Cryosphere Microbiome Biobanks for Mountain Glaciers in China
Abstract
:1. Introduction
2. Status of Glacier Distribution in China
3. Diversity and Community Structure of Glacial Microbiomes in China
3.1. Bacteria and Archaea
3.2. Fungi
3.3. Viruses
4. Involvement of Glacier Microbes in Carbon Cycle
5. Concluding Remarks
- 1.
- Response of glacial microbes to climate change
- 2.
- Evolutionary and biogeographical studies of glacial microbiomes
- 3.
- Glacial microbes and geochemical cycles
- 4.
- Glacial microbial diversity and microbial resources
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, D.; Yao, T.; Ding, Y.; Ren, J. Establishment and Significance of the Scientific System of Cryospheric Science. Bull. Chin. Acad. Sci. 2020, 35, 394–406. [Google Scholar] [CrossRef]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar] [CrossRef]
- Boetius, A.; Anesio, A.M.; Deming, J.W.; Mikucki, J.A.; Rapp, J.Z. Microbial Ecology of the Cryosphere: Sea Ice and Glacial Habitats. Nat. Rev. Microbiol. 2015, 13, 677–690. [Google Scholar] [CrossRef]
- Eva, G.; Cristna, C. Glaciers and Ice Sheets as Analog Environments of Potentially Habitable Icy Worlds. Front. Microbiol. 2017, 8, 1407. [Google Scholar] [CrossRef]
- Makowska, N.; Zawierucha, K.; Mokracka, J.; Koczura, R. First Report of Microorganisms of Caucasus Glaciers (Georgia). Biologia 2016, 71, 620–625. [Google Scholar] [CrossRef]
- Martinez-alonso, E.; Pena-perez, S.; Serrano, S.; Garcia-lopez, E. Taxonomic and Functional Characterization of a Microbial Community from a Volcanic Englacial Ecosystem in Deception. Sci. Rep. 2019, 9, 12158. [Google Scholar] [CrossRef]
- Margesin, R.; Collins, T. Microbial Ecology of the Cryosphere (Glacial and Permafrost Habitats): Current Knowledge. Appl. Microbiol. Biotechnol. 2019, 103, 2537–2549. [Google Scholar] [CrossRef] [Green Version]
- Stibal, M.; Šabacká, M.; Žárský, J. Biological Processes on Glacier and Ice Sheet Surfaces. Nat. Geosci. 2012, 5, 771–774. [Google Scholar] [CrossRef]
- Xu, H.; Wang, F.; Li, T.; Wu, X. A Review of Freezing-Thawing Cycle Effects on Key Processes of Soil Nitrogen Cycling and the Underlying Mechanisms. Acta Ecol. Sin. 2020, 40, 3168–3182. [Google Scholar] [CrossRef]
- Zarsky, J.D.; Stibal, M.; Hodson, A.; Sattler, B. Large Cryoconite Aggregates on a Svalbard Glacier Support a Diverse Microbial Community Including Ammonia-Oxidizing Archaea. Environ. Res. Lett. 2013, 8, 035044. [Google Scholar] [CrossRef]
- Ambrosini, R.; Musitelli, F.; Navarra, F.; Tagliaferri, I.; Gandolfi, I.; Bestetti, G.; Mayer, C.; Minora, U.; Azzoni, R.S.; Diolaiuti, G.; et al. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier. Environ. Microbiol. 2017, 73, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Vick-majors, T.J.; Priscu, J.C.; Yao, T.; Kang, S.; Liu, K.; Cong, Z.; Xiong, J. Biogeography of Cryoconite Bacterial Communities on Glaciers of the Tibetan Plateau. FEMS Microbiol. Ecol. 2017, 93, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, S.; Mccutcheon, J.; Mcquaid, J.B.; Benning, L.G. The Diversity of Ice Algal Communities on the Greenland Ice Sheet as Revealed by Oligotyping. Microb. Genomics 2018, 4, e000159. [Google Scholar] [CrossRef] [PubMed]
- Kadow, C.; Hall, D.M.; Ulbrich, U. Artificial Intelligence Reconstructs Missing Climate Information. Nat. Geosci. 2020, 13, 408–413. [Google Scholar] [CrossRef]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 42–44. [Google Scholar]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veettil, B.K.; Kamp, U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observation, Modeling and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The Second Chinese Glacier Inventory: Data, Methods and Results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Su, H. Glaciers in the World and China: Distribution and Their Significance as Water Resources. J. Glaciol. Geocryol. 2003, 25, 498–503. [Google Scholar] [CrossRef]
- Rime, T.; Hartmann, M.; Brunner, I.; Widmer, F.; Zeyer, J.; Frey, B. Vertical Distribution of the Soil Microbiota along a Successional Gradient in a Glacier Forefield. Mol. Ecol. 2015, 24, 1091–1108. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial Diversity in European Alpine Permafrost and Active Layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botnen, S.; Mundra, S.; Kauserud, H.; Eidesen, P. Glacier Retreat in the High Arctic: Opportunity or Threat for Ectomycorrhizal Diversity? FEMS Microbiol. Ecol. 2020, 96, fiaa171. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zheng, B.; Yao, T. Glaciers and Environments during the Last Glacial Maximum (LGM) on the Tibetan Plateau. J. Glaciol. Geocryol. 1997, 19, 97–113. [Google Scholar]
- Shi, Y.; Ren, B.; Xie, Z. Progress of Glaciology Research in China in the Past 30 Years. J. Glaciol. Geocryol. 1979, 2, 1–6. [Google Scholar]
- Huang, M.; Shi, Y. Progress in the Study on Basic Features of Glaciers in China in the Last Thirty Years. J. Glaciol. Geocryol. 1988, 10, 228–237. [Google Scholar]
- Shen, Y.; Chang, X.; Li, Y.; Wang, C. The Special of Chinese Glaciers. For. Humankind 2018, 12, 192–207. [Google Scholar]
- Zemp, M.; Haeberli, W.; Hoelzle, M.; Paul, F. Alpine Glaciers to Disappear within Decades? Geophys. Res. Lett. 2006, 33, L13504. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; He, Y.; Pu, T.; Jia, W.; He, X.; Pang, H.; Zhang, N.; Liu, Q.; Qiao, L.; Wang, S.; et al. Changes of Climate, Glaciers and Runoff in China’s Monsoonal Temperate Glacier Region during the Last Several Decades. Quat. Int. 2010, 218, 13–28. [Google Scholar] [CrossRef]
- Xu, X.; Pan, B.; Hu, E.; Li, Y.; Liang, Y. Responses of Two Branches of Glacier No. 1 to Climate Change from 1993 to 2005, Tianshan, China. Quat. Int. 2011, 236, 143–150. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Yao, X.; Jin, S. Rapid Shrinkage and Hydrological Response of a Typical Continental Glacier in the Arid Region of Northwest China—Taking Urumqi Glacier No. 1 as an Example. Ecohydrology 2013, 6, 909–916. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Li, Z.; Wang, F. Variation of Glacier Area in China against the Warming in the Past 50 Years. Acta Geogr. Sin. 2011, 66, 1155–1165. [Google Scholar]
- Zhao, H.; Wang, X.; Zhao, X.; Guo, W.; Liu, S.; Wei, J.; Zhang, Y. Analysis of Glacier Changes in China from 2008 to 2018. J. Glaciol. Geocryol. 2021, 43, 976–986. [Google Scholar] [CrossRef]
- Duan, J.; Wang, L.; Ren, J.; Li, L. Progress in Glacier Variations in China and Its Sensitivity to Climatic Change during the Past Century. Prog. Geogr. 2009, 28, 231–237. [Google Scholar] [CrossRef]
- Feng, T.; Liu, S.; Xu, J.; Guo, W.; Wei, J.; Zhang, Z. Glacier Change of the Yarkant River Basin from 1968 to 2009 Derived from the First and Second Glacier Inventories of China. J. Glaciol. Geocryol. 2015, 37, 1–13. [Google Scholar] [CrossRef]
- Xie, Z.C.; Wang, X.; Feng, Q.H.; Kang, E.; Liu, C.H.; Li, Q.Y. Modeling the Response of Glacier Systems to Climate Warming_Taking Glaciers in China as an Example. Res. Soil Water Conserv. 2005, 12, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Shi, Y. Response of Monsoonal Temperate Glaciers in China to Global Warming since the Little Ice Age. J. Glaciol. Geocryol. 2000, 22, 223–229. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Luo, S.; Bai, J.; Huai, B.; Wang, F.; Li, H.; Wang, W.; Wang, L. Five Decades of Changes in the Glaciers on the Friendship Peak in the Altai Mountains, China: Changes in Area and Ice Surface Elevation. Cold Reg. Sci. Technol. 2015, 116, 24–31. [Google Scholar] [CrossRef]
- Huai, B.; Li, Z.; Wang, F.; Wang, P. Variation of Glaciers in the Sawuer Mountain within Chinese Territory during 1959–2013. J Glaciol. Geocryol. 2015, 37, 1141–1149. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.; Liu, S.; Zhang, D.; Xu, J. Variation of Glacier Length in the Altun Mountains during 1970—2016. J Glaciol. Geocryol. 2021, 43, 49–60. [Google Scholar] [CrossRef]
- Zhao, C.; Liang, J.; Wang, J.; Yang, L.; Zhang, S. Remote Sensing Analysis of Glacier Dynamic Changes in Parlung Zangbo River. Sci. Technol. Eng. 2019, 19, 56–62. [Google Scholar] [CrossRef]
- Liu, J.; Yao, X.; Liu, S.; Guo, W.; Xu, J. Glacier Changes in the Gangdisê Mountains from 1970 to 2016. Acta Geogr. Sin. 2019, 74, 1333–1344. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.; Li, X.; Liu, K. Glacier Changes and Its Response to Climate Change in the Gilgit River Basin, Western Karakorum Mountains over the Past 20 Years. Mt. Res. 2019, 37, 347–358. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Liu, S.; Guo, W.; Wei, J.; Feng, T. Glacier Changes since the Early 1960s, Eastern Pamir, China. J. Mt. Sci. 2016, 13, 276–291. [Google Scholar] [CrossRef]
- Jia, B.; Hou, S.; Wang, Y. Variation of Glaciers at Zangser Kangri on the Qiangtang Plateau during 1971–2015. J. Glaciol. Geocryol. 2020, 42, 307–317. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier Changes in the Qilian Mountains in the Past Half Century: Based on the Revised First and Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 1402–1414. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Wu, L.; Guo, L.; Li, J. Using Remote Sensing Images to Monitor the Glacier Changes in Qilian Mountains during 1987–2018 and Analyzing the Impact Factors. J. Glaciol. Geocryol. 2020, 42, 344–356. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Gao, W. Rapid Shrinking of Glaciers in the Middle Qilian Mountain Region of Northwest China during the Last ~50 Years. J. Earth Sci. 2011, 22, 539–548. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Yu, G.; Li, H.; Wang, W.; Huai, B.; Zhou, P.; Jin, S.; Wang, L.; Zhang, H. Glacier Shrinkage in the Daxue and Danghenan Ranges of the Western Qilian Mountains, China, from 1957 to 2010. Environ. Earth Sci. 2016, 75, 127. [Google Scholar] [CrossRef]
- Cai, Y.; Huang, W.; Teng, F.; Gu, S. Effects of Changing Climate on Glacier Shrinka Age and River Flow in the Upper Heihe River Basin, China. J. Coast. Res. 2014, 68, 121–128. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.Q.; Wang, P.Y.; Lai, Z.P.; Chen, R.S.; Huai, B.J. Five Decades of Glacier Changes in the Hulugou Basin of Central Qilian Mountains, Northwest China. J. Arid Land 2015, 7, 159–165. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.; Chen, J.; Li, Z.; Wang, J.; Du, W.; Guo, W. Variations of Laohugou Glacier No. 12 in the Western Qilian Mountains, China, from 1957 to 2015. J. Mt. Sci. 2018, 15, 25–32. [Google Scholar] [CrossRef]
- Ou, J.; Xu, L.; Pu, T. Glacier Change and Its Response to Climate Change in the Que’er Mountains, 1987—2016. J. Glaciol. Geocryol. 2021, 43, 36–48. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Li, Z.; Zhang, M. Glacier Changes in the Sawuer Mountain during 1977-2017 and Their Response to Climate Change. J. Nat. Resour. 2019, 34, 802–814. [Google Scholar] [CrossRef]
- Xing, W.; Li, Z.; Zhang, H.; Zhang, M.; Liang, P.; Mu, J. Spatial-Temporal Variation of Glacier Resources in Chinese Tianshan Mountains since 1959. Acta Geogr. Sin. 2017, 72, 1594–1605. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Z.; Xu, C.; Huai, B. Glacier Change of Western China since the Little Ice Age: A Case of the Urumqi River Watershed. Arid L Geogr. 2016, 39, 486–494. [Google Scholar] [CrossRef]
- Wang, W.; Li, K.; Gao, J. Monitoring Glacial Shrinkage Using Remote Sensing and Site-Observation Method on Southern Slope of Kalik Mountain, Eastern Tian Shan, China. J. Earth Sci. 2011, 22, 503–514. [Google Scholar] [CrossRef]
- Huang, X.; Bao, A.; Guo, H.; Meng, F.; Zhang, P. Change of Typical Glaciers and Its Response to Meteorological Factors in the Eastern Tianshan Mountains in China in Recent 20 Years. Arid Zone Res. 2017, 34, 870–880. [Google Scholar] [CrossRef]
- Zhao, J.; Mansur, S.; Mailikai, A.; Nijiate, Y. Changing Rates of Glacier in Tomur National Nature Reserve from 1992 to 2017 ZHAO. Arid Zone Res. 2020, 37, 1079–1086. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Li, Z.; Wang, P.; Xu, C.; Liu, S.; Jin, S.; Zhang, Z.; Xu, L. Research on the Changes of the Urumqi Glacier No. 1, Tianshan Mountains Based on Multi-Source Remote Sensing Data. J. Glaciol. Geocryol. 2021, 43, 1018–1026. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, R.; Yang, T. Glacier Variations in the Himalayas during 1990–2015 JI. Geogr. Res. 2020, 39, 2403–2414. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Guo, W. Glacier Variation and Its Response to Climate Change in the Mount Namjagbarwa from 1980 to 2015. J. Glaciol. Geocryol. 2020, 42, 1115–1125. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Ji, Q.; Hu, F. Change of the Modern Glaciers in the Eastern Himalaya near China and Bhutan Border Area from 1990 to 2015. Arid L Geogr. 2019, 42, 542–550. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, N.; Chen, A.; Liu, K. Monitoring Variation of Glaciers Based on Remote Sensing Images in the Chenab Basin, Western-Himalaya, 1993~2016. Remote Sens. Technol. Appl. 2020, 35, 712–722. [Google Scholar] [CrossRef]
- Lhakpa, D.; Yu, X. Study on the Variation of Chema Yongdrung Glacier in Tibet Using Remote Sensing during 1976–2019. Plateau Sci. Res. 2020, 4, 17–29, 54. [Google Scholar] [CrossRef]
- Li, C.; Jing, Z.; He, X. Remote Sensing Monitoring of Glacier Variation in Geladandong, Source Regions of the Yangtze River from 1986 to 2015. J. Glaciol. Geocryol. 2021, 43, 405–416. [Google Scholar] [CrossRef]
- Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The Microbiome of Glaciers and Ice Sheets. NPJ Biofilms Microbiomes 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, T.; Zhang, W.; Liu, G. Cryomicrobiology: Retrospect and Prospect. J. Glaciol. Geocryol. 2019, 41, 1221–1234. [Google Scholar] [CrossRef]
- Yao, T.; Qin, D.; Shen, Y.; Zhao, L.; Wang, N.; Lu, A. Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau. Chin. J. Nat. 2013, 35, 179–186. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.K.; Si, J.; Wu, G.J.; De Tian, L.; Xiang, S.R. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China. Front. Microbiol. 2016, 7, 1716. [Google Scholar] [CrossRef]
- Christner, B.C.; Mosley-thompson, E.; Thompson, L.G.; Zagorodnov, V.; Sandman, K.; Reeve, J.N. Recovery and Identification of Viable Bacteria Immured in Glacial Ice. Icarus 2000, 144, 479–485. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, T.; Ma, X.; Wang, N. Malan Glacier: Analysis of Microbial Signatures in a Deep Ice Core. Sci. China (Ser. D) 2001, 31, 295–299. [Google Scholar]
- Xiang, S.; Yao, T.; An, L.; Li, Z.; Wu, G.; Wang, Y.; Xu, B.; Wang, J. The Relationship between the Structural Changes of Malan Ice Core Bacteria and Climatic Environment. Chin. Sci. Bull. 2004, 49, 1762–1769. [Google Scholar] [CrossRef]
- Xiang, S.; Yao, T.; An, L.; Wu, G.; Xu, B.; Ma, X.; Li, Z.; Wang, J.; Yu, W. The Quantity Distribution of the Culturable Bacteria and the Change of the Main Bacterial Community Structure with Depth in The Muztagata Ice Core. Sci. China (Ser. D) 2005, 35, 252–262. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, X.; An, L.; Yao, T.; Li, Z.; Wang, F.; Xu, S. Study on the Diversity of Ice Core Bacteria in Tianshan Mountain. J. Glaciol. Geocryol. 2008, 3, 1033–1040. [Google Scholar]
- Ni, X.; Qi, X.; Gu, Y.; Zheng, X.; Dong, J.; Ni, Y.; Cheng, G. Community Structure and Phylogenetic Analysis of Cyanobacteria in Cryoconite from Surface of the Glacier No.1 in the Tianshan Mountains. Acta Microbiol. Sin. 2014, 54, 1256–1266. [Google Scholar]
- Xu, H.; Li, Z.; Takeuchi, N.; Zhang, X.; Luo, S. Characteristics and Formation Analysis of Cryoconite Granules of Yushugou Glacier. Arid L Geogr. 2014, 37, 429–438. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, T.; Jiao, N.; Kang, S.; Huang, S.; Li, Q.; Wang, K.; Liu, X. Culturable Bacteria in Glacial Meltwater at 6350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles 2009, 13, 89–99. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Hu, Y.; Cai, J.; Liu, X.; Bai, C.; Tang, X.; Zhang, Y.; Jang, K.S.; Spencer, R.G.M.; et al. Microbial Production and Consumption of Dissolved Organic Matter in Glacial Ecosystems on the Tibetan Plateau. Water Res. 2019, 160, 18–28. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Sawut, G. Culturable Bacterial Diversity in Snow, Ice and Meltwater of the Yangbark Glacier, Muztag Ata. J. Glaciol. Geocryol. 2015, 37, 1634–1641. [Google Scholar] [CrossRef]
- Segawa, T.; Takeuchi, N. Cyanobacterial Communities on Qiyi Glacier, Qilian Shan, China. Ann. Glaciol 2010, 51, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, N.; Chen, L.; Li, Q.; He, J.; Jiang, X.; Wu, X. Bacterial Diversity Recovered from Qiyi Glacier and Runoff, Qilian Mts. Chin. J. Environ. Sci. 2009, 30, 2735–2740. [Google Scholar]
- Liu, Y.; Yao, T.; Jiao, N.; Tian, L.; Hu, A.; Yu, W.; Li, S. Microbial Diversity in the Snow, a Moraine Lake and a Stream in Himalayan Glacier. Extremophiles 2011, 15, 411–421. [Google Scholar] [CrossRef]
- Xie, J.; Wang, N.; Pu, J.; Chen, L. Study of the Bacterial Diversity Recovered from Glacial Snow of the Northern Tibetan Plateau. J. Glaciol. Geocryol. 2009, 31, 342–349. [Google Scholar]
- Liu, Y.; Yao, T.; Kang, S.; Jiao, N.; Zeng, Y.; Shi, Y.; Luo, T.; Jing, Z.; Huang, S. Microbial Community of Ice and Snow and Its Seasonal Variation in DongRongbu Glacier in Qomolangma Region. Chin. Sci. Bull. 2006, 51, 1287–1296. [Google Scholar] [CrossRef]
- Ma, X.; Liu, W.; Hou, S.; Chen, T.; Qin, D. Bacterial Diversity and Community at Yulong Mountains and Their Relationship to Climatic and Environmental Changes. J. Lanzhou Univ. Nat. Sci. 2009, 45, 94–100. [Google Scholar] [CrossRef]
- Liu, W.; Ma, X.; Hou, S.; Chen, T.; Qin, D. Study on Microbial Diversity and Community in Miaoergou Snow of East Tianshan Mountains and Their Relation to Climatic and Environmental Changes. Acta Microbiol. Sin. 2007, 47, 1019–1026. [Google Scholar] [CrossRef]
- Tong, X.; Chen, F.; Yu, J.; Hua, S.; Ciren, S.; Jiangbai, L.; Wang, W.; Liang, Y.; Zheng, X.; Wang, J. Analysis of Bacterial Flora Structure and Diversity in ZhuoAoyou Peak (8201 m) Snow Cover. Chin. Sci. Bull. 2008, 53, 2216–2222. [Google Scholar] [CrossRef]
- Yang, G.L.; Hou, S.G.; Le Baoge, R.; Li, Z.G.; Xu, H.; Liu, Y.P.; Du, W.T.; Liu, Y.Q. Differences in Bacterial Diversity and Communities between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains. Sci. Rep. 2016, 6, 36548. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wu, Y.; Zhou, J.; Bing, H. Variations of Bacterial and d Fungal Communities along a Primary Successional Chronosequence in the Hailuogou Glacier Retreat Area (Gongga Mountain, SW China). J. Mt. Sci. 2016, 13, 1621–1631. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Chen, H.; Wang, Y.; Cao, F.; Sun, W.; Qi, X.; Zhao, Y. Soil Properties and Microbial Diversity at the Frontier of Laohugou Glacier Retreat in Qilian Mountains. Curr. Microbiol. 2020, 77, 425–433. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Sun, W.; Ji, X.; Wei, Y. Diversity of Culturable Low-Temperature Bacteria in Vertical Climate Zones of Mingyong Glacier. Genomics Appl. Biol. 2019, 38, 2070–2077. [Google Scholar] [CrossRef]
- Donhauser, J.; Frey, B. Alpine Soil Microbial Ecology in a Changing World. FEMS Microbiol. Ecol. 2018, 94, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Hultman, J.; Waldrop, M.P.; Mackelprang, R.; David, M.M.; McFarland, J.; Blazewicz, S.J.; Harden, J.; Turetsky, M.R.; McGuire, A.D.; Shah, M.B.; et al. Multi-Omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes. Nature 2015, 521, 208–212. [Google Scholar] [CrossRef]
- Nauer, P.A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M.H. Activity and Diversity of Methane-Oxidizing Bacteria in Glacier Forefields on Siliceous and Calcareous Bedrock. Biogeosciences 2012, 9, 2259–2274. [Google Scholar] [CrossRef] [Green Version]
- Boyd, E.S.; Skidmore, M.; Mitchell, A.C.; Bakermans, C.; Peters, J.W. Methanogenesis in Subglacial Sediments. Environ. Microbiol. Rep. 2010, 2, 685–692. [Google Scholar] [CrossRef]
- Lopatina, A.; Medvedeva, S.; Shmakov, S.; Logacheva, M.D.; Krylenkov, V.; Severinov, K. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow. Front. Microbiol. 2016, 7, 398. [Google Scholar] [CrossRef]
- Christner, B.C.; Priscu, J.C.; Achberger, A.M.; Barbante, C.; Carter, S.P.; Christianson, K.; Michaud, A.B.; Mikucki, J.A.; Mitchell, A.C.; Skidmore, M.L.; et al. A Microbial Ecosystem beneath the West Antarctic Ice Sheet. Nature 2014, 512, 310–313. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, W.; Liu, G.; An, L.; Chen, T.; Li, Z. Distribution of Aerobic Heterotrophic Bacteria Managed by Environmental Factors in Glacier Foreland. J. Glaciol. Geocryol. 2012, 34, 965–971. [Google Scholar]
- Rime, T.; Hartmann, M.; Frey, B. Potential Sources of Microbial Colonizers in an Initial Soil Ecosystem after Retreat of an Alpine Glacier. ISME J. 2016, 10, 1625–1641. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Liu, G.; Zhang, G.; Zhang, W.; Xu, S. Changes in Soil Properties and Culturable Bacteria Diversity in Zhadang Glacier Foreland. J. Glaciol. Geocryol. 2010, 32, 1180–1185. [Google Scholar]
- Liu, G.; Hu, P.; Zhang, W.; Wu, X. Variations in Soil Culturable Bacteria Communities and Biochemical Characteristics in the Dongkemadi Glacier Forefield along a Chronosequence. Folia Microbiol. (Praha) 2012, 57, 485–494. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, W.; Liu, G.; Yang, X.; Hu, P.; Chen, T.; Zhang, G.; Li, Z. Bacterial Diversity in the Foreland of the Tianshan No. 1 Glacier, China. Environ. Res. Lett. 2012, 7, 014038. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, A.; Zhong, G.; Xie, F.; Zhou, H.; Liu, G.; Zhuang, G. Effect of Simulated Warming on Microbial Community in Glacier Forefield. Environ. Sci. 2020, 41, 2918–2923. [Google Scholar] [CrossRef]
- Wu, X.; Mao, W.; Tai, X.; Zhang, W.; Liu, G.; Chen, T.; Long, H.; Zhang, B.; Chen, N. Progress in Studies of Microbial Ecology in Glacier Foreland. J. Glaciol. Geocryol. 2013, 35, 217–223. [Google Scholar] [CrossRef]
- Tian, J.; Qiao, Y.; Wu, B.; Chen, H.; Li, W.; Jiang, N.; Zhang, X.; Liu, X. Ecological Succession Pattern of Fungal Community in Soil along a Retreating Glacier. Front. Microbiol. 2017, 8, 1028. [Google Scholar] [CrossRef] [Green Version]
- Hassan, N.; Rafiq, M.; Hayat, M.; Aamer, A.; Fariha, H. Psychrophilic and Psychrotrophic Fungi: A Comprehensive Review. Rev. Environ. Sci. Biotechnol. 2016, 15, 147–172. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, X.; Wu, W.; Hao, Y.; Cai, L.; Xiang, M.; Liu, X. Psychrophilic Fungi from the World’s Roof. Persoonia Mol. Phylogeny Evol. Fungi 2015, 34, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gu, Y.; Ni, X.; Guan, B.; Ni, Y. Composition and Phylogeny of Fungal Community in Supraglacial Cryoconite and Subglacial Sediments of the Glacier No.1 at Headwaters of the Urumqi River in Tianshan Mountains. J. Glaciol. Geocryol. 2017, 39, 781–791. [Google Scholar] [CrossRef]
- Zang, L.; Liu, Y.; Liu, X. Advance in Researches of Virus in Cryoconite on Glacier Surface. J. Glaciol. Geocryol. 2019, 41, 1–9. [Google Scholar]
- Chen, T.; Zhang, W.; Liu, G.; Li, S. Microbes in Cryosphere: Opportunities and Challenges. Bull. Chin. Acad. Sci. 2020, 35, 434–442. [Google Scholar] [CrossRef]
- Zhong, Z.-P.; Solonenko, N.E.; Li, Y.-F.; Gazitúa, M.C.; Roux, S.; Davis, M.E.; Van Etten, J.L.; Mosley-Thompson, E.; Rich, V.I.; Sullivan, M.B.; et al. Glacier Ice Archives Fifteen-Thousand-Year-Old Viruses. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Anesio, A.; Mindl, B.; Laybourn-Parry, J.; Hodson, A.; Sattler, B. Viral Dynamics in Cryoconite Holes on a High Arctic Glacier (Svalbard). J. Geophys. Res. Biogeosci. 2007, 112, G04S31. [Google Scholar] [CrossRef]
- Irvine-Fynn, T.D.L.; Edwards, A. A Frozen Asset: The Potential of Flow Cytometry in Constraining the Glacial Biome. Cytom. Part A J. Int. Soc. Anal. Cytol. 2014, 85, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Hood, E.; Battin, T.J.; Fellman, J.; O’neel, S.; Spencer, R.G.M. Storage and Release of Organic Carbon from Glaciers and Ice Sheets. Nat. Geosci. 2015, 8, 91–96. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, A.; Liu, G.; Ma, J.; Wei, J.; Zhou, H.; Brandt, K.K.; Zhuang, G. Potential Feedback Mediated by Soil Microbiome Response to Warming in a Glacier Forefield. Glob. Chang. Biol. 2020, 26, 697–708. [Google Scholar] [CrossRef]
- Treat, C.C.; Natali, S.M.; Ernakovich, J.; Iversen, C.M.; Lupascu, M.; Mcguire, A.D.; Norby, R.J.; Roy Chowdhury, T.; Richter, A.; Šantrůčková, H.; et al. A Pan-Arctic Synthesis of CH4 and CO2 Production from Anoxic Soil Incubations. Glob. Chang. Biol. 2015, 21, 2787–2803. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Liu, Y. Research Progress of Carbon Fixation Microorganisms in Glaciers. Acta Microbiol. Sin. 2020, 60, 2012–2029. [Google Scholar] [CrossRef]
- Bradley, J.A.; Singarayer, J.S.; Anesio, A.M. Microbial Community Dynamics in the Forefield of Glaciers. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140882. [Google Scholar] [CrossRef] [Green Version]
- Wietrzyk-Pełka, P.; Rola, K.; Szymański, W.; Węgrzyn, M.H. Organic Carbon Accumulation in the Glacier Forelands with Regard to Variability of Environmental Conditions in Different Ecogenesis Stages of High Arctic Ecosystems. Sci. Total Environ. 2020, 717, 135151. [Google Scholar] [CrossRef]
- Schulz, S.; Brankatschk, R.; Dümig, A.; Kögel-Knabner, I.; Schloter, M.; Zeyer, J. The Role of Microorganisms at Different Stages of Ecosystem Development for Soil Formation. Biogeosciences 2013, 10, 3983–3996. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, G.; Hu, J.; Zhu, Q.; Chen, H.; Peng, C.; Zhu, D.; Gao, Y. Soil Microbial Biomass Carbon and Nitrogen along the Glacial Retreat Sites of the Hailuogou Glacier. Chin. J. Appl. Environ. Biol. 2015, 21, 512–516. [Google Scholar] [CrossRef]
- Lei, Y.; Zhou, J.; Xiao, H.; Duan, B.; Wu, Y.; Korpelainen, H.; Li, C. Soil Nematode Assemblages as Bioindicators of Primary Succession along a 120-Year-Old Chronosequence on the Hailuogou Glacier Forefield, SW China. Soil Biol. Biochem. 2015, 88, 362–371. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; We, X.; Zhang, B.; Zhang, B.; Long, H.; Tai, X.; Li, Z. Studies on Rule and Mechanism of the Succession of Plant Community in the Retreat Forefield of the Tianshan Mountain Glacier No.1 at the Headwater of Urumqi River. J. Glaciol. Geocryol. 2012, 34, 1134–1141. [Google Scholar]
- Bardgett, R.D.; Richter, A.; Bol, R.; Garnett, M.H.; Bäumler, R.; Xu, X.; Lopez-capel, E.; Manning, D.A.C.; Hobbs, P.J.; Hartley, I.R.; et al. Heterotrophic Microbial Communities Use Ancient Carbon Following Glacial Retreat Heterotrophic Microbial Communities Use Ancient Carbon Following Glacial Retreat. Biol. Lett. 2007, 3, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, G.; Zhang, W.; Liu, G.; Chen, T. Variations in Culturable Bacterial Communities and Biochemical Properties in the Foreland of the Retreating Tianshan No. 1 Glacier. Braz. J. Microbiol. 2018, 49, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zumsteg, A.; Bernasconi, S.M.; Zeyer, J.; Frey, B. Microbial Community and Activity Shifts after Soil Transplantation in a Glacier Forefield. Appl. Geochem. 2011, 26, S326–S329. [Google Scholar] [CrossRef]
- Hahn, A.S.; Quideau, S.A. Shifts in Soil Microbial Community Biomass and Resource Utilization along a Canadian Glacier Chronosequence. Can. J. Soil Sci. 2013, 93, 305–318. [Google Scholar] [CrossRef]
- Zheng, B.; Zhu, Y.; Sardans, J.; Peñuelas, J.; Su, J. QMEC:A Tool for High-Throughput Quantitative Assessment of Microbial Functional Potential in C, N, P and S Biogeochemical Cycling. Sci. China Life Sci. 2018, 61, 1451–1462. [Google Scholar] [CrossRef] [Green Version]
- Esperschütz, J.; Pérez-De-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J.C.; Schloter, M. Microbial Food Web Dynamics along a Soil Chronosequence of a Glacier Forefield. Biogeosciences 2011, 8, 3283–3294. [Google Scholar] [CrossRef] [Green Version]
- Sigler, W.V.; Zeyer, J. Microbial Diversity and Activity along the Forefields of Two Receding Glaciers. Microb Ecol. 2002, 43, 397–407. [Google Scholar] [CrossRef]
- Sanyal, A.; Antony, R.; Samui, G.; Thamban, M. Microbial Communities and Their Potential for Degradation of Dissolved Organic Carbon in Cryoconite Hole Environments of Himalaya and Antarctica. Microbiol. Res. 2018, 208, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Price, G.D. Inorganic Carbon Transporters of the Cyanobacterial CO2 Concentrating Mechanism. Photosynth. Res. 2011, 109, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R. Microbial Ecology of Antarctic Aquatic Systems. Nat. Rev. Microbiol. 2015, 13, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Menendez, C.; Bauer, Z.; Huber, H.; GAD’On, N.; Stetter, K.-O.; Fuchs, G. Presence of Acetyl Coenzyme A (CoA) Carboxylase and Propionyl-CoA Carboxylase in Autotrophic Crenarchaeota and Indication for Operation of a 3-Hydroxypropionate Cycle in Autotrophic Carbon Fixation. J. Bacteriol. 1999, 181, 1088–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, M.C.W.; Buchanan, B.B.; Arnon, D.I. A New Ferredoxin-Dependent Carbon Reduction Cycle in a Photosynthetic Bacterium. Proc. Natl. Acad. Sci. USA 1966, 55, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cha, Q.; Dang, Y.; Chen, X.; Wang, M.; Mcminn, A.; Espina, G.; Zhang, Y.; Blamey, J.M.; Qin, Q. Reconstruction of the Functional Ecosystem in the High Light, Low Temperature Union Glacier Region, Antarctica. Front. Microbiol. 2019, 10, 2408. [Google Scholar] [CrossRef]
- Angeles Lezcano, M.; Moreno-Paz, M.; Carrizo, D.; Prieto-Ballesteros, O.; Angel Fernandez-Martinez, M.; Sanchez-Garcia, L.; Blanco, Y.; Puente-Sanchez, F.; de Diego-Castilla, G.; Garcia-Villadangos, M.; et al. Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold. Astrobiology 2019, 19, 1490–1504. [Google Scholar] [CrossRef]
- Kong, W.; Liu, J.; Ji, M.; Yue, L.; Kang, S.; Morgan-kiss, R.M. Autotrophic Microbial Community Succession from Glacier Terminus to Downstream Waters on the Tibetan Plateau. FEMS Microbiol. Ecol. 2019, 95, fiz074. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, V.; Ambika; Kumar, V.; Kumar, R.; Singh, D. Genomic Insights Revealed Physiological Diversity and Industrial Potential for Glaciimonas Sp. PCH181 Isolated from Satrundi Glacier in Pangi-Chamba Himalaya. Genomics 2020, 112, 637–646. [Google Scholar] [CrossRef]
- Cameron, K.; Hodson, A.; Osborn, A. Carbon and Nitrogen Biogeochemical Cycling Potentials of Supraglacial Cryoconite Communities. Polar Biol. 2012, 35, 1375–1393. [Google Scholar] [CrossRef]
- Franzetti, A.; Tagliaferri, I.; Gandolfi, I.; Bestetti, G.; Minora, U.; Mayer, C.; Azzoni, R.S.; Diolaiuti, G.; Smiraglia, C.; Ambrosini, R. Light-Dependent Microbial Metabolisms Drive Carbon Fluxes on Glacier Surfaces. ISME J. 2016, 10, 2984–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, E.S.; Hamilton, T.L.; Havig, J.R.; Mark, L.; Shock, E.L.; Boyd, E.S.; Hamilton, T.L.; Havig, J.R.; Skidmore, M.L.; Shock, L. Chemolithotrophic Primary Production in a Subglacial Ecosystem. Appl. Environ. Microbiol. 2014, 80, 6146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guelland, K.; Hagedorn, F.; Smittenberg, R.H.; Göransson, H.; Bernasconi, S.M.; Hajdas, I.; Kretzschmar, R. Evolution of Carbon Fluxes during Initial Soil Formation along the Forefield of Damma Glacier, Switzerland. Biogeochemistry 2013, 113, 545–561. [Google Scholar] [CrossRef]
- Rime, T.; Hartmann, M.; Stierli, B.; Anesio, A.M.; Frey, B. Assimilation of Microbial and Plant Carbon by Active Prokaryotic and Fungal Populations in Glacial Forefields. Soil Biol. Biochem. 2016, 98, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Guelland, K.; Esperschütz, J.; Bornhauser, D.; Bernasconi, S.M.; Kretzschmar, R.; Hagedorn, F. Mineralisation and Leaching of C from 13C Labelled Plant Litter along an Initial Soil Chronosequence of a Glacier Forefield. Soil Biol. Biochem. 2013, 57, 237–247. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Freeman, C.; Ostle, N.J. Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. ISME J. 2008, 2, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; MacHmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying Global Soil Carbon Losses in Response to Warming. Nature 2016, 540, 104–108. [Google Scholar] [CrossRef]
- Treat, C.C.; Wollheim, W.M.; Varner, R.K.; Grandy, A.S.; Talbot, J.; Frolking, S. Temperature and Peat Type Control CO2 and CH4 Production in Alaskan Permafrost Peats. Glob. Chang. Biol. 2014, 20, 2674–2686. [Google Scholar] [CrossRef]
- Hagedorn, F.; Martin, M.; Rixen, C.; Rusch, S.; Bebi, P.; Zürcher, A.; Siegwolf, R.T.W.; Wipf, S.; Escape, C.; Roy, J.; et al. Short-Term Responses of Ecosystem Carbon Fluxes to Experimental Soil Warming at the Swiss Alpine Treeline. Biogeochemistry 2010, 97, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Beer, C.; Sosnin, A.; Wagner, D.; Pfeiffer, E.M. Predicting Long-Term Carbon Mineralization and Trace Gas Production from Thawing Permafrost of Northeast Siberia. Glob. Chang. Biol. 2013, 19, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, G.; Mayes, M.A.; Allison, S.D.; Frey, S.D.; Shi, Z.; Hu, X.M.; Luo, Y.; Melillo, J.M. Reduced Carbon Use Efficiency and Increased Microbial Turnover with Soil Warming. Glob. Chang. Biol. 2019, 25, 900–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteux, S.; Weedon, J.T.; Blume-Werry, G.; Gavazov, K.; Jassey, V.E.J.; Johansson, M.; Keuper, F.; Olid, C.; Dorrepaal, E. Long-Term in Situ Permafrost Thaw Effects on Bacterial Communities and Potential Aerobic Respiration. ISME J. 2018, 12, 2129–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKelprang, R.; Waldrop, M.P.; Deangelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K. Metagenomic Analysis of a Permafrost Microbial Community Reveals a Rapid Response to Thaw. Nature 2011, 480, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margesin, R.; Miteva, V. Diversity and Ecology of Psychrophilic Microorganisms. Res. Microbiol. 2011, 162, 346–361. [Google Scholar] [CrossRef]
- Jiang, Y.; Lei, Y.; Qin, W.; Korpelainen, H.; Li, C. Revealing Microbial Processes and Nutrient Limitation in Soil through Ecoenzymatic Stoichiometry and Glomalin-Related Soil Proteins in a Retreating Glacier Fore Fi Eld. Geoderma 2019, 338, 313–324. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, J. Screening and Phylogenetic Analysis of Lipase-Producing Yeast from Tianshan No.1 Glacier. Light Ind. Sci. Technol. 2016, 32, 1–3, 6. [Google Scholar]
- Wu, Y.; Kumula; Zhang, X.; Wang, W.; Gulinazi; Wanglu; Chen, W.; Miaosen; Gao, W. Molecular Biologic Identification of Some Bacteria Strains Producing Low Temperature Amylase Isolated and Enzymatic Characterization from Frozen Soil in Xinjiang Glacier Ice Margin. Xinjiang Agric. Sci. 2013, 50, 1288–1296. [Google Scholar]
- Ni, Y.; Gu, Y.; Shi, X.; Zheng, X.; Han, L.; Zhou, H.; Cheng, G. Phylogenetic and Physiological Diversity of Cold-Adapted Bacteria Producing Protease from Sediiments of the Bottom Layer of the Glacier No. 1 in the Tianshan Mountains. Acta Microbiol. Sin. 2013, 53, 164–172. [Google Scholar] [CrossRef]
Location | Period | Area (km2) | Retreat Area (%) 1 | Retreat Rate (km2/Year) 2 | |
---|---|---|---|---|---|
Beginning | End | ||||
Altai Mountains (Friendship Peak) [39] | 1959–2008 | 214.04 | 148.94 | 30.41 | 1.33 |
Altai Mountains (north slope of Sawuer Mountain [40] | 1959–2013 | 15.09 | 9.42 | 37.57 | 0.11 |
Altun Mountains [41] | 1970–2016 | 326.02 | 272.95 | 16.28 | 1.15 |
Eastern of Gangdisê, Nyainqentanglha Mountains, eastern of Himalayas Mountains (Parlung Zangbo River) [42] | 1994–2015 | 776.44 | 324.72 | 58.18 | 21.51 |
Gangdisê Mountains [43] | 1970–2016 | 2160.50 | 1306.45 | 39.53 | 18.57 |
North slope of the Karakoram Mountains (Yarkant River basin) [36] | 1968–2009 | 6341.82 | 5414.77 | 14.62 | 22.61 |
Western Karakoram Mountains (Gilgit River Basin) [44] | 1993–2016 | 1126.77 | 1080.95 | 4.07 | 1.99 |
Eastern Pamir [45] | 1960–2009 | 2275.8 | 2054.0 | 9.75 | 4.53 |
Qiangtang Plateau (Zangser Kangri Glacier) [46] | 1971–2015 | 316.97 | 297.65 | 6.10 | 0.44 |
Qilian Mountains [47] | 1956–2010 | 2000.62 | 1597.81 | 20.13 | 7.46 |
Qilian Mountains [48] | 1987–2018 | 2080.39 | 1442.09 | 30.68 | 20.59 |
Middle Qilian Mountain [49] | 1956–2003 | 397.41 | 311.02 | 21.74 | 1.84 |
Western Qilian Mountain [50] | 1957/1966–2010 | 332.48 | 275.27 | 17.21 | 1.17 |
Qilian Mountain (Heihe River Basin) [51] | 1990–2010 | 66.30 | 13.37 | 79.83 | 2.65 |
Central Qilian Mountain (Hulugou Basin) [52] | 1956–2011 | 2.11 | 1.45 | 31.28 | 0.01 |
Qilian Mountain (Laohugou Glacier No. 12) [53] | 1957–2015 | 21.91 | 20.37 | 7.03 | 0.03 |
Que’ er Mountains (Southeastern Tibetan Plateau) [54] | 1987–2016 | 103.63 | 52.82 | 49.03 | 1.75 |
Sawuer Mountain [55] | 1977–2017 | 23.00 | 12.49 | 45.70 | 0.26 |
Tianshan Mountains [56] | 1960–2010 | 8799.82 | 7179.77 | 18.41 | 32.40 |
Northern slope of Tianshan Mountains (Urumqi Basin) [57] | 1964–2014 | 57.40 | 20.18 | 64.84 | 0.74 |
Eastern Tian Shan (Southern slope of Kalik Mountain) [58] | 1972–2005 | 66.3 | 58.1 | 12.37 | 0.25 |
Tianshan Mountains (South slope of Sawuer Mountain [40] | 1959–2013 | 2.60 | 0.71 | 72.69 | 0.04 |
Eastern Tianshan Mountains (Bogda regions) [59] | 1990–2015 | 158.17 | 104.44 | 33.97 | 2.15 |
Eastern Tianshan Mountains (Karlik regions) [59] | 1990–2015 | 158.88 | 107.80 | 32.15 | 2.04 |
Tianshan Mountains (Tomur National Nature Reserve) [60] | 1992–2017 | 1600.56 | 1534.46 | 4.13 | 2.64 |
Tianshan Mountains (Urumqi Glacier No. 1) [61] | 2012–2018 | 1.59 | 1.52 | 4.40 | 0.01 |
Himalayas Mountains [62] | 1990–2015 | 23,229.27 | 20,676.17 | 10.99 | 102.12 |
Eastern Himalayas Mountains (Namjagbarwa Mountain) [63] | 1980–2015 | 294.72 | 219.48 | 25.53 | 2.15 |
Eastern Himalayas Mountains (China and Bhutan border area) [64] | 1990–2015 | 1779.37 | 1587.50 | 10.78 | 7.67 |
Western Himalayas Mountains (Chenab Basin) [65] | 1993–2016 | 2847.91 | 2683.35 | 5.78 | 7.15 |
Northern Himalayas Mountains (Chema Yongdrung Glacier) [66] | 1976–2019 | 22.98 | 21.37 | 7.01 | 0.04 |
Tanggula Mountains (Geladandong region) [67] | 1986–2015 | 997.47 | 905.41 | 9.23 | 3.17 |
Location | Sample Type | Microbial Abundance (Cells/mL) | Culturable Bacteria Abundance (CFU/mL) | Dominant Microbial Groups |
---|---|---|---|---|
Dunde ice cap, Qilian Mountain region [71] | Ice core | 1.3 × 105–1.9 × 106 | Blastococcus sp./Propionibacterium, Cryobacterium-related, Flavobacterium sp., Pedobacter sp., Polaromonas sp. | |
Guliya ice cap, Tibetan Plateau [72] | Ice core | 180 | Arthrobacter, Aureobacterium, Bacillus, Bradyrhizobium, Brevibacterium, Cellulomonas, Clavibacter, Flavobacterium, Frankia, Friedmanniella, Methylobacterium, Microbacterium, Micrococcus, Micromonospora, Mycobacte-rium, Nocardia, Nocardioides, Paenibacillus, Planococcus, Propioniferax, Sphingomonas, Staphylococcus, and Stenotro-phomonas | |
Malan Glacier, Tibetan Plateau [73] | Ice core | 50–410 | 0–85 | Micrococcus, Staphylococcus, Bacillus, Brevibacter, Achromobacter, Pseudomonas, Alcaligenes, Flavobacterium, Arthrobacter, Nocardia, Streptomyces |
Malan Glacier, Tibetan Plateau [74] | Ice core | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, CFB 1 | ||
Muztagata ice core, Pamir Plateau [75] | Ice core | 0–127 | Alphaproteobacteria, Gammaproteobacteria, Cryobacteria, CFB, HGC 2 | |
Muztagata Glacier, western margin of the Tibetan Plateau [71] | Ice core | 4.4 × 104–8.7 × 105 | Polaromonas sp., Enterobacte sp., Acinetobacter sp., Flexibacter sp., Flacvisolibacter sp., Thermus sp., Propionibacterium/Luteococcus sp. | |
Urumqi Glacier No. 1, Tianshan Mountains [76] | Ice core | 1.4 × 103–1.0 × 105 | 0–300 | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli, Actinobacteria, Sphingobacteria, Flavobacteria |
Urumqi Glacier No. 1, Tianshan Mountains [77] | Cryoconite | Oscillatoriales, Chroococcales | ||
Yushugou Glacier, eastern Tianshan Mountains [78] | Cryoconite granules | Oscillatoriales, Chroococcales | ||
East Rongbuk Glacier, Mount Everest [79] | Meltwater | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes | ||
Laohugou Glacier No. 12, Qilian Mountains [80] | Meltwater, surface ice | Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria/Chloroplast | ||
Yangbark Glacier, Muztagata [81] | Meltwater, surface ice, snow | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes | ||
Qiyi Glacier, Qilian Mountains [82] | Surface ice/snow | Oscillatoriales, Chroococcales | ||
Qiyi Glacier, Qilian Mountains [83] | Snow pit, runoff | 9.1 × 103 (snow) 42.0 × 103 (runoff) | 126.9 (snow) 271.8 (runoff) | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, |
Yala Glacier, southern slope of the Himalayas [84] | Surface snow | 1.1 × 104–9.0 × 104 | Alphaproteobacteria, Betaproteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes | |
Meikuang Glacier, Tibetan Plateau [85] | Surface snow, snow pit | 58.07 | Bacteroidetes, Actinobacteria, Firmicutes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria | |
Xiao-Dongkemadi Glacier, Tibetan Plateau [85] | Surface snow, snow pit | 18.54 | Actinobacteria, Firmicutes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria | |
Yuzhufeng Glacier, Tibetan Plateau [85] | Surface snow, snow pit, | 35.53 | Firmicutes, Actinobacteria, Alphaproteobacteria, Betaproteobacteria | |
DongRongbu Glacier, Qomolangma region [86] | Snow pit | 5.7 × 103–2.3 × 104 | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, CFB, Cyanobacteria, Eukaryotic chloroplast, TM7 candidate phylum | |
Glaciers, Yulong Mountain regions [87] | Snow pit | 1.4 × 103–3.9 × 103 | 8–96 | Alphaproteobacteria, Actinobacteria, Firmicutes |
Miaoergou glacier, East Tianshan Mountains [88] | Sonw pit | 1.03 × 104–1.74 × 104 | 1.18 × 102–4.96 × 102 | Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, CFB, HGC, LGC 3 |
ZhuoAoyou Peak, Tibetan Plateau [89] | Sonw pit | Caulobacter, Ralstonia, Cupriavidus, Pelomonas, Pseudomonas | ||
Chongce Ice Cap, West Kunlun Mountains [90] | Glacial snow, exposed soil | Actinobacteria, Proteobacteria, Deinococcus-Thermus, Acidobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Candidate division FBP, Gemmatimonadetes, Planctomycetes, Verrucomicrobia | ||
Hailuogou glacier retreat area, Gongga Mountain [91] | Exposed soil | Proteobacteria, Acidobacteria, Bacteroidetes, Acttinobacteria | ||
Laohugou Glacier No. 12, Qilian Mountains [92] | Exposed soil | Proteobacteria, Cyanobacteria, Actinobacteria. | ||
Mingyong Glacier, Yunnan Province [93] | Exposed soil | Pseudomonas, Yersinia, Stenotrophomonas, Bacillus, Brevibacterium, Streptomyce, Flavobacterium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, A.; Zhang, J.; Liu, G.; Zhuang, X.; Zhuang, G. Cryosphere Microbiome Biobanks for Mountain Glaciers in China. Sustainability 2022, 14, 2903. https://doi.org/10.3390/su14052903
Ma A, Zhang J, Liu G, Zhuang X, Zhuang G. Cryosphere Microbiome Biobanks for Mountain Glaciers in China. Sustainability. 2022; 14(5):2903. https://doi.org/10.3390/su14052903
Chicago/Turabian StyleMa, Anzhou, Jiejie Zhang, Guohua Liu, Xuliang Zhuang, and Guoqiang Zhuang. 2022. "Cryosphere Microbiome Biobanks for Mountain Glaciers in China" Sustainability 14, no. 5: 2903. https://doi.org/10.3390/su14052903
APA StyleMa, A., Zhang, J., Liu, G., Zhuang, X., & Zhuang, G. (2022). Cryosphere Microbiome Biobanks for Mountain Glaciers in China. Sustainability, 14(5), 2903. https://doi.org/10.3390/su14052903