Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Hydrology
3.2. Pedology
3.3. Landform
3.4. Elevation
3.5. Geology
3.6. Geosites
3.7. Principles and Algorithms
4. Results
4.1. Normalized Diversity of Geo-Groups
4.2. Spatial Pattern of Geodiversity
5. Discussion
5.1. Human Factors in Geodiversity Assessment
5.2. Correlation of Geodiversity and Landscape
5.3. Parameter of Geotourism
5.4. Scales and Comparisons of Geodiversity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharples, C. A Methodology for the Identification of Significant Landforms and Geological Sites for Geoconservation Purposes; Forestry Commission Tasmania: Hobart, TAS, Australia, 1993.
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Parks, K.E.; Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 2010, 19, 2751–2766. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2015, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.L.N.; do Nascimento, M.A.L.; Mansur, K.L. Quantitative Assessments of Geodiversity in the Area of the Seridó Geopark Project, Northeast Brazil: Grid and Centroid Analysis. Geoheritage 2019, 11, 1177–1186. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: The Backbone of Geoheritage and Geoconservation. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–25. [Google Scholar]
- Gray, M. Geodiversity, geoheritage and geoconservation for society. Int. J. Geoheritage Park. 2019, 7, 226–236. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for Assessing Geodiversity. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar]
- Pellitero, R.; Manosso, F.C.; Serrano, E. Mid-and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Paraná, Brazil): Methodology and application for land management. Geogr. Ann. Ser. A Phys. Geogr. 2016, 97, 219–235. [Google Scholar] [CrossRef]
- Santos, D.S.; Mansur, K.L.; de Arruda, E.R., Jr.; Dantas, M.E.; Shinzato, E. Geodiversity Mapping and Relationship with Vegetation: A Regional-Scale Application in SE Brazil. Geoheritage 2018, 11, 399–415. [Google Scholar] [CrossRef]
- Lucatelli, D.; Goes, E.R.; Brown, C.J.; Souza-Filho, J.F.; Guedes-Silva, E.; Araújo, T.C.M. Geodiversity as an indicator to benthic habitat distribution: An integrative approach in a tropical continental shelf. GML 2019, 40, 911–923. [Google Scholar] [CrossRef]
- Semeniuk, C.A.; Semeniuk, V. Geoheritage values of consanguineous wetland suites on the Swan Coastal Plain, Western Australia. Aust. J. Earth Sci. 2019, 66, 837–853. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Torres-Bernhard, L.; Ruiz-Álvarez, M.A.; Rodríguez-Maradiaga, M.; Velázquez-Espinoza, G.; Espinosa-Vega, C.; Toral, J.; Rodríguez-Bolaños, H. Geodiversity, Geoconservation, and Geotourism in Central America. Land 2021, 11, 48. [Google Scholar] [CrossRef]
- Benito-Calvo, A.; Pérez-González, A.; Magri, O.; Meza, P. Assessing regional geodiversity: The Iberian Peninsula. ESPL 2009, 34, 1433–1445. [Google Scholar] [CrossRef]
- Finzi, Y.; Avni, S.; Maroz, A.; Avriel-Avni, N.; Ashckenazi-Polivoda, S.; Ryvkin, I. Extraordinary Geodiversity and Geoheritage Value of Erosional Craters of the Negev Craterland. Geoheritage 2018, 11, 875–896. [Google Scholar] [CrossRef]
- Pérez-Umaña, D.; Quesada-Román, A.; Zangmo Tefogoum, G. Geomorphological heritage inventory of Irazú Volcano, Costa Rica. Int. J. Geoherit. Park. 2020, 8, 31–47. [Google Scholar] [CrossRef]
- Sanz, J.; Zamalloa, T.; Maguregi, G.; Fernandez, L.; Echevarria, I. Educational Potential Assessment of Geodiversity Sites: A Proposal and a Case Study in the Basque Country (Spain). Geoheritage 2020, 12, 23. [Google Scholar] [CrossRef]
- Comănescu, L.; Nedelea, A. Geoheritage and Geodiversity Education in Romania: Formal and Non-Formal Analysis Based on Questionnaires. Sustainability 2020, 12, 9180. [Google Scholar] [CrossRef]
- Kharbish, S.; Henaish, A.; Zamzam, S. Geodiversity and geotourism in Greater Cairo area, Egypt: Implications for geoheritage revival and sustainable development. Arab. J. Geosci. 2020, 13, 451. [Google Scholar] [CrossRef]
- Berrezueta, E.; Sánchez-Cortez, J.L.; Aguilar-Aguilar, M. Inventory and Characterization of Geosites in Ecuador: A Review. Geoheritage 2021, 13, 93. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. State of the Art of Geodiversity, Geoconservation, and Geotourism in Costa Rica. Geosciences 2020, 10, 211. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M.; Woo, K.S. Granite Landform Diversity and Dynamics Underpin Geoheritage Values of Seoraksan Mountains, Republic of Korea. Geoheritage 2018, 11, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Ansori, C.; Setiawan, N.I.; Warmada, I.W.; Yogaswara, H. Identification of geodiversity and evaluation of geosites to determine geopark themes of the Karangsambung-Karangbolong National Geopark, Kebumen, Indonesia. Int. J. Geoherit. Park. 2022, 10, 1–15. [Google Scholar] [CrossRef]
- Dunlop, L.; Larwood, J.G.; Burek, C.V. Geodiversity Action Plans—A Method to Facilitate, Structure, Inform and Record Action for Geodiversity. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 53–65. [Google Scholar]
- Quesada-Román, A.; Zangmo, G.T.; Pérez-Umaña, D. Geomorphosite Comparative Analysis in Costa Rica and Cameroon Volcanoes. Geoheritage 2020, 12, 90. [Google Scholar] [CrossRef]
- Pérez-Umaña, D.; Quesada-Román, A.; De Jesús Rojas, J.C.; Zamorano-Orozco, J.J.; Dóniz-Páez, J.; Becerra-Ramírez, R. Comparative Analysis of Geomorphosites in Volcanoes of Costa Rica, Mexico, and Spain. Geoheritage 2018, 11, 545–559. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Umaña, D. Tropical Paleoglacial Geoheritage Inventory for Geotourism Management of Chirripó National Park, Costa Rica. Geoheritage 2020, 12, 58. [Google Scholar] [CrossRef]
- Tefogoum, G.Z.; Román, A.Q.; Umaña, D.P. Geomorphosites inventory in the Eboga Volcano (Cameroon): Contribution for geotourism promotion. Géomorphologie Relief Process. Environ. 2020, 26, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Mero, P.; Dueñas-Tovar, J.; Jaya-Montalvo, M.; Berrezueta, E.; Jiménez-Orellana, N. Geodiversity assessment to regional scale: Ecuador as a case study. Environ. Sci. Policy 2022, 136, 167–186. [Google Scholar] [CrossRef]
- Silva, M.L.N.; do Nascimento, M.A.L. Ecosystem Services and Typology of Urban Geodiversity: Qualitative Assessment in Natal Town, Brazilian Northeast. Geoheritage 2020, 12, 57. [Google Scholar] [CrossRef]
- Silva, C.M. Geodiversity and Sense of Place: Local Identity Geological Elements in Portuguese Municipal Heraldry. Geoheritage 2019, 11, 949–960. [Google Scholar] [CrossRef]
- Toivanen, M.; Hjort, J.; Heino, J.; Tukiainen, H.; Aroviita, J.; Alahuhta, J. Is catchment geodiversity a useful surrogate of aquatic plant species richness? J. Biogeogr. 2019, 46, 1711–1722. [Google Scholar] [CrossRef]
- Soms, J. Assessment of Geodiversity as Tool for Environmental Management of Protected Nature Areas in South-Eastern Latvia. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2017, 1, 271. [Google Scholar] [CrossRef]
- Albani, R.A.; Mansur, K.L.; Carvalho, I.D.S.; Santos, W.F.S.D. Quantitative evaluation of the geosites and geodiversity sites of João Dourado Municipality (Bahia—Brazil). Geoheritage 2020, 12, 46. [Google Scholar] [CrossRef]
- Elkaichi, A.; Errami, E.; Patel, N. Quantitative assessment of the geodiversity of M’Goun UNESCO Geopark, Central High Atlas (Morocco). Arab. J. Geosci. 2021, 14, 2829. [Google Scholar] [CrossRef]
- Ferrando, A.; Faccini, F.; Paliaga, G.; Coratza, P. A Quantitative GIS and AHP Based Analysis for Geodiversity Assessment and Mapping. Sustainability 2021, 13, 10376. [Google Scholar] [CrossRef]
- Najwer, A.; Jankowski, P.; Niesterowicz, J.; Zwoliński, Z. Geodiversity assessment with global and local spatial multicriteria analysis. IJAEO 2022, 107, 102665. [Google Scholar] [CrossRef]
- Bétard, F.; Peulvast, J.P. Geodiversity Hotspots: Concept, Method and Cartographic Application for Geoconservation Purposes at a Regional Scale. Environ. Manag. 2019, 63, 822–834. [Google Scholar] [CrossRef]
- Santos, F.M.; de La Corte Bacci, D.; Saad, A.R.; da Silva Ferreira, A.T. Geodiversity index weighted by multivariate statistical analysis. Appl. Geomat. 2020, 12, 361–370. [Google Scholar] [CrossRef]
- Gonçalves, J.; Mansur, K.; Santos, D.; Henriques, R.; Pereira, P. A Discussion on the Quantification and Classification of Geodiversity Indices Based on GIS Methodological Tests. Geoheritage 2020, 12, 38. [Google Scholar] [CrossRef]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity assessment of Paraná State (Brazil): An innovative approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Crisp, J.R.A.; Ellison, J.C.; Fischer, A. Current trends and future directions in quantitative geodiversity assessment. Prog. Phys. Geogr. Earth Environ. 2020, 45, 514–540. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; van der Hilst, R.D. The geological evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [Green Version]
- Dewey, J.F.; Bird, J.M. Mountain belts and the new global tectonics. J. Geophys. Res. 1970, 75, 2625–2647. [Google Scholar] [CrossRef]
- Cheng, Y. Introduction to the Regional Geology of China; Geological Press: Beijing, China, 1994.
- Wang, G.; Qian, J.; Cheng, G.; Lai, Y. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 2002, 291, 207–217. [Google Scholar]
- Huang, X.; Sillanpaa, M.; Duo, B.; Gjessing, E.T. Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut. 2008, 156, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yao, T.; Xie, H.; Zhang, K.; Zhu, F. Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 3010–3021. [Google Scholar] [CrossRef]
- Meybeck, M. Global Distribution of Lakes. In Physics and Chemistry of Lakes; Lerman, A., Imboden, D.M., Gat, J.R., Eds.; Springer: Berlin, Heidelberg, 1995; pp. 1–35. [Google Scholar]
- Sun, X.Y.; Zhang, R.; Huang, W.; Sun, A.; Lin, L.-J.; Xu, H.-G.; Jiang, D.-C. The response between glacier evolution and eco-geological environment on the Qinghai-Tibet Plateau. China Geol. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Stauch, G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth Sci. Rev. 2015, 150, 393–408. [Google Scholar] [CrossRef]
- Ge, X.; Liu, J.; Ren, S.; Yuan, S. The impact of the uplift of the Qinghai-Tibet Plateau on tectonic-geomorphological formation, climatic and environmental change and ancient human migration in China. China Geol. 2014, 41, 698–714. [Google Scholar]
- Pan, G.; Wang, L.; Yi, F.; Geng, Q.; Li, G.; Zhu, D. A Review, Progress and Prospects of Research on the Formation and Evolution of the Tibetan Plateau. Sediment. Geol. Tethyan Geol. 2022, 42, 151–175. [Google Scholar]
- Yuan, B.; Li, Z.; Liu, Q.; Zhao, M.; Sun, L.; Zhang, Y. Strategic thinking on mineral reserves in China’s Qinghai-Tibet Plateau. Resour. Ind. 2015, 17, 30–34. [Google Scholar]
- Chen, Y.; Feng, H.; Liu, C.; Li, S.; Li, Z. Distribution, Formation and Development of Mineral Resources on the Qinghai-Tibet Plateau. Geogr. Geo Inf. Sci. 2009, 25, 45–50. [Google Scholar]
- Li, G.; Zhang, L.; Zhang, Z.; Xia, X.; Liang, W.; Hou, C. Major strategic minerals on the southern Qinghai-Tibet Plateau: Progress in exploration, resource potential and direction of search. Sediment. Geol. Tethyan Geol. 2021, 41, 351–360. [Google Scholar]
- Rui, Z.; Li, G.; Wang, L. Metallic Mineral Resources of the Qinghai-Tibet Plateau. Geol. Bull. China 2004, 23, 20–23. [Google Scholar]
- Bai, Q.; Mei, L.; Yang, M. Geothermal resources and the thermal structure of the crust on the Tibetan Plateau. J. Geomech. 2006, 12, 354–362. [Google Scholar]
- Liu, G.; Yan, Y.; Liu, J. Geological hazard distribution characteristics and background analysis in the western Qinghai-Tibet Plateau. Chin. J. Geol. Surv. 2017, 4, 37–45. [Google Scholar]
- Shen, Z.; Zhang, Q.; Wu, W.; Song, C. Spatial patterns and drivers of geological hazard-prone areas on the Qinghai-Tibet Plateau and the Hengduan Mountains. J. Geogr. Sci. 2022, 77, 1211–1224. [Google Scholar]
- Zhang, G. The Lakes Larger Than 1 km2 in Tibetan Plateau (V3.0) (1970s-2021). In National Tibetan Plateau Data Center; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Ye, Q. Glacier Coverage Data on the Tibetan Plateau in 2017 (TPG2017, Version1.0). In National Tibetan Plateau Data; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Ye, Q.; Zong, J.; Tian, L.; Cogley, J.G.; Song, C.; Guo, W. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s–2000–13. J. Glaciol. 2017, 63, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Qin, Y.; Jing, J. 1:5,000,000 Map of Groundwater Resources Resources in China; Geology, Chinese Academy of Geological Sciences: Beijing, China, 2016. [Google Scholar]
- Ma, L. 1:12,000,000 Hydrogeological Map of China; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Gao, Y. 1:4,000,000 Soil map of China; Sinomap Press: Beijing, China, 2000. [Google Scholar]
- Yang, Y. 1:4 Million Geomorphic Type Data of Qinghai Tibet Plateau (1996); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2022. [Google Scholar]
- Wang, J.; Zuo, W. 1:16,000,000 Geological Map of China; Sinomap Press: Beijing, China, 2009. [Google Scholar]
- Ma, L. 1:12,000,000 New Geologicial Structure Map of China. In Geological Atlas of China; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Wang, G.; Lin, W.; Zhang, W. 1:5,000,000 the Map of Distribution of Geothermal Resources in China. In Institute of Hydrogeology and Environmental Geology; Chinese Academy of Geological Sciences: Beijing, China, 2016. [Google Scholar]
- Yin, C.; Qu, X. 1:5,000,000 Distribution Map of Collapse, Landslide and Debris Flow in China. Monitoring; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Pál, M.; Albert, G. Refinement Proposals for Geodiversity Assessment—A Case Study in the Bakony–Balaton UNESCO Global Geopark, Hungary. ISPRS Int. J. Geo Inf. 2021, 10, 566. [Google Scholar] [CrossRef]
- Stepišnik, U.; Trenchovska, A. A New Quantitative Model for Comprehensive Geodiversity Evaluation: The Škocjan Caves Regional Park, Slovenia. Geoheritage 2017, 10, 39–48. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Németh, K. Quantitative-Qualitative Method for Quick Assessment of Geodiversity. Land 2021, 10, 946. [Google Scholar] [CrossRef]
- Xu, R.; Yang, Z.; Xu, X. OUV Analysis and Global Comparative Study of Karakoram-Pamir World Natural Heritage Potential Area. Sustainability 2022, 14, 12546. [Google Scholar] [CrossRef]
- Chrobak, A.; Novotný, J.; Struś, P. Geodiversity Assessment as a First Step in Designating Areas of Geotourism Potential. Case Study: Western Carpathians. Front. Earth Sci. 2021, 9, 919. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 2010, 115, 109–116. [Google Scholar] [CrossRef]
Element | Scale/ Resolution | Source | Access Date |
---|---|---|---|
Glacier | 30 m | TPDC (http://www.tpdc.ac.cn) | 15 June 2022 |
Lake | >1 km2 (area) | TPDC (http://www.tpdc.ac.cn) | 15 June 2022 |
Drainage | 1:1,000,000 | NESSDC (http://lake.geodata.cn) | 16 June 2022 |
Groundwater | 1:5,000,000 | IHEG (http://www.iheg.cgs.gov.cn/) | 21 June 2022 |
1:12,000,000 | Geological Atlas of China |
Element | Scale | Source | Access Date |
---|---|---|---|
Mineral resources | 1:5,000,000 | IMR (http://www.imr.cgs.gov.cn/) | 25 June 2022 |
Fossil remains | 1:4,000,000 | GeoCloud (https://geocloud.cgs.gov.cn) | 25 June 2022 |
Volcanic crater | 1:12,000,000 | Geological Atlas of China | |
Hot spring | 1:5,000,000 | IHEG (http://www.iheg.cgs.gov.cn/) | 27 June 2022 |
Geohazards | 1:5,000,000 | CIGEM (http://www.cigem.cgs.gov.cn/) | 28 June 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, T.; Xu, S.; Lu, Y.; Tong, Y.; Yang, Z. Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau. Sustainability 2023, 15, 299. https://doi.org/10.3390/su15010299
Rong T, Xu S, Lu Y, Tong Y, Yang Z. Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau. Sustainability. 2023; 15(1):299. https://doi.org/10.3390/su15010299
Chicago/Turabian StyleRong, Tianyu, Shuting Xu, Yayan Lu, Yanjun Tong, and Zhaoping Yang. 2023. "Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau" Sustainability 15, no. 1: 299. https://doi.org/10.3390/su15010299
APA StyleRong, T., Xu, S., Lu, Y., Tong, Y., & Yang, Z. (2023). Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau. Sustainability, 15(1), 299. https://doi.org/10.3390/su15010299