Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of the Physical Characteristics of the Samples
2.3. Determination of Chemical Properties of Water and Soil Samples
2.4. Statistical Analysis
3. Results and Discussion
3.1. Water Samples Analysis
3.2. Soil Samples Analysis
3.3. Correlation Coefficient of Water Parameters
3.4. Correlation Coefficient of Soil Parameters
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 1–16. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 80 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 80 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, O.D. Climate change and water scarcity: The case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef]
- Samad, N.A.; Bruno, V.L. The urgency of preserving water resources. Environ. News. 2013, 21, 3–6. [Google Scholar]
- AQUASTAT Saudi Arabia. FAO Organization Website. 2021. Available online: https://www.fao.org/aquastat/en/ (accessed on 2 July 2022).
- Shayboub, M.; Mahmoud, A. Water–demand management in the kingdom of Saudi Arabia for enhancement environment. Am. J. Comput. Technol. Appl. 2013, 1, 101–127. [Google Scholar] [CrossRef]
- Al-Suhaimy, U. Saudi Arabia: The Desalination Nation. Available online: https://eng-archive.aawsat.com/abeedalsuhaimy/features/the-desalination-nation (accessed on 2 July 2022).
- Chowdhury, S.; Al-Zahrani, M. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia. J. King Saud Univ.-Eng. Sci. 2015, 27, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Batarseh, M.I.; Rawajfeh, A.; Ioannis, K.K.; Prodromos, K.H. Treated municipal wastewater irrigation impact on olive trees (Olea europaea L.) at Al-Tafilah, Jordan. Water, Air, Soil Pollut. 2011, 217, 185–196. [Google Scholar] [CrossRef]
- Ahmadi, L.; Merkley, G.P. Planning and management modeling for treated wastewater usage. Irrig. Drain. Syst. 2009, 23, 97–107. [Google Scholar] [CrossRef]
- Capra, A.; Scicolone, B. Recycling of poor quality urban wastewater by drip irrigation systems. J. Clean. Prod. 2007, 15, 1529–1534. [Google Scholar] [CrossRef]
- Svobodová, K.; Semerád, J.; Petráčková, D.; Novotný, Č. Antibiotic resistance in Czech urban wastewater treatment plants: Microbial and molecular genetic characterization. Microb. Drug Resist. 2018, 24, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Kostich, M.S.; Batt, A.L.; Lazorchak, J.M. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ. Pollut. 2014, 184, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, e109959. [Google Scholar] [CrossRef]
- Government of Saudi Arabia. Saudi Vision 2030-Kingdom of Saudi Arabia 2022. Available online: https://vision2030.gov.sa/download/file/fid/417 (accessed on 2 July 2022).
- Husain, T.; Ahmed, A.H. Environmental and economic aspects of wastewater reuse in Saudi Arabia. Water Int. 2009, 22, 108–112. [Google Scholar] [CrossRef]
- Saad-Allah, K.M.; Elhaak, M.A. Hyperaccumulation activity and metabolic responses of Solanum nigrum in two differentially polluted growth habitats. J. Saudi Soc. Agric. Sci. 2017, 16, 227–235. [Google Scholar] [CrossRef] [Green Version]
- APHA Standard Methods for the Examination of Water and Wastewater; Apha: Washington, DC, USA, 2001.
- USEPA, (U.S. Environmental Protection Agency). Method 310.1: Ortho-Phosphorus, Dissolved Automated, Ascorbic Acid; US EPA: Washington, DC, USA, 1992. [Google Scholar]
- O’Dell, J.W. Method 351.2 Determination of Total Kjeldahl Nitrogen by Semi–Automated Colorimetry, Rev. 2.0; US Environmental Protection Agency: Columbus, OH, USA, 1993. [Google Scholar]
- Ogner, G.; Haugen, A. Automatic determination of sulphate in water samples and soil extracts containing large amounts of humic compounds. Analyst 1977, 102, 453–457. [Google Scholar] [CrossRef]
- Song, O.Y.; Islam, M.A.; Son, J.H.; Jeong, J.Y.; Kim, H.E.; Yeon, L.S.; Khan, N.; Jamila, N.; Kim, K.S. Elemental composition of pork meat from conventional and animal welfare farms by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS) and their authentication via multivariate chemometric analysis. Meat Sci. 2021, 172, e108344. [Google Scholar] [CrossRef]
- Wallace, A.; Cha, J.W. Trace metals in two garden products derived from sewage sludge. Commun. Soil Sci. Plant Anal. 1977, 8, 819–821. [Google Scholar] [CrossRef]
- Al-Farraj, S.; El-Gendy, A.; Al Kahtani, S.; El-Hedeny, M. The impact of sewage pollution on polychaetes of Al Khumrah, South of Jeddah, Saudi Arabia. Res. J. Environ. Sci. 2012, 6, 77–87. [Google Scholar] [CrossRef]
- Neamatallah, A.A. Possibility of using sewage effluent from different water treatment plants in different cities of Saudi Arabia for agricultural reuse. Int. J. Eng. Res. Technol. 2018, 7, 8–13. [Google Scholar]
- Hayman, D.S.; Tavares, M. Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol. 1985, 100, 367–377. [Google Scholar] [CrossRef]
- Ditzler, C.A.; Tugel, A.J. Soil quality field tools: Experiences of USDA-NRCS soil quality institute. Agron. J. 2002, 94, 33–38. [Google Scholar] [CrossRef]
- Levlin, E. Conductivity Measurements for Controlling Municipal Waste-water Treatment. In Proceedings of the Proceedings of a Polish-Swedish-Ukrainian seminar, Ustron, Poland, 23–24 November 2007. [Google Scholar]
- Jain, S.K.; Singh, V.P. Water Quality Modeling. In Water Resources Systems Planning and Management; Jain, S.K., Singh, V.P., Eds.; Developments in Water Science; Elsevier: Amsterdam, The Netherlands, 2003; pp. 743–786. [Google Scholar]
- Chapman, D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: London, UK, 1996. [Google Scholar]
- Minhas, P.S.; Qadir, M.; Yadav, R.K. Groundwater irrigation induced soil sodification and response options. Agric. Water Manag. 2019, 215, 74–85. [Google Scholar] [CrossRef]
- Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H. Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 2019, 219, 76–88. [Google Scholar] [CrossRef]
- Brindha, K.; Vaman, K.V.N.; Srinivasan, K.; Sathis Babu, M.; Elango, L. Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India. Appl. Water Sci. 2014, 4, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Oster, J.; Sposito, G.; Smith, C. Accounting for potassium and magnesium in irrigation water quality assessment. Calif. Agric. 2016, 70, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zeng, W.; Wu, M.; Li, T.; Chen, S.; Wang, W. Water resources efficiency assessment in crop production from the perspective of water footprint. J. Clean. Prod. 2021, 309, e127371. [Google Scholar] [CrossRef]
- Brown, J.C. Physiology of Plant Tolerance to Alkaline Soils. In Crop Tolerance to Suboptimal Land Conditions; Jung, G.A., Ed.; Wiley Online Library: Hoboken, NJ, USA, 1978; pp. 257–276. [Google Scholar]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 390–399. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, Z.; Gao, Y.; Liu, G.; Sheng, L.; Wang, D. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J. Integr. Plant Biol. 2008, 50, 29–39. [Google Scholar] [CrossRef]
- Gentili, R.; Ambrosin, R.; Montagnani, C.; Caronni, S.; Citterio, S. Effect of soil pH on the growth, reproductive investment and pollen allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jr, R.S.Z.; Stanturf, J.A.; Evett, S.R.; Kandil, N.F.; Soriano, C. Opportunities for woody crop production using treated wastewater in Egypt. I. afforestation strategies. Int. J. Phytoremediation 2011, 13, 102–121. [Google Scholar]
- Lubello, C.; Gori, R.; Nicese, F.P.; Ferrini, F. Municipal-treated wastewater reuse for plant nurseries irrigation. Water Res. 2004, 38, 2939–2947. [Google Scholar] [CrossRef]
- Mishra, T.; Pandey, V.C.; Praveen, A.; Singh, N.B.; Singh, N.; Singh, D.P. Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environ. Geochem. Health 2020, 42, 4101–4111. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, R.K.M. Nutritional status of some aromatic plants grown to produce volatile oils under treated municipal wastewater irrigation. Aust. J. Basic Appl. Sci. 2009, 5, 2999–3007. [Google Scholar]
- Emongor, V.E.; Ramolemana, G.M. Treated sewage effluent (water) potential to be used for horticultural production in Botswana. Phys. Chem. Earth Parts A/B/C 2004, 29, 1101–1108. [Google Scholar] [CrossRef]
Parameters | Control | Sites | Average | Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | F | P | LSD | |||
Physical Properties | ||||||||||
pH | 6.5–8.5 ab | 7.18 b | 7.31 ab | 7.51 a | 7.44 a | 7.36 ab | 7.36 | 3.282 | *** | 0.212 |
Conductivity | NA e | 939 b | 931 d | 936 cd | 936 c | 942 a | 937 | 146,283.50 | *** | 4.360 |
COD | 90.0 a | 1.0 d | 1.0 d | 2.0 c | 4.0 b | 1.0 d | 1.8 | 1.90 | *** | 2.858 |
Inorganic solutes (mg·dm−3) | ||||||||||
Phosphate | NA e | 2.42 ab | 2.36 b | 2.26 c | 2.20 d | 2.48 a | 2.344 | 2077.53 | *** | 0.073 |
Nitrate | NA f | 8.60 b | 8.40 c | 8.20 d | 8.00 e | 10.90 a | 8.82 | 20,888.65 | *** | 0.090 |
Ammonia | NA d | 0.10 b | 0.08 c | 0.08 c | 0.12 a | 0.12 a | 0.10 | 326.54 | *** | 0.008 |
Sulfate | NA d | 69.0 a | 65.0 b | 65.0 b | 61.0 c | 69.0 a | 65.8 | 3559.56 | *** | 1.579 |
Chloride | 354 a | 208.0 e | 212.0 d | 212.0 d | 219.0 c | 221.0 b | 214.4 | 1559.56 | *** | 1.579 |
Sodium | 207.0 a | 117.1 b | 117.5 b | 117.3 b | 117.0 b | 118.0 b | 117.4 | 5719.66 | *** | 1.674 |
Calcium | NA d | 96.4 ab | 96.2 c | 96.3 bc | 96.2 c | 96.5 a | 96.3 | 742,980.68 | *** | 0.157 |
Magnesium | NA d | 13.18 c | 13.50 d | 13.53 b | 13.67 a | 13.65 a | 13.51 | 18,324.79 | *** | 0.141 |
Potassium | NA e | 7.90 c | 7.70 b | 7.85 c | 7.93 b | 7.97 a | 7.87 | 80,207.90 | *** | 0.036 |
Potentially toxic elements ( mg·dm−3) | ||||||||||
Aluminum (Al) | 5.0 a | 0.010 b | 0.010 b | 0.010 b | 0.020 b | 0.010 | 0.012 b | 438.98 | *** | 0.535 |
Cadmium (Cd) | 0.010 a | <0.001 b | <0.001 b | <0.001 b | <0.001 b | <0.001 | <0.001 b | 361.00 | *** | 7.063 |
Chromium (Cr) | 0.100 a | 0.001 b | 0.001 b | 0.001 b | 0.001 b | 0.001 | 0.001 b | 361.00 | *** | 7.063 |
Cobalt (Co) | 0.050 a | <0.001 b | <0.001 b | <0.001 b | <0.001 b | <0.001 | <0.001 b | 9801.00 | *** | 7.063 |
Copper (Cu) | 0.200 a | <0.001 b | <0.001 b | <0.001 b | <0.001 b | <0.001 | <0.001 b | 1521.00 | *** | 7.063 |
Lead (Pb) | 0.100 a | <0.001 b | <0.001 b | <0.001 b | <0.001 b | 0.003 | 0.003 b | 429.47 | *** | 0.007 |
Manganese (Mn) | 0.200 a | 0.001 b | 0.001 b | 0.001 b | 0.001 b | 0.001 | 0.001 b | 1664.64 | *** | 0.007 |
Mercury (Hg) | 0.001 a | <0.0001 b | <0.0001 b | <0.0001 b | <0.0001 b | <0.0001 | <0.0001 b | 361.00 | *** | 7.063 |
Nickel (Ni) | 0.200 a | <0.001 b | <0.001 b | <0.001 b | <0.001 | <0.001 | <0.001 b | 1664.64 | *** | 0.007 |
Zinc (Zn) | 2.00 a | 0.002 b | 0.002 b | 0.003 b | 0.003 | 0.003 | 0.003 b | 1676.74 | *** | 0.071 |
Parameters | Control | Sites | Average | Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | F | P | LSD | |||
Physical Properties | |||||||||||
pH | 8.50 a | 6.83 d | 7.62 c | 7.76 c | 8.10 b | 7.72 c | 6.36 e | 7.40 | 168.96 | *** | 0.180 |
Conductivity | NA f | 1220 d | 4870 a | 2790 b | 425 e | 2465 c | 421.5 e | 2031.9 | 45,473.47 | *** | 8.644 |
Inorganic solutes (mg·dm−3) | |||||||||||
Phosphate | NA f | 17.0 a | 7.9 c | 3.9 d | 13.8 b | 1.9 e | 8.5 c | 8.8 | 1010.99 | *** | 0.664 |
Nitrate | NA f | 58.0 a | 55.5 b | 13.5 d | 5.5 e | 41.0 c | 5.0 e | 29.8 | 6005.15 | *** | 1.098 |
Ammonia | NA f | 0.50 e | 0.62 e | 1.20 c | 1.60 b | 0.90 d | 1.90 a | 1.10 | 343.27 | *** | 0.121 |
Sulfate | NA g | 445.0 d | 655.0 a | 510.0 c | 125.0 e | 515.0 b | 50.0 f | 383.3 | 96,742.67 | *** | 2.826 |
Chloride | NA g | 294.0 c | 232.0 d | 688.0 a | 102.0 e | 616.0 b | 97.0 f | 338.2 | 46,245.76 | *** | 4.144 |
Sodium | NA c | 92.0 c | 1288.0 a | 805.0 b | 92.0 c | 533.0 b | 46.0 c | 476.0 | 77.38 | *** | 190.235 |
Calcium | NA e | 257.0 a | 186.0 b | 129.0 c | 60.0 d | 186.0 b | 50.0 d | 144.7 | 462.32 | *** | 14.017 |
Magnesium | NA e | 83.0 b | 77.0 b | 89.0 a | 21.0 d | 6.0 e | 38.0 c | 52.3 | 481.44 | *** | 5.861 |
Potassium | NA g | 67.0 b | 39.0 c | 71.0 a | 6.0 f | 28.0 d | 9.0 e | 36.7 | 5281.94 | *** | 1.341 |
Potentially toxic elements (mg·dm−3) | |||||||||||
Aluminum (Al) | NA g | 5739 f | 7692 e | 8801 c | 11294 a | 10835 b | 7814 d | 8696 | 2,054,455.70 | *** | 8.870 |
Cadmium (Cd) | 3.8 a | 1.0 b | 1.0 b | 1.0 b | 1.0 b | 1.0 b | 1.0 b | 1.0 | 198.13 | *** | 0.245 |
Chromium (Cr) | 64.0 a | 20.0 e | 23.0 d | 25.9 c | 32.0 b | 27.0 c | 24.0 d | 25.3 | 981.64 | *** | 1.649 |
Cobalt (Co) | 20.0 a | 5.0 c | 8.0 bc | 9.0 bc | 11.0 b | 11.0 b | 10.0 c | 9.0 | 9.22 | ** | 5.497 |
Copper (Cu) | 63.0 a | 23.0 g | 41.0 c | 38.0 d | 49.0 b | 32.0 e | 26.0 f | 34.8 | 769.90 | *** | 1.672 |
Lead (Pb) | 70.0 a | 8.0 b | 6.5 bc | 5.6 c | 5.0 cd | 3.2 e | 3.5 de | 5.3 | 2760.64 | *** | 1.548 |
Manganese (Mn) | NA d | 270.0 c | 335.0 c | 404.0 b | 511.0 a | 491.0 a | 331.0 c | 390.3 | 91.62 | *** | 60.617 |
Mercury (Hg) | 12.0 a | <0.10 b | <0.10 b | <0.10 b | <0.10 b | <0.10 b | <0.10 b | <0.10 | 2344.97 | *** | 0.317 |
Nickel (Ni) | 45.0 a | 20.0 g | 25.0 f | 28.0 e | 39.0 b | 36.0 c | 30.0 d | 29.7 | 338.12 | *** | 1.579 |
Zinc (Zn) | 200.0 a | 68.0 d | 161.0 c | 165.0 b | 59.0 e | 55.7.0 f | 39.0 g | 91.3 | 13,401.28 | *** | 1.905 |
pH | EC | COD | PO43− | NO3− | NH3+ | SO42− | Cl− | Na+ | Ca2+ | Mg2+ | K+ | Al3+ | Cd2+ | Cr2+ | Co2+ | Cu2+ | Pb2+ | Mn2+ | Hg2+ | Ni2+ | Zn2+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||||||||
EC | 0.04 | 1 | ||||||||||||||||||||
COD | −0.03 | −1.00 | 1 | |||||||||||||||||||
PO43− | −0.01 | 0.99 | −0.99 | 1 | ||||||||||||||||||
NO3− | 0.01 | 0.97 | −0.97 | 0.98 | 1 | |||||||||||||||||
NH3+ | 0.03 | 0.95 | −0.94 | 0.94 | 0.95 | 1 | ||||||||||||||||
SO42− | −0.01 | 0.99 | −0.99 | 1.00 | 0.98 | 0.94 | 1 | |||||||||||||||
Cl− | −0.01 | −0.99 | 0.99 | −0.99 | −0.96 | −0.93 | −0.99 | 1 | ||||||||||||||
Na+ | −0.04 | −1.00 | 1.00 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1 | |||||||||||||
Ca2+ | 0.04 | 1.00 | −1.00 | 0.99 | 0.97 | 0.94 | 0.99 | −0.99 | −1.00 | 1 | ||||||||||||
Mg2+ | 0.05 | 1.00 | −0.99 | 0.99 | 0.97 | 0.95 | 0.99 | −0.99 | −1.00 | 1.00 | 1 | |||||||||||
K+ | 0.04 | 1.00 | −0.99 | 0.99 | 0.978 | 0.954 | 0.997 | −0.99 | −1.00 | 1.00 | 1.00 | 1 | ||||||||||
Al3+ | −0.07 | −0.99 | 0.99 | −0.99 | −0.974 | −0.947 | −0.995 | 0.99 | 0.99 | −0.99 | −0.99 | −0.99 | 1 | |||||||||
Cd2+ | −0.08 | −0.99 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 0.99 | −0.99 | −0.99 | −0.99 | 1.00 | 1 | ||||||||
Cr2+ | −0.08 | −0.99 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 0.99 | −0.99 | −0.98 | −0.99 | 1.000 | 1 | 1 | |||||||
Co2+ | −0.04 | −1.00 | 1.00 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1.00 | −1.00 | −1.00 | −1.00 | 0.99 | 0.99 | 0.99 | 1 | ||||||
Cu2+ | −0.06 | −1.00 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1.00 | −1.00 | −0.99 | −0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 1 | |||||
Pb2+ | −0.07 | −0.99 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 0.99 | −0.99 | −0.99 | −0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1 | ||||
Mn2+ | −0.06 | −1.00 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1.00 | −1.00 | −0.99 | −0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1 | |||
Hg2+ | −0.08 | −0.99 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 0.99 | −0.99 | −0.99 | −0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 1 | ||
Ni2+ | −0.06 | −1.00 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1.00 | −1.00 | −0.99 | −0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1 | |
Zn2+ | −0.05 | −1.00 | 0.99 | −0.99 | −0.97 | −0.94 | −0.99 | 0.99 | 1.00 | −1.00 | −0.99 | −0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1 |
Parameters | pH | EC | PO43− | NO3− | NH3+ | SO42− | Cl− | Na+ | Ca2+ | Mg2+ | K+ | Al3+ | Cd2+ | Cr2+ | Co2+ | Cu2+ | Pb2+ | Mn2+ | Hg2+ | Ni2+ | Zn2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||||||||
EC | 0.02 | 1 | |||||||||||||||||||
PO43− | −0.49 | −0.13 | 1 | ||||||||||||||||||
NO3− | −0.29 | 0.66 | 0.34 | 1 | |||||||||||||||||
NH3+ | −0.46 | −0.15 | 0.29 | −0.37 | 1 | ||||||||||||||||
SO42− | −0.07 | 0.91 | 0.05 | 0.82 | −0.20 | 1 | |||||||||||||||
Cl− | −0.02 | 0.53 | −0.25 | 0.34 | 0.07 | 0.72 | 1 | ||||||||||||||
Na+ | 0.12 | 0.98 | −0.22 | 0.51 | −0.11 | 0.83 | 0.50 | 1 | |||||||||||||
Ca2+ | −0.36 | 0.60 | 0.40 | 0.94 | −0.21 | 0.85 | 0.56 | 0.44 | 1 | ||||||||||||
Mg2+ | −0.42 | 0.55 | 0.44 | 0.50 | 0.04 | 0.62 | 0.37 | 0.51 | 0.60 | 1 | |||||||||||
K+ | −0.27 | 0.54 | 0.25 | 0.60 | −0.14 | 0.76 | 0.70 | 0.47 | 0.78 | 0.86 | 1 | ||||||||||
Al3+ | −0.20 | 0.33 | 0.29 | 0.16 | 0.72 | 0.39 | 0.49 | 0.30 | 0.31 | 0.13 | 0.17 | 1 | |||||||||
Cd2+ | 0.57 | −0.44 | −0.54 | −0.45 | −0.64 | −0.55 | −0.48 | −0.37 | −0.60 | −0.52 | −0.48 | −0.87 | 1 | ||||||||
Cr2+ | 0.69 | −0.49 | −0.56 | −0.58 | −0.52 | −0.62 | −0.47 | −0.39 | −0.71 | −0.64 | −0.59 | −0.72 | 0.97 | 1 | |||||||
Co2+ | 0.66 | −0.47 | −0.69 | −0.67 | −0.34 | −0.64 | −0.41 | −0.35 | −0.80 | −0.77 | −0.71 | −0.57 | 0.89 | 0.96 | 1 | ||||||
Cu2+ | 0.89 | −0.20 | −0.46 | −0.53 | −0.40 | −0.41 | −0.42 | −0.07 | −0.67 | −0.49 | −0.53 | −0.45 | 0.77 | 0.87 | 0.83 | 1 | |||||
Pb2+ | 0.57 | −0.43 | −0.50 | −0.41 | −0.68 | −0.53 | −0.48 | −0.36 | −0.56 | −0.48 | −0.44 | −0.89 | 0.99 | 0.96 | 0.86 | 0.76 | 1 | ||||
Mn2+ | −0.17 | 0.32 | 0.29 | 0.18 | 0.69 | 0.40 | 0.52 | 0.30 | 0.34 | 0.14 | 0.20 | 0.99 | −0.86 | −0.72 | −0.58 | −0.45 | −0.88 | 1 | |||
Hg2+ | 0.57 | −0.44 | −0.54 | −0.45 | −0.64 | −0.55 | −0.48 | −0.37 | −0.60 | −0.52 | −0.48 | −0.87 | 1.00 | 0.97 | 0.89 | 0.77 | 0.99 | −0.86 | 1 | ||
Ni2+ | 0.70 | −0.51 | −0.56 | −0.71 | −0.09 | −0.65 | −0.34 | −0.40 | −0.78 | −0.89 | −0.80 | −0.22 | 0.67 | 0.82 | 0.91 | 0.78 | 0.63 | −0.22 | 0.67 | 1 | |
Zn2+ | 0.62 | 0.30 | −0.54 | −0.12 | −0.64 | 0.12 | −0.02 | 0.40 | −0.23 | 0.15 | 0.12 | −0.61 | 0.62 | 0.57 | 0.47 | 0.67 | 0.65 | −0.60 | 0.62 | 0.19 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljeddani, G.S. Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia. Sustainability 2023, 15, 645. https://doi.org/10.3390/su15010645
Aljeddani GS. Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia. Sustainability. 2023; 15(1):645. https://doi.org/10.3390/su15010645
Chicago/Turabian StyleAljeddani, Ghalia Saleem. 2023. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia" Sustainability 15, no. 1: 645. https://doi.org/10.3390/su15010645
APA StyleAljeddani, G. S. (2023). Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia. Sustainability, 15(1), 645. https://doi.org/10.3390/su15010645