hohmann, C.; Tettenborn, F.; Pohl, D.; Preiss, P.; Jungfer, C. Approaches for the evaluation of future-oriented technologies and concepts in the field of water reuse and desalination. J. Water Reuse. Desalinat. 2020, 10, 269–283. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Bali, R.; Khan, H.; Mohamed, H.I.; Sharma, S.K. Improved water resource management framework for water sustainability and security. Environ. Res. 2021, 201, 111527. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, W.; Van de Caveye, P.; Diamantis, V. Maximum use of resources present in domestic “used water”. Bioresour. Technol. 2009, 100, 5537–5545. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.S.; Casanova, L.M.; Simmons, O.D.; Sobsey, M.D. Tertiary treatment and dual disinfection to improve microbial quality of reclaimed water for potable and non-potable reuse: A case study of facilities in North Carolina. Sci. Total Environ. 2018, 630, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.; Huang, G.; Liu, L.; Zhang, X. Ecological network analysis of an energy metabolism system based on input-output tables: Model development and case study for Guangdong. J. Clean. Prod. 2019, 227, 434–446. [Google Scholar] [CrossRef]
- Zhang, C.; Anadon, L.D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Marks, J.S. Taking the public seriously: The case of potable and non potable reuse. Desalination 2006, 187, 137–147. [Google Scholar] [CrossRef]
- Dong, L.; Qi, Z.; Li, M.; Zhang, Y.; Chen, Y.; Qi, Y.; Wu, H. Organics and nutrient removal from swine wastewater by constructed wetlands using ceramsite and magnetite as substrates. J. Environ. Chem. Eng. 2021, 9, 104739. [Google Scholar] [CrossRef]
- Eljamal, R.; Eljamal, O.; Maamoun, I.; Yilmaz, G.; Sugihara, Y. Enhancing the characteristics and reactivity of nZVI: Polymers effect and mechanisms. J. Mol. Liq. 2020, 315, 113714. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, O.; Eljamal, R.; Falyouna, O.; Sugihara, Y. Promoting aqueous and transport characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings, Appl. Surf. Sci. 2020, 506, 145018. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Almeida CM, R.; Pereira, A.C.; Ribeiro, I.L.; Reis, I.; Carvalho, P.; Mucha, A.P. Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms. Bioresour. Technol. 2015, 182, 26–33. [Google Scholar] [CrossRef]
- Flores, L.; García, J.; Pena, R.; Garfí, M. Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment. Sci. Total Environ. 2019, 659, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Galve, J.C.A.; Sundo, M.B.; Camus, D.R.D.; De Padua, V.M.N.; Morales, R.D.F. Series type vertical subsurface flow constructed wetlands forDairy farm wastewater treatment. Civ. Eng. J. 2021, 7, 292–303. [Google Scholar] [CrossRef]
- Benson, B.C.; Rusch, K.A. Investigation of the light dynamics and their impact on algal growth rate in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquacult. Eng. 2006, 35, 122–134. [Google Scholar] [CrossRef]
Indices | Non-Point Source | Point Source | ||
---|---|---|---|---|
Indicator | COD | NH3-N | COD | NH3-N |
Unit | t/km2 | t/km2 | mg/L | mg/L |
Total emission | 5.199 | 0.295 | 16.57 | 0.28 |
Water Resources | Benefits (CNY/m3), (USD/m3) | ||
---|---|---|---|
High-Quality Water | General Water | Reclaimed Water | |
Value | 2280, (380) | 1140, (190) | 570, (95) |
Water Usage | Punishment (CNY/m3), (USD/m3) | ||||
---|---|---|---|---|---|
Residents | Agriculture | Industry | Environment | Others | |
Value | 22,800, (3800) | 11,400, (1900) | 11,400, (1900) | 5700, (950) | 5700, (950) |
Category | Indicator | Value |
---|---|---|
Reclaimed water in dual water supply system | Industrial water replace rate | 57% |
Urban public water replace rate | 40% | |
IPSO (immune particle swarm optimization algorithm) | Irrigation | 100 |
Examples N | 100 | |
Inertia weight | Initial (1.2), Final (0.8) | |
Learning factor | 2 | |
New particles M | 100 | |
Randomized particles | 2 | |
Threshold | 0.6 |
Month | Multisource Water Resources (108 m3) | |||
---|---|---|---|---|
Six Reservoirs | Water Diversion Project | Yiwu River and Its Tributaries | Reclaimed Water | |
1 | 0.031 | 0.075 | 0.427 | 0.135 |
2 | 0.053 | 0.075 | 0.722 | 0.118 |
3 | 0.105 | 0.075 | 1.445 | 0.149 |
4 | 0.109 | 0.075 | 1.489 | 0.141 |
5 | 0.105 | 0.075 | 1.445 | 0.143 |
6 | 0.174 | 0.075 | 2.388 | 0.142 |
7 | 0.074 | 0.075 | 1.017 | 0.148 |
8 | 0.038 | 0.075 | 0.516 | 0.142 |
9 | 0.037 | 0.075 | 0.501 | 0.135 |
10 | 0.023 | 0.075 | 0.310 | 0.131 |
11 | 0.023 | 0.075 | 0.310 | 0.123 |
12 | 0.023 | 0.075 | 0.310 | 0.134 |
In total | 0.793 | 0.900 | 10.88 | 1.641 |
Month | Past Water Demand (2020) (108 m3/a) | Future Water Demand (2030) (108 m3/a) | ||||||
---|---|---|---|---|---|---|---|---|
Irrigation | Industry | Residents | Environment | Irrigation | Industry | Residents | Environment | |
1 | 0.038 | 0.039 | 0.095 | 0.038 | 0.046 | 0.061 | 0.158 | 0.038 |
2 | 0.038 | 0.039 | 0.067 | 0 | 0.046 | 0.061 | 0.111 | 0 |
3 | 0.038 | 0.039 | 0.090 | 0 | 0.046 | 0.061 | 0.150 | 0 |
4 | 0.038 | 0.039 | 0.103 | 0 | 0.046 | 0.061 | 0.171 | 0 |
5 | 0.038 | 0.039 | 0.108 | 0 | 0.046 | 0.061 | 0.181 | 0 |
6 | 0.045 | 0.039 | 0.117 | 0 | 0.054 | 0.061 | 0.195 | 0 |
7 | 0.123 | 0.039 | 0.121 | 0 | 0.157 | 0.061 | 0.202 | 0 |
8 | 0.178 | 0.039 | 0.141 | 0.222 | 0.228 | 0.061 | 0.236 | 0.222 |
9 | 0.141 | 0.039 | 0.137 | 0.170 | 0.179 | 0.061 | 0.229 | 0.170 |
10 | 0.045 | 0.039 | 0.123 | 0.134 | 0.054 | 0.061 | 0.204 | 0.134 |
11 | 0.038 | 0.039 | 0.127 | 0.110 | 0.046 | 0.061 | 0.212 | 0.110 |
12 | 0.038 | 0.039 | 0.117 | 0.117 | 0.046 | 0.061 | 0.196 | 0.117 |
In total | 0.797 | 0.466 | 1.346 | 0.791 | 0.991 | 0.734 | 2.246 | 0.791 |
Category | Six Reservoirs | Water Diversion Project | Yiwu River | Reclaimed Water | In Total | Water Shortage |
---|---|---|---|---|---|---|
Residential | 0.460 | 0.900 | 0 | 0.604 | 2.246 | −0.282 |
Industrial | 0 | 0 | 0 | 0.732 | 0.732 | 0 |
Irrigation | 0 | 0 | 0.994 | 0 | 0.994 | 0 |
Environmental | 0 | 0 | 0.210 | 0.536 | 0.746 | −0.042 |
In total | 0.460 | 0.900 | 1.205 | 1.872 | 4.974 | −0.324 |
Water resources remaining | 0 | 0 | 4.595 | 0.827 |
Category | Six Reservoirs | Water Diversion Project | Yiwu River | Reclaimed Water | In Total | Water Shortage |
---|---|---|---|---|---|---|
Residential | 0.460 | 0.900 | 0 | 0.458 | 1.818 | 0 |
Industrial | 0 | 0 | 0 | 0.732 | 0.732 | 0 |
Irrigation | 0 | 0 | 0.994 | 0 | 0.994 | 0 |
Environmental | 0 | 0 | 0.292 | 0.499 | 0.791 | 0 |
In total | 0.460 | 0.900 | 1.286 | 1.689 | 4.335 | 0 |
Water resources remaining | 0 | 0 | 5.024 | 0.620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Wang, J.; Wang, S.; Peng, H.; Gui, Z. Study of Water Resource Allocation and Optimization Considering Reclaimed Water in a Typical Chinese City. Sustainability 2023, 15, 819. https://doi.org/10.3390/su15010819
Fu L, Wang J, Wang S, Peng H, Gui Z. Study of Water Resource Allocation and Optimization Considering Reclaimed Water in a Typical Chinese City. Sustainability. 2023; 15(1):819. https://doi.org/10.3390/su15010819
Chicago/Turabian StyleFu, Lei, Junmin Wang, Shiwu Wang, Hongxi Peng, and Zihan Gui. 2023. "Study of Water Resource Allocation and Optimization Considering Reclaimed Water in a Typical Chinese City" Sustainability 15, no. 1: 819. https://doi.org/10.3390/su15010819
APA StyleFu, L., Wang, J., Wang, S., Peng, H., & Gui, Z. (2023). Study of Water Resource Allocation and Optimization Considering Reclaimed Water in a Typical Chinese City. Sustainability, 15(1), 819. https://doi.org/10.3390/su15010819