Livestock Management for the Delivery of Ecosystem Services in Fire-Prone Shrublands of Atlantic Iberia
Abstract
:1. Introduction
2. Wildfires in the Atlantic Region of the Iberian Peninsula
3. Burning Effects on Atlantic Heathlands
4. Grazing Behaviour and Herbivory Effects on Atlantic Heathlands
5. Animal Production in Heathland Pastures
6. Meat Quality of Local Livestock Breeds from the Atlantic Region of Iberian Peninsula
7. Final Reflections on the Future Sustainability of Livestock Production Systems in Fire-Prone Heathlands
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AEMET-IM. Iberian Climate Atlas. Air Temperature and Precipitation (1971–2000); Agencia Estatal de Meteorología, Ministerio de Medio Ambiente, y Medio Rural y Marino (Spain), Instituto de Meteorologia de Portugal: Madrid, Spain, 2011. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; Díaz, T.E. Biogeography Map of Europe; Cartography Service, University of León: León, Spain, 2004. [Google Scholar]
- Hobbs, R.J.; Gimingham, C.H. Vegetation, fire and herbivore interactions in heathland. In Advances in Ecological Research; Academic Press: London, UK, 1987; Volume 16, pp. 87–173. [Google Scholar]
- Webb, N.R. The traditional management of European heathlands. J. Appl. Ecol. 1998, 35, 987–990. [Google Scholar] [CrossRef]
- Fagúndez, J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 2013, 111, 151–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loidi, J.; Biurrun, I.; Campos, J.A.; García-Mijangos, I.; Herrera, M. A biogeographical analysis of the European Atlantic lowland heathlands. J. Veg. Sci. 2010, 21, 832–842. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Bugter, R.; Suárez-Seoane, S.; de Luis, E.; Calvo, L. Temporal changes in socio-ecological systems and their impact on ecosystem services at different governance scales: A case study of heathlands. Ecosystems 2013, 16, 765–782. Available online: https://www.jstor.org/stable/23501438 (accessed on 14 November 2021). [CrossRef]
- Rosa García, R.; Fraser, M.D.; Celaya, R.; Ferreira, L.M.M.; García, U.; Osoro, K. Grazing land management and biodiversity in the Atlantic European heathlands: A review. Agrofor. Syst. 2013, 87, 19–43. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Huyghe, C.; De Vliegher, A.; Van Gils, B.; Peeters, A. Grassland and Herbivore Production in Europe and Effects of Common Policies; Éditions Quae: Versailles, France, 2014. [Google Scholar]
- Montserrat, P.; Fillat, F. The systems of grassland management in Spain. In Managed Grasslands; Breymeyer, A., Ed.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1990; pp. 37–70. [Google Scholar]
- Rubio-Perez, L.; Fernández, O. Commons and councils: Agrarian collectivism and balanced development in the north of Spain in the modern period. Eur. Rev. Hist. 2013, 20, 611–626. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Fynn, R.W.S.; McGranaham, D.A.; Twidwell, D. Heterogeneity as the basis for rangeland management. In Rangeland Systems. Processes, Management and Challenges; Briske, D.D., Ed.; Springer: Cham, Switzerland, 2017; pp. 169–196. [Google Scholar]
- Luick, R.; Jones, G.; Oppermann, R. Semi-natural vegetation: Pastures, meadows and related vegetation communities. In High Nature Value in Europe; Oppermann, R., Beafouy, G., Jones, G., Eds.; Verlag Regionalkultur: Berlin/Heidelberg, Germany, 2012; pp. 32–57. [Google Scholar]
- European Environment Agency (EEA). High Nature Value Farmland—Characteristics, Trends and Policy Challenges; EEA: Copenhagen, Denmark, 2004.
- O’Rourke, E.; Charbonneau, M.; Poinsot, Y. High nature value mountain farming systems in Europe: Case studies from the Atlantic Pyrenees, France and the Kerry Uplands, Ireland. J. Rural Stud. 2016, 46, 47–59. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Livestock Solutions for Climate Change; FAO: Rome, Italy, 2017. [Google Scholar]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Review: Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2019, 13, 1773–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teague, R.; Kreuter, U. Managing grazing to restore soil health, ecosystem function, and ecosystem services. Front. Sustain. Food Syst. 2020, 4, 534187. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Casals, P.; Garcia-Pausas, J.; Romanyà, J.; Camarero, L.; Sanz, M.J.; Sebastià, M.T. Effects of livestock management on carbon stocks and fluxes in grassland ecosystems in the Pyrenees. Grassl. Sci. Eur. 2004, 9, 136–138. [Google Scholar]
- Batalla, I.; Trydeman Knudsen, M.; Mogensen, L.; del Hierro, O.; Pinto, M.; Hermansen, J.E. Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J. Clean. Prod. 2015, 104, 121–129. [Google Scholar] [CrossRef]
- Leroy, G.; Baumung, R.; Boettcher, P.; Besbes, B.; From, T.; Hoffmann, I. Animal genetic resources diversity and ecosystem services. Glob. Food Sec. 2018, 17, 84–91. [Google Scholar] [CrossRef]
- Plieninger, T.; Höchtl, F.; Spek, T. Traditional land-use and nature conservation in European rural landscapes. Environ. Sci. Policy 2006, 9, 317–321. [Google Scholar] [CrossRef]
- Veysset, P.; Mosnier, C.; Lherm, M. Beef cattle farms in less-favoured areas: Drivers of sustainability over the last 24 years. Implications for the future. In Mountain Pastures and Livestock Farming Facing Uncertainty: Environmental, Technical and Socio-Economic Challenges; Options Méditerranéennes Series A; Casasús, I., Lombardi, G., Eds.; CIHEAM/CITA: Zaragoza, Spain, 2016; Volume 116, pp. 27–38. [Google Scholar]
- Muñoz-Ulecia, E.; Bernués, A.; Casasús, I.; Olaizola, A.M.; Lobón, S.; Martín-Collado, D. Drivers of change in mountain agriculture: A thirty-year analysis of trajectories of evolution of cattle farming systems in the Spanish Pyrenees. Agric. Syst. 2021, 186, 102983. [Google Scholar] [CrossRef]
- Terres, J.M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Nordström Källström, H.; Pointereau, P.; et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Suárez-Seoane, S.; Elith, J.; Calvo, L.; de Luis, E. Satellite surface reflectance improves habitat distribution mapping: A case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers. Distrib. 2012, 18, 588–602. [Google Scholar] [CrossRef]
- Álvarez-Martínez, J.; Gómez-Villar, A.; Lasanta, T. The use of goats grazing to restore pastures invaded by shrubs and avoid desertification: A preliminary study in the Spanish Cantabrian Mountains. Land Degrad. Dev. 2013, 27, 3–13. [Google Scholar] [CrossRef]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landsc. Ecol. 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Guiomar, N.; Pezzatti, G.B.; Manso, F.T.; Lopes, L. The dynamics and drivers of fuel and fire in the Portuguese public forest. J. Environ. Manag. 2014, 146, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ruano, A.; Rodrigues Mimbrero, M.; de la Riva Fernández, J. Exploring spatial-temporal dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 2017, 17, 1697–1711. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.; Álvarez-González, J.; Alberdi, I.; Silva, V.; Rocha, M.; Rego, F.C. Analysis of the occurrence of wildfires in the Iberian Peninsula based on harmonised data from national forest inventories. Ann. For. Sci. 2019, 76, 27. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildl. Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Camia, A. Forest fires. In Mapping the Impacts of Natural Hazards and Technological Accidents in Europe. An Overview of the Last Decade; EEA Technical report No 13/2010; European Environment Agency: Copenhagen, Denmark, 2010; pp. 49–55. [Google Scholar]
- Rodrigues, M.; San Miguel, J.; Oliveira, S.; Moreira, F.; Camia, A. An insight into spatial-temporal trends of fire ignitions and burned areas in the European Mediterranean countries. J. Earth Sci. Eng. 2013, 3, 497–505. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East, and North Africa 2019; Publications Office of the European Union: Luxembourg, 2020. [CrossRef]
- European Environment Agency (EEA). Forest fires in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/forest-fire-danger-4/assessment (accessed on 22 October 2021).
- Instituto da Conservação da Natureza e das Florestas (ICNF). Ministério da Agricultura, do Desenvolvimiento Rural e das Pescas, Portugal. Available online: http://www2.icnf.pt/portal/florestas/dfci/inc/estat-sgif#tot (accessed on 25 October 2021).
- Área de Defensa Contra Incendios Forestales, Ministerio para la Transición Ecológica y el Reto Demográfico. Los Incendios Forestales en España. Avances Informativos (1968–2020). Available online: https://www.miteco.gob.es/es/biodiversidad/estadisticas/Incendios_default.aspx (accessed on 25 October 2021).
- European Environment Agency (EEA). Introduction. In Mapping the Impacts of Natural Hazards and Technological Accidents in Europe. An Overview of the Last Decade; Technical report No 13/2010; EEA: Copenhagen, Denmark, 2010. [Google Scholar]
- San-Miguek-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Anthos. Sistema de Información Sobre las Plantas de España. Available online: http://www.anthos.es/ (accessed on 22 December 2021).
- Casal, M.; Basanta, M.; González, F.; Montero, R.; Pereiras, J.; Puentes, A. Post-fire dynamics in experimental plots of shrubland ecosystems in Galicia (NW Spain). In Fire in Ecosystem Dynamics: Mediterranean and Northern Perspectives; Goldamer, J.G., Jenkins, M.J., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1990; pp. 33–42. [Google Scholar]
- Luis-Calabuig, E.; Tárrega, R.; Calvo, L.; Marcos, E.; Valbuena, L. History of landscape changes in northwest Spain according to land use and management. In Life and Environment in the Mediterranean. Advances in Ecological Sciences 3; Trabaud, L., Ed.; WIT Press: Southampton, UK, 2000; pp. 43–85. [Google Scholar]
- Martins Fernandes, P.A. Fire spread prediction in shrub fuels in Portugal. For. Ecol. Manag. 2001, 144, 67–74. [Google Scholar] [CrossRef]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Álvarez García, M.Á.; Colubi Cervero, A.; Fernández Menéndez, S.; García Manteca, P.; González Rodríguez, G.; Lastra Fernández, J.; Lobo del Corro, T.; Marquínez García, J.; Menéndez Duarte, R.; Pérez Morandeira, C.S.; et al. Impacto de los Incendios Forestales en Asturias. Análisis de los Últimos 30 Años; KRK Ediciones: Oviedo, Spain, 2006. [Google Scholar]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Marey-Pérez, M.F.; Díaz-Varela, E.; Calvo-González, A. Does higher owner participation increase conflicts over common land? An analysis of communal forests in Galicia (Spain). IForest 2014, 8, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Forgeard, F.; Frenot, Y. Effects of burning on heathland soil chemical properties: An experimental study on the effect of heating and ash deposits. J. Appl. Ecol. 1996, 33, 803–811. [Google Scholar] [CrossRef]
- Clément, B.; Touffet, J. Plant strategies and secondary succession on Brittany heathlands after severe fire. J. Veg. Sci. 1990, 1, 195–202. [Google Scholar] [CrossRef]
- Calvo, L.; Tárrega, R.; de Luis, E. Secondary succession after perturbations in a shrubland community. Acta Oecol. 2002, 23, 393–404. [Google Scholar] [CrossRef]
- Calvo, L.; Tárrega, R.; Luis, E.; Valbuena, L.; Marcos, E. Recovery after experimental cutting and burning in three shrub communities with different dominant species. Plant. Ecol. 2005, 180, 175–185. [Google Scholar] [CrossRef]
- Jáuregui, B.M.; Celaya, R.; García, U.; Osoro, K. Vegetation dynamics in burnt heather-gorse shrublands under different grazing management with sheep and goats. Agrofor. Syst. 2007, 70, 103–111. [Google Scholar] [CrossRef]
- Calvo, L.; Tárrega, R.; Luis, E. Regeneration patterns in a Calluna vulgaris heathland in the Cantabrian mountains (NW Spain): Effects of burning, cutting and ploughing. Acta Oecol. 2002, 23, 81–90. [Google Scholar] [CrossRef]
- Marino, E.; Guijarro, M.; Hernando, C.; Madrigal, J.; Díez, C. Fire hazard after prescribed burning in a gorse shrubland: Implications for fuel management. J. Environ. Manag. 2011, 92, 1003–1011. [Google Scholar] [CrossRef]
- Luis-Calabuig, E.; Calvo, L.; Fernández, B.; Marcos, E.; Martínez, C.; Tárrega, R.; Valbuena, L. Fire recurrence effects on biodiversity and community structure in Sanabria Natural Park (Spain). In V International Conference on Forest Fire Research; Viegas, D.X., Ed.; Associação para o Desenvolvimento da Aerodinâmica Industrial, Centro de Estudos sobre Incêndios Florestais: Coimbra, Portugal, 2006; pp. 1–11. [Google Scholar]
- Celaya, R.; Ferreira, L.M.M.; García, U.; Rosa García, R.; Osoro, K. Diet selection and performance of cattle and horses grazing in heathlands. Animal 2011, 5, 1467–1473. [Google Scholar] [CrossRef] [Green Version]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching type of grazing animal to desired biodiversity outcomes in pastures—A review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Díaz, S.; Lavorel, S.; McIntyre, S.; Falczuk, V.; Casanoves, F.; Milchunas, D.G.; Skarpe, C.; Rusch, G.; Sternberg, M.; Noy-Meir, I.; et al. Plant traits responses to grazing—A global synthesis. Glob. Change Biol. 2007, 13, 313–341. [Google Scholar] [CrossRef]
- Grant, S.A.; Torvell, L.; Smith, H.K.; Suckling, D.E.; Forbes, T.D.A.; Hodgson, J. Comparative studies of diet selection by sheep and cattle: Blanket bog and heather moor. J. Ecol. 1987, 75, 947–960. [Google Scholar] [CrossRef]
- Illius, A.W.; Gordon, I.J. The allometry of food intake in grazing ruminants. J. Anim. Ecol. 1987, 56, 989–999. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Spain, J.N. Invited review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J. Dairy Sci. 2010, 93, 1320–1334. [Google Scholar] [CrossRef]
- Gordon, I.J. Vegetation community selection by ungulates on the isle of Rhum. II. Vegetation community selection. J. Appl. Ecol. 1989, 26, 53–64. [Google Scholar] [CrossRef]
- Putman, R.J.; Pratt, R.M.; Ekins, J.R.; Edwards, P.J. Food and feeding behaviour of cattle and ponies in the New Forest, Hampshire. J. Appl. Ecol. 1987, 24, 369–380. [Google Scholar] [CrossRef]
- Mandaluniz, N.; Aldezabal, A.; Oregui, L.M. Diet selection of beef cattle on Atlantic grassland-heathland mosaic: Are heathers more preferred than expected? Livest. Sci. 2011, 138, 49–55. [Google Scholar] [CrossRef]
- Fraser, M.D.; Theobald, V.J.; Griffiths, J.B.; Morris, S.M.; Moorby, J.M. Comparative diet selection by cattle and sheep grazing two contrasting heathland communities. Agric. Ecosyst. Environ. 2009, 129, 182–192. [Google Scholar] [CrossRef]
- Menard, C.; Duncan, P.; Fleurance, G.; Georges, J.Y.; Lila, M. Comparative foraging and nutrition of horses and cattle in European wetlands. J. Appl. Ecol. 2002, 39, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Duncan, P.; Foose, T.J.; Gordon, I.J.; Gakahu, C.G.; Lloyd, M. Comparative nutrient extraction from forages by grazing bovids and equids: A test of the nutritional model of equid/bovid competition and coexistence. Oecologia 1990, 84, 411–418. [Google Scholar] [CrossRef]
- Osoro, K.; Ferreira, L.M.M.; García, U.; Martínez, A.; Celaya, R. Forage intake, digestibility and performance of cattle, horses, sheep and goats grazing together on an improved heathland. Anim. Prod. Sci. 2017, 57, 102–109. [Google Scholar] [CrossRef]
- Fraser, M.D.; Stanley, C.R.; Hegarty, J. Recognising the potential role of native ponies in conservation management. Biol. Conserv. 2019, 235, 112–118. [Google Scholar] [CrossRef]
- Aldezabal, A.; Mandaluniz, N.; Laskurain, N.A. Gorse (Ulex spp.) use by ponies in winter: Is the spatial pattern of browsing independent of the neighbouring vegetation? Grass Forage Sci. 2013, 68, 49–58. [Google Scholar] [CrossRef]
- Fagúndez, J. Grazing effects on plant diversity in the endemic Erica mackayana heathland community of north-west Spain. Plant. Ecol. Div. 2016, 9, 207–217. [Google Scholar] [CrossRef]
- López López, C.; Rosa García, R.; Ferreira, L.M.M.; García, U.; Osoro, K.; Celaya, R. Impacts of horse grazing on botanical composition and diversity in different types of heathland. Rangel. J. 2017, 39, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Moreno García, C.A.; Maxwell, T.M.R.; Hickford, J.; Gregorini, P. On the search for grazing personalities: From individual to collective behaviors. Front. Vet. Sci. 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.J.; Provenza, F.D.; Catanese, F.; Distel, R.A. Understanding and manipulating diet choice in grazing animals. Anim. Prod. Sci. 2015, 55, 261–271. [Google Scholar] [CrossRef]
- Celaya, R.; Martínez, A.; Osoro, K. Vegetation dynamics in Cantabrian heathlands associated with improved pasture areas under single or mixed grazing by sheep and goats. Small Rumin. Res. 2007, 72, 165–177. [Google Scholar] [CrossRef]
- Benavides, R.; Celaya, R.; Ferreira, L.M.M.; Jáuregui, B.M.; García, U.; Osoro, K. Grazing behaviour of domestic ruminants according to flock type and subsequent vegetation changes on partially improved heathlands. Span. J. Agric. Res. 2009, 7, 417–430. [Google Scholar] [CrossRef]
- Tsiouvaras, C.N.; Havlik, N.A.; Bartolome, J.W. Effects of goats on understory vegetation and fire hazard reduction in a coastal forest in California. For. Sci. 1989, 35, 1125–1131. [Google Scholar] [CrossRef]
- Mancilla-Leytón, J.M.; Martín Vicente, A. Biological fire prevention method: Evaluating the effects of goat grazing on the fire-prone mediterranean scrub. For. Syst. 2012, 21, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat grazing as a wildfire prevention tool: A basic review. iForest 2014, 7, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Pareja, J.; Baraza, E.; Ibáñez, M.; Domenech, O.; Bartolomé, J. The role of feral goats in maintaining firebreaks by using attractants. Sustainability 2020, 12, 7144. [Google Scholar] [CrossRef]
- Zea, J.; Díaz, N.; Díaz, M.D. Control de la vegetación espontánea arbustiva y mejora del pasto mediante el pastoreo con distintas especies. Pastos 2007, 37, 51–69. [Google Scholar]
- Rigueiro-Rodríguez, A.; Mouhbi, R.; Santiago-Freijanes, J.J.; González-Hernández, M.P.; Mosquera-Losada, M.R. Horse grazing systems: Understory biomass and plant biodiversity of a Pinus radiata stand. Sci. Agric. 2012, 69, 38–46. [Google Scholar] [CrossRef]
- González-Hernández, M.P.; Mouronte, V.; Romero, R.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management. Glob. Ecol. Conserv. 2020, 23, e01134. [Google Scholar] [CrossRef]
- Rouet-Leduc, J.; Pe’er, G.; Moreira, F.; Bonn, A.; Helmer, W.; Shahsavan Zadeh, S.A.A.; Zizka, A.; van der Plas, F. Effects of large herbivores on fire regimes and wildfire mitigation. J. Appl. Ecol. 2021, 58, 2690–2702. [Google Scholar] [CrossRef]
- Hodgson, J.; Forbes, T.D.A.; Armstrong, R.H.; Beattie, M.M.; Hunter, E.A. Comparative studies of the ingestive behaviour and herbage intake of sheep and cattle grazing indigenous hill plant communities. J. Appl. Ecol. 1991, 28, 205–227. [Google Scholar] [CrossRef]
- Fraser, M.D.; Theobald, V.J.; Davies, D.R.; Moorby, J.M. Impact of diet selected by cattle and sheep grazing heathland communities on nutrient supply and faecal micro-flora activity. Agric. Ecosyst. Environ. 2009, 129, 367–377. [Google Scholar] [CrossRef]
- Mandaluniz, N.; Aldezabal, A.; Oregui, L.M. Atlantic mountain grassland-heathlands: Structure and feeding value. Span. J. Agric. Res. 2009, 7, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Wright, I.A.; Jones, J.R.; Maxwell, T.J.; Russel, A.J.F.; Hunter, E.A. The effect of genotype × environment interactions on biological efficiency in beef cows. Anim. Prod. 1994, 58, 197–207. [Google Scholar] [CrossRef]
- Sineiro García, F. Aspectos del uso ganadero del monte en Galicia para la producción de carne. Pastos 1982, 12, 1–39. [Google Scholar]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make ruminants green again—How can sustainable intensification and agroecology converge for a better future? Animal 2018, 12 (Suppl. S2), s210–s219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tocco, C.; Probo, M.; Lonati, M.; Lombardi, G.; Negro, M.; Nervo, B.; Rolando, A.; Palestrini, C. Pastoral practices to reverse shrub encroachment of sub-alpine grasslands: Dung beetles (Coleoptera, Scarabaeoidea) respond more quickly than vegetation. PLoS ONE 2013, 8, e83344. [Google Scholar] [CrossRef]
- Castellnou, M.; Kraus, D.; Miralles, M. Prescribed burning and suppression fire techniques: From fuel to landscape management. In Best Practices of Fire Use—Prescribed Burning and Suppression Fire Programmes in Selected Case-Study Regions in Europe; Montiel, C., Kraus, D., Eds.; European Forest Institute: Joensuu, Finland, 2010; pp. 3–16. [Google Scholar]
- Anderson, D.M.; Fredrickson, E.L.; Estell, R.E. Managing livestock using animal behavior: Mixed-species stocking and flerds. Animal 2012, 6, 1339–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, M.D.; Moorby, J.M.; Vale, J.E.; Evans, D.M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLoS ONE 2014, 9, e89054. [Google Scholar] [CrossRef] [Green Version]
- Jerrentrup, J.S.; Komainda, M.; Seither, M.; Cuchillo-Hilario, M.; Wrage-Mönnig, N.; Isselstein, J. Diverse swards and mixed-grazing of cattle and sheep for improved productivity. Front. Sustain. Food Syst. 2020, 3, 125. [Google Scholar] [CrossRef]
- Wright, I.A.; Connolly, J. Improved utilization of heterogeneous pastures by mixed species. In Recent Developments in the Nutrition of Herbivores; Journet, M., Grenet, E., Farce, M.-H., Thériez, M., Demarquilly, C., Eds.; INRA Editions: Paris, France, 1995; pp. 425–436. [Google Scholar]
- Dumont, B.; Puillet, L.; Martin, G.; Savietto, D.; Aubin, J.; Ingrand, S.; Niderkorn, V.; Steinmetz, L.; Thomas, M. Incorporating diversity into animal production systems can increase their performance and strengthen their resilience. Front. Sustain. Food Syst. 2020, 4, 109. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.A.; Moerman, M.; et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Leroy, G.; Besbes, B.; Boettcher, P.; Hoffmann, I.; Capitan, A.; Baumung, R. Rare phenotypes in domestic animals: Unique resources for multiple applications. Anim. Gen. 2016, 47, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Paim, T.P.; Da Silva, A.F.; Martins, R.F.S.; Borges, B.O.; Lima, P.M.T.; Cardoso, C.C.; Esteves, G.I.F.; Louvandini, H.; McManus, C. Performance, survivability and carcass traits of crossbred lambs from five paternal breeds with local hair breed Santa Inês ewes. Small Rumin. Res. 2013, 112, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, R. The challenge of conserving indigenous domesticated animals. Ecol. Econ. 2003, 45, 501–510. [Google Scholar] [CrossRef]
- Insausti, K.; Beldarrain, L.R.; Lavín, M.P.; Aldai, N.; Mantecón, Á.R.; Sáez, J.L.; Canals, R.M. Horse meat production in northern Spain: Ecosystem services and sustainability in High Nature Value farmland. Anim. Front. 2021, 11, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Cadavez, V.A.P.; Popova, T.; Bermúdez, R.; Osoro, K.; Purriños, L.; Bodas, R.; Lorenzo, J.M.; Gonzales-Barron, U. Compositional attributes and fatty acid profile of lamb meat from Iberian local breeds. Small Rumin. Res. 2020, 193, 106244. [Google Scholar] [CrossRef]
- Alfaia, C.P.M.; Castro, M.L.F.; Martins, S.I.V.; Portugal, A.P.V.; Alves, S.P.A.; Fontes, C.M.G.A.; Bessa, R.J.B.; Prates, J.A.M. Influence of slaughter season and muscle type on fatty acid composition, conjugated linoleic acid isomeric distribution and nutritional quality of intramuscular fat in Arouquesa-PDO veal. Meat Sci. 2007, 76, 787–795. [Google Scholar] [CrossRef]
- Pestana, J.M.; Costa, A.S.H.; Alves, S.P.; Martins, S.V.; Alfaia, C.M.; Bessa, R.J.B.; Prates, J.A.M. Seasonal changes and muscle type effect on the nutritional quality of intramuscular fat in Mirandesa-PDO veal. Meat Sci. 2012, 90, 819–827. [Google Scholar] [CrossRef]
- Aldai, N.; Lavín, P.; Kramer, J.K.G.; Jaroso, R.; Mantecón, A.R. Breed effect on quality veal production in mountain areas: Emphasis on meat fatty acid composition. Meat Sci. 2012, 92, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Insausti, K.; Beriain, M.J.; Alzueta, M.J.; Carr, T.R.; Purroy, A. Lipid composition of the intramuscular fat of beef from Spanish cattle breeds stored under modified atmosphere. Meat Sci. 2004, 66, 639–646. [Google Scholar] [CrossRef]
- Varela, A.; Oliete, B.; Moreno, T.; Portela, C.; Monserrrat, L.; Carballo, J.A.; Sánchez, L. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed. Meat Sci. 2004, 67, 515–522. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, R.; Pateiro, M.; López-Pedrouso, M.; Gende, A.; Crecente, S.; Serrano, M.P.; González, J.; Lorenzo, J.M.; Zapata, C.; Franco, D. Influence of production system and finishing feeding on meat quality of Rubia Gallega calves. Span. J. Agric. Res. 2020, 18, e0606. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Liu, M.; Zhao, X.; Luo, H. Effect of breed on the volatile compound precursors and odor profile attributes of lamb meat. Foods 2020, 9, 1178. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Murillo-Arbizu, M.T.; Urrutia, O.; Mendizabal, J.A.; Beriain, M.J.; Colle, M.J.; Bass, P.D.; Arana, A. Volatile compounds, odour and flavour attributes of lamb meat from the Navarra breed as affected by ageing. Foods 2021, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Vasconcelos, L.; Pereira, E.; Teixeira, A.; Carloto, A.; Sousa, F. Estudo exploratório sobre a qualidade sensorial da carne de caprinos das raças Serrana Transmontana e Preta de Montesinho. Rev. Port. Zootec. 2019, 4, 17–22. [Google Scholar]
- Santos, V.A.C.; Silva, A.O.; Cardoso, J.V.F.; Silvestre, A.J.D.; Silva, S.R.; Martins, C.; Azevedo, J.M.T. Genotype and sex effects on carcass and meat quality of suckling kids protected by the PGI “Cabrito de Barroso”. Meat Sci. 2007, 75, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Rodríguez, E.; Purriños, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.; Jensen, J.; Ryan, K.J.; Homco-Ryan, C.; McKeith, F.K.; Brewer, M.S. Consumer attitudes towards beef and acceptability of enhanced beef. Meat Sci. 2003, 65, 721–729. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheepmeat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef]
- Coutinho, P.; Simões, M.; Pereira, C.; Paiva, T. Sustainable local exploitation and innovation on meat products based on the autochthonous bovine breed Jarmelista. Sustainability 2021, 13, 2515. [Google Scholar] [CrossRef]
- Meuret, M.; Provenza, F.D. When art and science meet: Integrating knowledge of French herders with science of foraging behavior. Rangel. Ecol. Manag. 2015, 68, 1–17. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Robles, A.B.; González-Rebollar, J.L. Two-year evaluation of fuelbreaks grazed by livestock in the wildfire prevention program in Andalusia (Spain). Agric. Ecosyst. Environ. 2011, 141, 13–22. [Google Scholar] [CrossRef]
- Mena, Y.; Ruiz-Mirazo, J.; Ruiz, F.A.; Castel, J.M. Characterization and typification of small ruminant farms providing fuelbreak grazing services for wildfire prevention in Andalusia (Spain). Sci. Total Environ. 2016, 544, 211–219. [Google Scholar] [CrossRef] [PubMed]
- López-Bao, J.V.; Sazatornil, V.; Llaneza, L.; Rodríguez, A. Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conserv. Lett. 2013, 6, 448–455. [Google Scholar] [CrossRef]
- McAdam, J.H.; Burgess, P.J.; Graves, A.R.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Classifications and functions of agroforestry systems in Europe. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; Advances in Agroforestry; Volume 6, pp. 21–41. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ortega, T.; Oteros-Rozas, E.; Ripoll-Bosch, R.; Tichit, M.; Martín-López, B.; Bernués, A. Applying the ecosystem services framework to pasture-based livestock farming systems in Europe. Animal 2014, 8, 1361–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ortega, T.; Olaizola, A.M.; Bernués, A. A novel management-based system of payments for ecosystem services for targeted agri-environment policy. Ecosyst. Serv. 2018, 34, 74–84. [Google Scholar] [CrossRef]
Cattle | GD | Sheep | GD |
---|---|---|---|
Alistana-Sanabresa * | Za | Bordaleira Entre Douro e Minho * | Br Po VC VR (Av Vi) |
Arouquesa * | Av Br Po Vi | Carranzana | Bi Ca (As Le) |
Asturiana de la Montaña * | As (Ca Le) | Churra 1 | Bç Le Ou VC VR Za |
Asturiana de los Valles | As (Bi Ca Gi Le Lu) | Latxa | Ar Bi Gi |
Barrosã | VR (Br VC) | Mondegueira * | Gu |
Betizu * | Bi Gi | Navarra | (Ar) |
Cachena * | VR (Br Ou VC) | Ovella Galega | AC Lu Ou Pn (As) |
Caldelá * | Ou | Sasi Ardi * | Ar Bi Gi |
Frieiresa * | Bç Ou Za | Serra da Estrela | Vi (Gu) |
Jarmelista * | Gu | Xalda * | As |
Limiá * | Ou | Goat | GD |
Marinhoa * | Av | Azpi Gorri * | Ar Bi |
Maronesa * | VR (Bç Br Po Vi) | Bermeya * | As |
Minhota (Galega) * | VC (Br) | Bravia | Br VR (Bç VC) |
Mirandesa * | Bç | Cabra Galega * | Lu Ou |
Monchina * | Bi Ca | Preta de Montesinho * | Bç (VR) |
Pasiega * | Ca | Serrana | Bç Gu Vi VR |
Pirenaica | Ar Bi Gi (Ca) | Horse | GD |
Rubia Galega | AC Lu (Ou Pn) | Asturcón * | As |
Terreña * | Ar Bi (Gi) | Cabalo de Pura Raza Galega * | AC Lu Ou Pn |
Tudanca * | Ca | Euskal Herriko Mendiko Zaldia * | Ar Bi Gi |
Vianesa * | Ou | Garrano *,2 | Br Bç VC VR |
Monchino * | Ca (Bi) | ||
Pottoka * | Ar Bi Gi |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celaya, R.; Ferreira, L.M.M.; Lorenzo, J.M.; Echegaray, N.; Crecente, S.; Serrano, E.; Busqué, J. Livestock Management for the Delivery of Ecosystem Services in Fire-Prone Shrublands of Atlantic Iberia. Sustainability 2022, 14, 2775. https://doi.org/10.3390/su14052775
Celaya R, Ferreira LMM, Lorenzo JM, Echegaray N, Crecente S, Serrano E, Busqué J. Livestock Management for the Delivery of Ecosystem Services in Fire-Prone Shrublands of Atlantic Iberia. Sustainability. 2022; 14(5):2775. https://doi.org/10.3390/su14052775
Chicago/Turabian StyleCelaya, Rafael, Luis M. M. Ferreira, José M. Lorenzo, Noemí Echegaray, Santiago Crecente, Emma Serrano, and Juan Busqué. 2022. "Livestock Management for the Delivery of Ecosystem Services in Fire-Prone Shrublands of Atlantic Iberia" Sustainability 14, no. 5: 2775. https://doi.org/10.3390/su14052775