Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission
Abstract
:1. Introduction
2. Structure of Virtual Power Plant
2.1. Composition of Virtual Power Plant
2.2. VPP Structure Considering Zero Carbon Emission of System
3. VPP Modeling
3.1. Component Models of VPP
3.1.1. Micro Conventional Gas Turbine
3.1.2. Wind Power Plant
3.1.3. Photovoltaic Unit
3.1.4. P2G Device
3.1.5. Demand Response
3.1.6. Energy Storage System
3.2. Optimal Operation Model for VPP Considering System Net-Zero Emission
- (1)
- Carbon emission reduction objective function
- (2)
- Economic objectives
3.3. Constraint Condition
- (1)
- Power supply and demand balance constraints
- (2)
- P2G operation constraints
- (3)
- MT operation constraints
- (4)
- ESS operation constraints
- (5)
- DR constraints
- (6)
- Spinning reserve constraint
4. Case Study
4.1. Linearization Processing
- (1)
- Processing methods of power function
- (2)
- Processing method of the quadratic function
4.2. Basic Data
4.3. Scenarios Analysis
4.3.1. Scenario Setting
4.3.2. Result Analysis
- (1)
- Result analysis of Scenario 1
- (2)
- Result analysis of Scenario 2
- (3)
- Result analysis of Scenario 3
- (4)
- Impact of carbon trading price on VPP operation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Li, H.; Dong, X.; Wang, J.; Liu, R. Research on flexible auxiliary service bidding strategy of virtual power plant. Power Sci. Eng. 2021, 37, 47–56. [Google Scholar]
- Yin, S.; Ai, Q.; Li, Z.; Zhang, Y.; Lu, T. Energy management for aggregate prosumers in a virtual power plant: A robust Stackelberg game approach. Int. J. Electr. Power Energy Syst. 2020, 117, 105605.1–105605.11. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Liu, Z.; Liu, M.; Wang, J.; Gao, Y.; Wang, X.; Song, Y. Operation Mechanism and Key Technologies of Virtual Power Plant Under Ubiquitous Internet of Things. Power Grid Technol. 2019, 43, 3175–3183. [Google Scholar]
- Xue, D. Research on Optimized Operation of Virtual Power Plant Considering Electric Vehicle Access. Master’s Thesis, Hefei Polytechnic University, Hefei, China, 2020. [Google Scholar]
- Sun, J. Study on optimal capacity of multi-type energy storage system for optimized operation of virtual power plants. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018. [Google Scholar]
- Wu, W.; Wang, X.; Jiang, C.; Yang, M.; Deng, F. Research on operation optimization of virtual power plants under consideration of demand side response. Electr. Autom. 2019, 41, 29–32, 94. [Google Scholar]
- Fang, Y.; Ai, Q.; Fan, S. A review on virtual power plant. Distrib. Util. 2016, 33, 8–13. [Google Scholar]
- Wang, D.; Fan, M.; Jia, H. User Comfort Constraint Demand Response for Residential Thermostatically-controlled Loads and Efficient Power Plant Modeling. Proc. Chin. Soc. Electr. Eng. 2014, 34, 2071–2077. [Google Scholar]
- Tan, J.; Li, Y. Review on transaction mode in multi-energy collaborative market. Proc. Chin. Soc. Electr. Eng. 2019, 39, 6483–6497. [Google Scholar]
- Zhang, Y.; Zhang, X.; Lan, L. Robust optimization-based dynamic power generation mix evolution under the carbon-neutral target. Resour. Conserv. Recycl. 2022, 178, 106103. [Google Scholar] [CrossRef]
- Yuan, G.; Wang, L.; Wang, B. Optimal dispatch of heat-power load and economy benefits analysis based on decoupling of heat and power of virtual power plant. Proc. Chin. Soc. Electr. Eng. 2017, 37, 4974–4985. [Google Scholar]
- Lu, Z.; Wang, H.; Zhao, H.; Feng, H. Strategy of Bilevel Inverse Robust Optimization Dispatch of Virtual Power Plant Containing V2G. Power Syst. Technol. 2017, 41, 1245–1252. [Google Scholar]
- Liu, Y.; Jiang, C.; Tan, S.; Hu, J.; Li, Q. Optimal Dispatch of Virtual Power Plant Considering Risk Adjusted Return on Capital Constraints. Proc. Chin. Soc. Electr. Eng. 2016, 36, 4617–4627. [Google Scholar]
- Zhu, J.; Duan, P.; Liu, M. Electric real-time balance dispatch via bi-level coordination of source-grid-load of power system with risk. Proc. Chin. Soc. Electr. Eng. 2015, 35, 3239–3247. [Google Scholar]
- Dong, W.; Wang, Q.; Yang, L. Wireless coordination control of multi-functional grid-tied inverters in microgrid. Power Syst. Autom. 2015, 39, 75–81. [Google Scholar]
- Huang, H. Economic Dispatch of Virtual Power Plant Considering Demand Response Uncertainty and Conditional Risk. Ph.D. Thesis, Wuhan University, Wuhan, China, 2018. [Google Scholar]
- Liu, X. Research on the Economy Dispatch and Optimal Allocation of a Virtual Power Plant. Master’s Thesis, Hefei Polytechnic University, Hefei, China, 2020. [Google Scholar]
- Huo, H. Multi-Objective Optimization and Policy Simulation of Power System Scheduling Considering Virtual Power Plants. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2018. [Google Scholar]
- Li, Z. The Optimized Operation Strategy Research of Virtual Power Plant to Active Distribution Network. Master’s Thesis, Wuhan University, Wuhan, China, 2017. [Google Scholar]
- Wei, X.; Yang, D.; Ye, B. Operation mode of virtual power plant in energy internet and its enlightenment. Electr. Power Constr. 2016, 37, 1–9. [Google Scholar]
- Shuai, D.; Chen, H.; Wu, J.; Liao, J.; Wang, X.; Lou, Q.; Li, S.; Yang, Z. Multi-objective Optimal Day-ahead Dispatch of Integrated Energy System Considering Power-to-gas Operation Cost. Autom. Electr. Power Syst. 2018, 42, 8–15. [Google Scholar]
- Li, H.; Li, N.; Tan, C.; Xu, D.; Ju, L.; Fan, W. Near-Zero Carbon Dispatching Optimization Model of Virtual Power Plant Connected with Power-to-Gas Considering Uncertainties of Wind and Photovoltaic Power. Electr. Power Constr. 2020, 41, 10–19. [Google Scholar]
- 23. Guo Lin. Economic Dispatch and Renewable Energy Accommodation of Integrated Energy System. Ph.D. Thesis, Chongqing University, Chongqing, China, 2019.
- Ju, L. The Research on the Optimization Mode and Benefit Evaluation Mechanism for Multu-Clean Energy Absorptive Considering Demand Response. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2017. [Google Scholar]
- He, C.; Wu, L.; Liu, T.; Wei, W.; Wang, C. Co-optimization scheduling of interred-pendent power and gas systems with electricity and gas uncertainties. Energy 2018, 159, 1003–1015. [Google Scholar] [CrossRef]
Generators | Maximum Output (MW) | Minimum Output (MW) | Ramping Speed (MW/h) | Unit Parameters | ||
---|---|---|---|---|---|---|
a | b | c | ||||
MT | 4 | 0.8 | 0.3/0.5 | 0 | 0.575 | 0.0137 |
WPP | 2 | 0 | 1.6 | 0 | 0 | 0 |
PV | 2 | 0 | 1.5 | 0 | 0 | 0 |
Units | Cost Price | Material Price | Conversion Efficiency | Initial Capacity |
---|---|---|---|---|
MT | 243 ¥/MWh | 2.5 ¥/m3 | ||
WPP | 178 ¥/MWh | |||
PV | 256 ¥/MWh | |||
P2G | - | TOU price | 0.64 | |
GST | P2G output price | 0.99 | 50 m3 | |
ESS | - | TOU price | 0.95 | 0.6 MWh |
Scenarios | P2G | Interruptible Loads | GST |
---|---|---|---|
Scenario 1 (Basic Scenario) | √ | × | × |
Scenario 2 (GST Scenario) | √ | × | √ |
Scenario 3 (Comprehensive scenario) | √ | √ | √ |
Carbon Trading Price | Cost/¥ |
---|---|
45 | 231,412.19 |
50 | 232,129.54 |
55 | 232,657.19 |
60 | 233,163.46 |
65 | 233,762.43 |
70 | 234,091.27 |
75 | 234,694.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, J.; De, G.; Fan, W. Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission. Sustainability 2022, 14, 3276. https://doi.org/10.3390/su14063276
Wu Y, Wu J, De G, Fan W. Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission. Sustainability. 2022; 14(6):3276. https://doi.org/10.3390/su14063276
Chicago/Turabian StyleWu, Yungao, Jing Wu, Gejirifu De, and Wei Fan. 2022. "Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission" Sustainability 14, no. 6: 3276. https://doi.org/10.3390/su14063276
APA StyleWu, Y., Wu, J., De, G., & Fan, W. (2022). Research on Optimal Operation Model of Virtual Electric Power Plant Considering Net-Zero Carbon Emission. Sustainability, 14(6), 3276. https://doi.org/10.3390/su14063276