Regional Happiness and Corporate Green Innovation: A Financing Constraints Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. Happiness and Regional Happiness
2.2. Economic Consequences of Happiness
2.3. Driving Factors of Green Innovation
2.3.1. Internal Driving Factors of Green Innovation
2.3.2. External Driving Factors of Green Innovation
3. Hypotheses Development
4. Research Design
4.1. Sample and Data
4.2. Main Variables
4.2.1. Dependent Variable
4.2.2. Independent Variable
4.2.3. Control Variables
4.3. Regression Models
5. Empirical Testing Results
5.1. Correlation Analysis
5.2. Descriptive Statistics
5.3. Baseline Regression
5.4. Robustness Checks
5.4.1. Endogeneity Concerns
5.4.2. Alternative Measurements for Green Innovation
5.4.3. Measure of Regional Happiness based on an Analysis of Social Media Sentiment
5.5. Discussions of the Mechanism
5.6. Further Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Z.; Liu, L.; Bai, S.; Ma, Q. Can the social trust promote corporate green innovation? Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 52157–52173. [Google Scholar] [CrossRef] [PubMed]
- Hojnik, J.; Ruzzier, M. The driving forces of process eco-innovation and its impact on performance: Insights from Slovenia. J. Clean Prod. 2016, 133, 812–825. [Google Scholar] [CrossRef]
- Gavurová, B.; Belás, J.; Valášková, K.; Rigelský, M; Ivanková, V. Relations between infrastructure innovations and tourism spending in developed countries: A macroeconomic perspective. Technol. Econ. Dev. Econ. 2021, 27, 1072–1094. [Google Scholar] [CrossRef]
- Amore, M.D.; Bennedsen, M. Corporate governance and green innovation. J. Environ. Econ. Manage. 2016, 75, 54–72. [Google Scholar] [CrossRef]
- Driessen, P.H.; Hillebrand, B.; Kok, R.A.; Verhallen, T.M. Green new product development: The pivotal role of product greenness. IEEE Trans. Eng. Manage. 2013, 60, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Hilary, G.; Hui, K.W. Does religion matter in corporate decision making in America? J. Financ. Econ. 2009, 93, 455–473. [Google Scholar] [CrossRef]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Chuluun, T.; Graham, C. Local happiness and firm behavior: Do firms in happy places invest more? J. Econ. Behav. Organ. 2016, 125, 41–56. [Google Scholar] [CrossRef]
- SSRN. Happiness and innovation around the world. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3368666 (accessed on 20 January 2022).
- Brethel-Haurwitz, K.M.; Marsh, A.A. Geographical differences in subjective well-being predict extraordinary altruism. Psychol. Sci. 2014, 25, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Layous, K.; Nelson, S.K.; Kurtz, J.L.; Lyubomirsky, S. What triggers prosocial effort? A positive feedback loop between positive activities, kindness, and well-being. J. Posit. Psychol. 2017, 12, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Mehl, M.R.; Vazire, S.; Holleran, S.E.; Clark, C.S. Eavesdropping on happiness: Well-being is related to having less small talk and more substantive conversations. Psychol. Sci. 2010, 21, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Guven, C. Are happier people better citizens? Kyklos 2011, 64, 178–192. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, X.; Ren, T. Institutional differences in individual wellbeing in China. Sustainability 2022, 14, 721. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Wu, Y. Sources of China’s economic growth: An empirical analysis based on the BML index with green growth accounting. Sustainability 2014, 6, 5983–6004. [Google Scholar] [CrossRef] [Green Version]
- The United Nations. China headed towards carbon neutrality by 2060; President Xi Jinping vows to halt new coal plants abroad. Available online: https://news.un.org/en/story/2021/09/1100642 (accessed on 20 January 2022).
- Przychodzen, J.; Przychodzen, W. Relationships between eco-innovation and financial performance–evidence from publicly traded companies in Poland and Hungary. J. Clean Prod. 2015, 90, 253–263. [Google Scholar] [CrossRef]
- Mittal, H. How does the institutional context of an emerging economy shape the innovation trajectory of different types of firms? A case study of India. Ekon. Manaz. Spektrum 2020, 14, 36–51. [Google Scholar] [CrossRef]
- Diener, E. Subjective well-being. Psychol. Bull. 1984, 95, 542–575. [Google Scholar] [CrossRef]
- Ryff, C.D. Happiness is everything, or is it? Explorations on the meaning of psychological well-being. J. Pers. Soc. Psychol. 1989, 57, 1069–1081. [Google Scholar] [CrossRef]
- Diener, E.; Suh, E.M.; Lucas, R.E.; Smith, H.L. Subjective well-being: Three decades of progress. Psychol. Bull. 1999, 125, 276. [Google Scholar] [CrossRef]
- Highhouse, S. Well-being: The foundations of hedonic psychology. Pers. Psychol. 2001, 54, 204. [Google Scholar]
- Ross, M.; Eyman, A.; Kishchuck, N. Determinants of subjective well-being. In Relative Deprivation and Social Comparison; Olson, J.M., Herman, C.P., Zanna, M.P., Eds.; Psychology Press: Hove, UK, 2005; pp. 79–92. [Google Scholar]
- Luthans, F.; Avolio, B.J.; Avey, J.B.; Norman, S.M. Positive psychological capital: Measurement and relationship with performance and satisfaction. Pers. Psychol. 2007, 60, 541–572. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.C.M.; Luthans, F. Psychological capital and well-being. Stress Health 2015, 31, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Alesiona, A.; Di, T.R.; Macculloch, R. Inequality and happiness: Are Europeans and Americans different? J. Public Econ. 2004, 88, 2009–2042. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y. Happiness studies: Ways to improve comparability and some public policy implications. Econ. Rec. 2008, 84, 253–266. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Resseger, M.; Tobio, K. Inequality in cities. J. Reg. Sci. 2009, 49, 617–646. [Google Scholar] [CrossRef]
- Lawless, N.M.; Lucas, R.E. Predictors of regional well-being: A county level analysis. Soc. Indic. Res. 2010, 101, 341–357. [Google Scholar] [CrossRef]
- Florida, R.; Mellander, C.; Rentfrow, P.J. The Happiness of Cities. Reg. Stud. 2013, 47, 613–627. [Google Scholar] [CrossRef]
- Oswald, A.J.; Proto, E.; Sgroi, D. Happiness and productivity. J. Labor Econ. 2015, 33, 789–822. [Google Scholar] [CrossRef] [Green Version]
- Ifcher, J.; Zarghamee, H. Happiness and time preference: The effect of positive affect in a random-assignment experiment. Am. Econ. Rev. 2011, 101, 3109–3129. [Google Scholar] [CrossRef] [Green Version]
- Cohn, M.A.; Fredrickson, B.L.; Brown, S.L.; Mikels, J.A.; Conway, A.M. Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion 2009, 9, 361–368. [Google Scholar] [CrossRef]
- Wright, T.A.; Bonett, D.G. Job satisfaction and psychological well-being as nonadditive predictors of workplace turnover. J. Manag. 2007, 33, 141–160. [Google Scholar] [CrossRef]
- Nelson, D.W. Feeling good and open-minded: The impact of positive affect on cross cultural empathic responding. J. Posit. Psychol. 2009, 4, 53–63. [Google Scholar] [CrossRef]
- Aknin, L.B.; Dunn, E.W.; Norton, M.I. Happiness Runs in a Circular Motion: Evidence for a Positive Feedback Loop between Prosocial Spending and Happiness. J. Happiness Stud. 2011, 13, 347–355. [Google Scholar] [CrossRef]
- Diener, E.; Ryan, K. Subjective well-being: A general overview. S. Afr. J. Psychol. 2009, 39, 391–406. [Google Scholar] [CrossRef]
- Madrid, H.P.; Patterson, M.G.; Birdi, K.S.; Leiva, P.I.; Kausel, E.E. The role of weekly high-activated positive mood, context, and personality in innovative work behavior: A multilevel and interactional model. J. Organ. Behav. 2014, 35, 234–256. [Google Scholar] [CrossRef]
- Usai, A.; Orlando, B.; Mazzoleni, A. Happiness as a Driver of Entrepreneurial Initiative and Innovation Capital. J. Intellect. Cap. 2020, 21, 1229–1255. [Google Scholar] [CrossRef]
- Krause, A. Don’t worry, be happy? Happiness and reemployment. J. Econ. Behav. Organ. 2013, 96, 1–20. [Google Scholar] [CrossRef] [Green Version]
- SSRN. The objective benefits of subjective well-being. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2306651 (accessed on 20 January 2022).
- Roberts, B.W.; Caspi, A.; Moffitt, T.E. Work experiences and personality development in young adulthood. J. Pers. Soc. Psychol. 2003, 84, 582. [Google Scholar] [CrossRef]
- Graham, C. The economics of happiness. World Econ. 2005, 6, 41. [Google Scholar]
- De Neve, J.E.; Oswald, A.J. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects. Proc. Natl. Acad. Sci. USA 2012, 109, 19953–19958. [Google Scholar] [CrossRef] [Green Version]
- Diva-portal. Reverse the question: Does happiness raise economic output? Evidence from European Value Survey, 1981–2009. Available online: https://www.diva-portal.org/smash/get/diva2:637590/FULLTEXT02.pdf (accessed on 25 January 2022).
- Boehm, J.K.; Lyubomirsky, S. Does happiness lead to career success? J. Career Assess. 2008, 16, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Otrachshenko, V.; Popova, O. Life (dis) satisfaction and the intention to migrate: Evidence from Central and Eastern Europe. J. Soc. Econ. 2014, 48, 40–49. [Google Scholar] [CrossRef]
- Howell, R.T.; Kern, M.L.; Lyubomirsky, S. Health benefits: Meta-analytically determining the impact of well-being on objective health outcomes. Health Psychol. Rev. 2007, 1, 83–136. [Google Scholar] [CrossRef]
- Boehm, J.K.; Kubzansky, L.D. The heart’s content: The association between positive psychological well-being and cardiovascular health. Psychol. Bull. 2012, 138, 655. [Google Scholar] [CrossRef] [Green Version]
- Diener, E.; Chan, M.Y. Happy people live longer: Subjective well-being contributes to health and longevity. Appl. Psychol. Health Well Being 2011, 3, 1–43. [Google Scholar] [CrossRef]
- Montani, F.; Courcy, F.; Vandenberghe, C. Innovating under stress: The role of commitment and leader-member exchange. J. Bus. Res. 2017, 77, 1–13. [Google Scholar] [CrossRef]
- Shalley, C.E.; Zhou, J.; Oldham, G.R. The effects of personal and contextual characteristics on creativity: Where should we go from here? J. Manag. 2004, 30, 933–958. [Google Scholar] [CrossRef] [Green Version]
- Galambos, L. Profits of science: The American marriage of business and technology. Science 1994, 265, 687–689. [Google Scholar] [CrossRef] [Green Version]
- Foster, C.; Green, K. Greening the innovation process. Bus. Strategy Environ. 2000, 9, 287–303. [Google Scholar] [CrossRef]
- Magnusson, T.; Lindström, G.; Berggren, C. Architectural or modular innovation? Managing discontinuous product development in response to challenging environmental performance targets. Int. J. Innov. Manag. 2003, 7, 1–26. [Google Scholar] [CrossRef]
- Durana, P.; Valaskova, K.; Vagner, L.; Zadnanova, S.; Podhorska, I.; Siekelova, A. Disclosure of strategic managers’ factotum: Behavioral incentives of innovative business. Int. J. Financ. Stud. 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Durana, P.; Zauskova, A.; Vagner, L.; Zadnanova, S. Earnings drivers of Slovak manufacturers: Efficiency assessment of innovation management. Appl. Sci. 2020, 10, 4251. [Google Scholar] [CrossRef]
- Kemp, R.; Pearson, P. Final Report MEI Project about Measuring Eco-Innovation; UM Merit: Maastricht, The Netherlands, 2007; Volume 10, pp. 1–120. [Google Scholar]
- Clausen, T.H. External knowledge sourcing from innovation cooperation and the role of absorptive capacity: Empirical evidence from Norway and Sweden. Technol. Anal. Strateg. Manage. 2013, 25, 57–70. [Google Scholar] [CrossRef]
- Horbach, J. Determinants of environmental innovation—New evidence from German panel data sources. Res. Policy. 2008, 37, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Menguc, B.; Auh, S.; Ozanne, L. The interactive effect of internal and external factors on a proactive environmental strategy and its influence on a firm’s performance. J. Bus. Ethics 2010, 94, 279–298. [Google Scholar] [CrossRef]
- Handfield, R.; Walton, S.V.; Sroufe, R.; Melnyk, S.A. Applying environmental criteria to supplier assessment: A study in the application of the analytical hierarchy process. Eur. J. Oper. Res. 2002, 141, 70–87. [Google Scholar] [CrossRef]
- Chen, Y.S.; Chang, C.H. The determinants of green product development performance: Green dynamic capabilities, green transformational leadership, and green creativity. J. Bus. Ethics 2013, 116, 107–119. [Google Scholar] [CrossRef]
- Simpson, D.; Samson, D. Environmental strategy and low waste operations: Exploring complementarities. Bus. Strateg. Environ. 2010, 19, 104–118. [Google Scholar] [CrossRef]
- Chatterjee, D.; Grewal, R.; Sambamurthy, V. Shaping up for e-commerce: Institutional enablers of the organizational assimilation of web technologies. MIS Q. 2002, 26, 65–89. [Google Scholar] [CrossRef]
- Bansal, P. From issues to actions: The importance of individual concerns and organizational values in responding to natural environmental issues. Organ. Sci. 2003, 14, 510–527. [Google Scholar] [CrossRef]
- Rennings, K.; Rammer, C. The Impact of regulation-driven enviromental innovation on innovation success and firm performance. Ind. Innov. 2011, 18, 255–283. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.X.; Meng, X.H.; Zeng, R.C.; Tam, C.M.; Tam, V.W.; Jin, T. How Environmental management driving forces affect environmental and economic performance of SMEs: A study in the northern China district. J. Clean Prod. 2011, 19, 1426–1437. [Google Scholar] [CrossRef]
- Chen, X.; Yi, N.; Zhang, L.; Li, D. Does institutional pressure foster corporate green innovation? Evidence from China’s top 100 companies. J. Clean Prod. 2018, 188, 304–311. [Google Scholar] [CrossRef]
- Kneller, R.; Manderson, E. Environmental regulations and innovation activity in UK manufacturing industries. Resour. Energy Econ. 2012, 34, 211–235. [Google Scholar] [CrossRef]
- Yuan, Q. How to Restrain Regulatory Capture and Promote Green Innovation in China. An Analysis Based on Evolutionary Game Theory. Sustainability 2021, 13, 9752. [Google Scholar] [CrossRef]
- SSRN. Environmental risk and green innovation: Evidence from evacuation spills. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3740551 (accessed on 25 January 2022).
- Zhang, F.; Zhu, L. Enhancing corporate sustainable development: Stakeholder pressures, organizational learning, and green innovation. Bus. Strategy Environ. 2019, 28, 1012–1026. [Google Scholar] [CrossRef]
- Weng, M.; Lin, C. Determinants of green innovation adoption for small and medium-size enterprises (SMES). Afr. J. Bus. Manag. 2011, 5, 9154–9163. [Google Scholar]
- Zhang, Y.; Zhang, J.; Cheng, Z. Stock market liberalization and corporate green innovation: Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 3412. [Google Scholar] [CrossRef]
- García-Sánchez, I.M.; Aibar-Guzmán, C.; Aibar-Guzmán, B. The effect of institutional ownership and ownership dispersion on eco-innovation. Technol. Forecast. Soc. Chang. 2020, 158, 120173. [Google Scholar] [CrossRef]
- Hu, G.; Wang, X.; Wang, Y. Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China. Energy Econ. 2021, 98, 105134. [Google Scholar] [CrossRef]
- Huang, Z.; Liao, G.; Li, Z. Loaning scale and government subsidy for promoting green innovation. Technol. Forecast. Soc. Chang. 2019, 144, 148–156. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Lei, X.; Long, R. Green Finance Innovation and Regional Green Development. Sustainability 2021, 13, 8230. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z. Can Green Finance Development Reduce Carbon Emissions? Empirical Evidence from 30 Chinese Provinces. Sustainability 2021, 13, 12137. [Google Scholar] [CrossRef]
- National Bureau of Economic Research. International evidence on the social context of well-being. Available online: https://www.nber.org/papers/w14720 (accessed on 25 January 2022).
- Smith, C.A.; Lazarus, R.S. Emotion and adaptation. In Handbook of Personality: Theory and Research; Pervin, L.A., Ed.; Guilford: New York, NY, USA, 1990; pp. 609–673. [Google Scholar]
- Baron, R.A. Interviewer’s Moods and Reactions to Job Applicants:The Influence of Affective States on Applied Social Judgments. J. Appl. Soc. Psychol. 2006, 17, 911–926. [Google Scholar] [CrossRef]
- Diener, E.; Seligman, M.E. Very happy people. Psychol. Sci. 2002, 13, 81–84. [Google Scholar] [CrossRef]
- Alshaikh, I.Y.; Razzaque, A.; Alalawi, M.S.M. Positive emotion and social capital affect knowledge sharing: Case of the public sector of the Kingdom of Bahrain. In Proceedings of the European, Mediterranean, and Middle Eastern Conference on Information Systems, Coimbra, Portugal, 7–8 September 2017. [Google Scholar]
- Lerner, J.S.; Li, Y.; Valdesolo, P.; Kassam, K.S. Emotion and decision making. Annu. Rev. Psychol. 2015, 66, 799–823. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.R.; Schweitzer, M.E. Feeling and Believing: The Influence of Emotion on Trust. J. Pers. Soc. Psychol. 2005, 88, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Wernerfelt, B.A. A resource-based view of the firm. Strateg. Manage. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Hoff, K.; Stiglitz, J.E. Introduction: Imperfect information and rural credit markets: Puzzles and policy perspectives. World Bank Econ. Rev. 1990, 4, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Ritter, J.R. Innovation and communication: Signalling with partial disclosure. Rev. Econ. Stud. 1983, 50, 331–346. [Google Scholar] [CrossRef]
- Wurlod, J.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Xiu, Z.; Zhou, Z. Regional happiness, social capital and corporate philanthropic giving. Journal of Management Science 2016, 29, 146–160. [Google Scholar]
- Fowler, J.H.; Christakis, N.A. Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study. BMJ 2008, 337, a2338. [Google Scholar] [CrossRef] [Green Version]
- Mulaessa, N.; Lin, L. How do proactive environmental strategies affect green innovation? The Moderating Role of Environmental Regulations and Firm Performance. Int. J. Environ. Res. Public Health 2021, 18, 9083. [Google Scholar] [CrossRef]
- Foye, C. The relationship between size of living space and subjective well-being. J. Happiness Stud. 2017, 18, 427–461. [Google Scholar] [CrossRef] [Green Version]
- Sock, J.H.; Yogo, M. Testing for weak instruments in linear IV regression. In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg; Andrews, D.W.K., Stock, J.H., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 80–118. [Google Scholar]
- Mitchell, L.; Frank, M.R.; Harris, K.D.; Dodds, P.S.; Danforth, C.M. The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PLoS ONE 2013, 8, e64417. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Zingales, L. Do investment-cash flow sensitivities provide useful measures of financing constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef] [Green Version]
- Whited, T.M.; Wu, G. Financial constraints risk. Rev. Financ. Stud. 2006, 19, 531–559. [Google Scholar] [CrossRef]
- Wang, X.; Hu, L.; Fan, G. Marketization Index of China’s Provinces: NERI Report 2021; Social Sciences Academic Press: Beijing, China, 2021; p. 276. [Google Scholar]
- Faccio, M.; Masulis, R.W.; McConnell, J.J. Political connections and corporate bailouts. J. Financ. 2006, 61, 2597–2635. [Google Scholar] [CrossRef]
- Chan, K.S.; Dang, V.Q.T.; Yan, I.K.M. Chinese firms’ political connection, ownership, and financing constraints. Econ. Lett. 2012, 115, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Kaida, N.; Kaida, K. Pro-environmental behavior correlates with present and future subjective well-being. Environ. Dev. Sustain. 2016, 18, 111–127. [Google Scholar] [CrossRef]
- Brown, K.W.; Kasser, T. Are psychological and ecological well-being compatible? The role of values, mindfulness, and lifestyle. Soc. Indic. Res. 2005, 74, 349–368. [Google Scholar] [CrossRef]
- Binder, M.; Blankenberg, A.K. Green lifestyles and subjective well-being: More about self-image than actual behavior? J. Econ. Behav. Organ. 2017, 137, 304–323. [Google Scholar] [CrossRef]
- Welsch, H.; Kühling, J. Are pro-environmental consumption choices utility-maximizing? Evidence from subjective well-being data. Ecol. Econ. 2011, 72, 75–87. [Google Scholar] [CrossRef]
- Welsch, H.; Kühling, J. How green self-image is related to subjective well-being: Pro-environmental values as a social norm. Ecol. Econ. 2018, 149, 105–119. [Google Scholar] [CrossRef]
- Welsch, H.; Kühling, J. Pro-environmental behavior and rational consumer choice: Evidence from surveys of life satisfaction. J. Econ. Psychol. 2010, 31, 405–420. [Google Scholar] [CrossRef]
- Spolaore, E.; Wacziarg, R. How deep are the roots of economic development? J. Econ. Lit. 2013, 51, 325–369. [Google Scholar] [CrossRef] [Green Version]
Variable | Explanation | Definition | Data Source |
---|---|---|---|
GINOV1 | Green innovation | Natural logarithm of 1 plus the aggregate number of green patents filed in application. | CNRDS |
GINOV2 | Green innovation | Natural logarithm of 1 plus the aggregate number of green invention patents filed in application. | CNRDS |
HAPP_DIS | Regional happiness | Add 1 to the minimum geographical distance between the registered city and Hangzhou, Chengdu, Changsha, and Nanjing, then take the natural number, and then take the negative number. The higher the value, the greater the level of happiness. | Xinhua News Agency |
HAPP | Regional happiness | Equal to 1 when the registered city is Hangzhou, Chengdu, Changsha, or Nanjing, otherwise equal to 0. | Xinhua News Agency |
SIZE | Firm size | The natural logarithm of total assets at the fiscal year end. | CSMAR |
LEV | Financial leverage | The ratio of total liabilities to total assets. | CSMAR |
ROA | Return on assets | The ratio of net income to total assets. | CSMAR |
GROWTH | Growth rate | The ratio of operating income change to operating income in the previous period at every year end. | CSMAR |
SHR1 | Largest ownership | The percentage ownership of the largest shareholder. | CSMAR |
INDEP | Board independence | The percentage of independent members on a board. | CSMAR |
MSHARE | Managerial ownership | Percentage of shares held by directors, supervisors, and senior managers. | CSMAR |
DUAL | CEO duality | A dummy variable which equals one if the firm’s board chair is also its CEO and zero otherwise. | CSMAR |
SOE | Ownership | A dummy variable that equals one if a firm is a state-owned enterprise and zero otherwise. | CSMAR |
CASH | Cash flow | The ratio of net cash flow from operations to total assets. | CSMAR |
PPE | Intensity of physical assets | The ratio of net property, plant, and equipment to total assets. | CSMAR |
RDI | Regional R&D intensity | The ratio of annual R&D expenditure within the province where the enterprise is located to annual GDP of the province. | China Statistical Yearbook of Science and Technology.; National Bureau of Statistics of China. |
GDP | Regional economic development | The natural logarithm of GDP per capita in the city where the enterprise is located. | National Bureau of Statistics of China. |
Variable | GINOV1 | GINOV2 | HAPP_DIS | HAPP | SIZE | LEV | ROA | GROWTH | SHR1 | INDEP | DUAL | MSHARE | SOE | CASH | PPE | RDI | GDP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GINOV1 | 1 | 0.886 *** | 0.004 | 0.027 *** | 0.312 *** | 0.179 *** | 0.020 ** | 0.091 *** | 0.031 *** | 0.002 | −0.053 *** | −0.035 *** | 0.116 *** | −0.023 *** | −0.032 *** | 0.075 *** | 0.069 *** |
GINOV2 | 0.925 *** | 1 | 0.007 | 0.029 *** | 0.302 *** | 0.144 *** | 0.035 *** | 0.079 *** | 0.017 ** | 0.014 * | −0.039 *** | −0.033 *** | 0.115 *** | −0.006 | −0.060 *** | 0.099 *** | 0.090 *** |
HAPP_DIS | 0.007 | 0.010 | 1 | 0.520 *** | −0.089 *** | −0.054 *** | 0.050 *** | −0.005 | −0.012 | −0.029 *** | 0.003 | 0.073 *** | −0.080 *** | 0.032 *** | 0.006 | 0.041 *** | −0.025 *** |
HAPP | 0.020** | 0.022 *** | 0.913 *** | 1 | −0.038 *** | −0.008 | 0.023 *** | 0.001 | 0.021 *** | −0.006 | −0.012 | 0.060 *** | −0.042 *** | −0.007 | −0.080 *** | −0.050 *** | 0.097 *** |
SIZE | 0.397 *** | 0.393 *** | −0.075 *** | −0.044 *** | 1 | 0.533 *** | −0.060 *** | 0.035 *** | 0.191 *** | −0.015 * | −0.198 *** | −0.334 *** | 0.370 *** | 0.086 *** | 0.069 *** | −0.008 | −0.010 |
LEV | 0.195 *** | 0.164 *** | −0.034 *** | −0.007 | 0.523 *** | 1 | −0.416 *** | −0.006 | 0.085 *** | −0.010 | −0.154 *** | −0.340 *** | 0.323 *** | −0.133 *** | 0.062 *** | −0.105 *** | −0.065 *** |
ROA | 0.021 *** | 0.031 *** | 0.031 *** | 0.017 ** | 0.002 | −0.368 *** | 1 | 0.314 *** | 0.082 *** | −0.032 *** | 0.069 *** | 0.219 *** | −0.171 *** | 0.402 *** | −0.119 *** | 0.099 *** | 0.081 *** |
GROWTH | 0.043 *** | 0.035 *** | −0.012 | −0.008 | 0.038 *** | 0.022 *** | 0.219 *** | 1 | −0.025 *** | 0.007 | 0.058 *** | 0.161 *** | −0.125 *** | 0.036 *** | −0.120 *** | 0.037 *** | 0.057 *** |
SHR1 | 0.055 *** | 0.044 *** | 0.005 | 0.014 * | 0.239 *** | 0.087 *** | 0.099 *** | −0.004 | 1 | 0.032 *** | −0.063 *** | −0.261 *** | 0.255 *** | 0.093 *** | 0.083 *** | 0.003 | −0.024 *** |
INDEP | 0.025 *** | 0.034 *** | −0.020 ** | −0.007 | 0.019 ** | −0.001 | −0.028 *** | −0.004 | 0.039 *** | 1 | 0.105 *** | 0.047 *** | −0.072 *** | −0.024 *** | −0.045 *** | 0.026 *** | 0.058 *** |
DUAL | −0.057 *** | −0.043 *** | −0.003 | −0.012 | −0.189 *** | −0.153 *** | 0.046 *** | 0.038 *** | −0.071 *** | 0.108 *** | 1 | 0.271 *** | −0.304 *** | −0.022 *** | −0.090 *** | 0.088 *** | 0.115 *** |
MSHARE | −0.093 *** | −0.097 *** | 0.039 *** | 0.038 *** | −0.361 *** | −0.341 *** | 0.143 *** | 0.082 *** | −0.140 *** | 0.077 *** | 0.258 *** | 1 | −0.624 *** | −0.021 *** | −0.199 *** | 0.185 *** | 0.209 *** |
SOE | 0.126 *** | 0.128 *** | −0.070 *** | −0.042 *** | 0.377 *** | 0.325 *** | −0.109 *** | −0.095 *** | 0.256 *** | −0.068 *** | −0.304 *** | −0.513 *** | 1 | 0.012 | 0.172 *** | −0.128 *** | −0.165 *** |
CASH | −0.009 | 0.007 | 0.010 | −0.006 | 0.084 *** | −0.148 *** | 0.390 *** | −0.002 | 0.094 *** | −0.016 ** | −0.023 *** | −0.023 *** | 0.010 | 1 | 0.264 *** | 0.003 | −0.006 |
PPE | −0.028 *** | −0.049 *** | −0.070 *** | −0.077 *** | 0.142 *** | 0.116 *** | −0.114 *** | −0.099 *** | 0.104 *** | −0.043 *** | −0.108 *** | −0.194 *** | 0.223 *** | 0.249 *** | 1 | −0.226 *** | −0.248 *** |
RDI | 0.116 *** | 0.141 *** | −0.100 *** | −0.096 *** | 0.061 *** | −0.078 *** | 0.053 *** | 0.018 ** | 0.034 *** | 0.031 *** | 0.055 *** | 0.109 *** | −0.047 *** | −0.014 * | −0.196 *** | 1 | 0.538 *** |
GDP | 0.074 *** | 0.087 *** | 0.001 | 0.049 *** | 0.001 | −0.051 *** | 0.031 *** | 0.023 *** | −0.021 *** | 0.055 *** | 0.123 *** | 0.161 *** | −0.160 *** | −0.023 *** | −0.223 *** | 0.316 *** | 1 |
Variable | Obs. | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
GINOV1 | 15,610 | 1.106 | 1.216 | 0.000 | 0.693 | 4.963 |
GINOV2 | 15,610 | 0.766 | 1.039 | 0.000 | 0.000 | 4.431 |
HAPP_DIS | 15,610 | −5.420 | 1.975 | −7.635 | −6.299 | 0.000 |
HAPP | 15,610 | 0.100 | 0.299 | 0.000 | 0.000 | 1.000 |
SIZE | 15,610 | 22.291 | 1.322 | 19.951 | 22.091 | 26.369 |
LEV | 15,610 | 0.436 | 0.204 | 0.056 | 0.432 | 0.894 |
ROA | 15,610 | 0.038 | 0.056 | −0.217 | 0.036 | 0.187 |
GROWTH | 15,610 | 0.187 | 0.402 | −0.518 | 0.119 | 2.475 |
SHR1 | 15,610 | 0.345 | 0.151 | 0.085 | 0.321 | 0.751 |
INDEP | 15,610 | 0.374 | 0.053 | 0.333 | 0.333 | 0.571 |
MSHARE | 15,610 | 0.130 | 0.195 | 0.000 | 0.004 | 0.688 |
SOE | 15,610 | 0.395 | 0.489 | 0.000 | 0.000 | 1.000 |
DUAL | 15,610 | 0.259 | 0.438 | 0.000 | 0.000 | 1.000 |
CASH | 15,610 | 0.044 | 0.067 | −0.153 | 0.043 | 0.231 |
PPE | 15,610 | 0.215 | 0.159 | 0.003 | 0.180 | 0.698 |
RDI | 15,610 | 0.025 | 0.014 | 0.005 | 0.022 | 0.062 |
GDP | 15,610 | 11.501 | 0.731 | 9.810 | 11.523 | 13.135 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GINOV1 | GINOV1 | GINOV2 | GINOV2 | |
HAPP_DIS | 0.029 *** | 0.026 *** | ||
(7.04) | (7.21) | |||
HAPP | 0.177 *** | 0.151 *** | ||
(6.42) | (6.26) | |||
SIZE | 0.426 *** | 0.424 *** | 0.373 *** | 0.372 *** |
(50.73) | (50.61) | (50.71) | (50.57) | |
LEV | 0.061 | 0.060 | −0.086 * | −0.087 * |
(1.10) | (1.08) | (−1.76) | (−1.78) | |
ROA | 0.618 *** | 0.625 *** | 0.379 ** | 0.386 ** |
(3.35) | (3.39) | (2.34) | (2.39) | |
GROWTH | −0.012 | −0.012 | −0.015 | −0.015 |
(−0.55) | (−0.58) | (−0.80) | (−0.83) | |
SHR1 | −0.222 *** | −0.220 *** | −0.262 *** | −0.259 *** |
(−3.87) | (−3.83) | (−5.19) | (−5.15) | |
INDEP | 0.187 | 0.174 | 0.328 ** | 0.316 ** |
(1.22) | (1.14) | (2.44) | (2.35) | |
MSAHRE | 0.020 | 0.016 | −0.074 * | −0.078 * |
(0.39) | (0.31) | (−1.65) | (−1.73) | |
SOE | 0.060 *** | 0.056 *** | 0.090 *** | 0.086 *** |
(2.83) | (2.63) | (4.81) | (4.60) | |
DUAL | −0.010 | −0.010 | 0.024 | 0.024 |
(−0.50) | (−0.49) | (1.40) | (1.41) | |
CASH | −0.292 ** | −0.280 ** | −0.068 | −0.057 |
(−2.08) | (−1.99) | (−0.55) | (−0.47) | |
PPE | −0.550 *** | −0.551 *** | −0.603 *** | −0.605 *** |
(−8.42) | (−8.44) | (−10.53) | (−10.57) | |
RDI | 5.897 *** | 5.930 *** | 6.117 *** | 6.123 *** |
(9.33) | (9.36) | (11.04) | (11.02) | |
GDP | 0.081 *** | 0.076 *** | 0.066 *** | 0.062 *** |
(6.46) | (6.10) | (6.04) | (5.69) | |
Constant | −9.373 *** | −9.464 *** | −8.368 *** | −8.450 *** |
(−39.63) | (−40.05) | (−40.34) | (−40.77) | |
YEAR | Yes | Yes | Yes | Yes |
IND | Yes | Yes | Yes | Yes |
Obs. | 15610 | 15610 | 15610 | 15610 |
Adj.R2 | 0.320 | 0.319 | 0.283 | 0.283 |
Variable | (1) | (2) | (3) |
---|---|---|---|
HAPP_DIS | GINOV1 | GINOV2 | |
SPACE | 0.192 *** | ||
(94.85) | |||
Instrument_ HAPP_DIS | 0.049 *** | 0.046 *** | |
(7.08) | (7.57) | ||
SIZE | −0.046 *** | 0.426 *** | 0.374 *** |
(−3.61) | (50.58) | (50.64) | |
LEV | 0.313 *** | 0.069 | −0.083 * |
(3.67) | (1.24) | (−1.70) | |
ROA | 0.034 | 0.600 *** | 0.362 ** |
(0.12) | (3.25) | (2.23) | |
GROWTH | −0.099 *** | −0.007 | −0.011 |
(−3.07) | (−0.35) | (−0.62) | |
SHR1 | 0.498 *** | −0.233 *** | −0.273 *** |
(5.64) | (−4.04) | (−5.37) | |
INDEP | −0.216 | 0.222 | 0.357 *** |
(−0.92) | (1.45) | (2.65) | |
MSAHRE | 0.076 | 0.012 | −0.080 * |
(0.97) | (0.23) | (−1.77) | |
SOE | −0.026 | 0.069 *** | 0.097 *** |
(−0.78) | (3.20) | (5.16) | |
DUAL | −0.040 | −0.003 | 0.029 * |
(−1.31) | (−0.17) | (1.68) | |
CASH | 0.378* | −0.284 ** | −0.066 |
(1.75) | (−2.01) | (−0.53) | |
PPE | −0.839 *** | −0.544 *** | −0.596 *** |
(−8.39) | (−8.30) | (−10.35) | |
RDI | −15.658 *** | 6.262 *** | 6.477 *** |
(−16.26) | (9.77) | (11.52) | |
GDP | 0.572 *** | 0.081 *** | 0.067 *** |
(28.40) | (6.46) | (6.08) | |
Constant | −16.951 *** | −9.931 *** | −8.608 *** |
(−43.73) | (−42.45) | (−41.92) | |
YEAR | Yes | Yes | Yes |
IND | Yes | Yes | Yes |
Obs. | 15524 | 15524 | 15524 |
R2 | 0.3987 | 0.3195 | 0.2826 |
Kleibergen–Paap F | 8887.539 | ||
Stock–Yogo weak ID test critical values: 10% maximal IV size | 16.38 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GINVG1 | GINVG1 | GINVG2 | GINVG2 | |
HAPP_DIS | 0.022 *** | 0.015 *** | ||
(5.89) | (6.20) | |||
HAPP | 0.149 *** | 0.112 *** | ||
(6.11) | (6.84) | |||
SIZE | 0.294 *** | 0.293 *** | 0.189 *** | 0.188 *** |
(39.94) | (39.87) | (38.14) | (38.08) | |
LEV | 0.245 *** | 0.242 *** | −0.025 | −0.027 |
(4.96) | (4.92) | (−0.75) | (−0.80) | |
ROA | 0.156 | 0.160 | −0.207 * | −0.206 * |
(0.96) | (0.98) | (−1.90) | (−1.88) | |
GROWTH | −0.041 ** | −0.041** | −0.031 ** | −0.031 ** |
(−2.17) | (−2.17) | (−2.44) | (−2.44) | |
SHR1 | −0.141 *** | −0.141 *** | −0.131 *** | −0.132 *** |
(−2.77) | (−2.77) | (−3.83) | (−3.85) | |
INDEP | 0.168 | 0.159 | 0.250 *** | 0.243 *** |
(1.23) | (1.16) | (2.72) | (2.65) | |
MSAHRE | 0.038 | 0.034 | −0.040 | −0.043 |
(0.84) | (0.74) | (−1.31) | (−1.42) | |
SOE | 0.019 | 0.016 | 0.047 *** | 0.044 *** |
(1.02) | (0.86) | (3.69) | (3.53) | |
DUAL | −0.037 ** | −0.036 ** | 0.002 | 0.002 |
(−2.13) | (−2.10) | (0.15) | (0.20) | |
CASH | −0.149 | −0.141 | 0.043 | 0.049 |
(−1.18) | (−1.12) | (0.51) | (0.57) | |
PPE | −0.468 *** | −0.467 *** | −0.380 *** | −0.378 *** |
(−8.07) | (−8.05) | (−9.73) | (−9.69) | |
RDI | 4.692 *** | 4.767 *** | 4.452 *** | 4.526 *** |
(8.32) | (8.44) | (11.73) | (11.90) | |
GDP | 0.055 *** | 0.051 *** | 0.033 *** | 0.030 *** |
(4.94) | (4.60) | (4.42) | (4.03) | |
Constant | −6.502 *** | −6.569 *** | −4.478 *** | −4.525 *** |
(−30.66) | (−31.03) | (−31.39) | (−31.78) | |
YEAR | Yes | Yes | Yes | Yes |
IND | Yes | Yes | Yes | Yes |
Obs. | 14613 | 14613 | 14613 | 14613 |
Adj.R2 | 0.273 | 0.274 | 0.194 | 0.195 |
Variable | (1) | (2) |
---|---|---|
GINOV1 | GINOV1 | |
HAPPS1 | 0.784 ** | |
(2.28) | ||
HAPPS2 | 0.731 * | |
(1.70) | ||
SIZE | 0.438 *** | 0.438 *** |
(49.56) | (49.54) | |
LEV | 0.046 | 0.046 |
(0.80) | (0.79) | |
ROA | 0.620 *** | 0.619 *** |
(3.21) | (3.20) | |
GROWTH | −0.009 | −0.009 |
(−0.42) | (−0.41) | |
SHR1 | −0.207 *** | −0.207 *** |
(−3.43) | (−3.43) | |
INDEP | 0.155 | 0.157 |
(0.97) | (0.98) | |
MSAHRE | 0.051 | 0.050 |
(0.97) | (0.94) | |
SOE | 0.065 *** | 0.064 *** |
(2.90) | (2.86) | |
DUAL | −0.011 | −0.011 |
(−0.52) | (−0.53) | |
CASH | −0.313 ** | −0.311 ** |
(−2.12) | (−2.11) | |
PPE | −0.550 *** | −0.550 *** |
(−7.98) | (−7.98) | |
RDI | 0.069 *** | 0.071 *** |
(5.04) | (5.21) | |
GDP | 6.206 *** | 5.966 *** |
(8.33) | (8.09) | |
Constant | −9.970 *** | −9.955 *** |
(−34.42) | (−31.36) | |
YEAR | Yes | Yes |
IND | Yes | Yes |
Obs. | 14505 | 14505 |
Adj.R2 | 0.323 | 0.323 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
KZ | WW | GINOV1 | GINOV2 | |
FIN | 0.003 *** | 0.002 * | ||
(2.65) | (1.69) | |||
HAPP_DIS×FIN | −0.002 *** | −0.001 *** | ||
(−3.16) | (−3.03) | |||
HAPP_DIS | −0.009 * | −0.0004 *** | 0.029 *** | 0.027 *** |
(−1.84) | (−3.42) | (6.53) | (6.91) | |
SIZE | −0.261 *** | −0.046 *** | 0.427 *** | 0.374 *** |
(−28.04) | (−222.99) | (50.85) | (50.81) | |
LEV | 5.760 *** | 0.017 *** | 0.064 | −0.084 * |
(93.05) | (12.40) | (1.16) | (−1.72) | |
ROA | −3.893 *** | −0.183 *** | 0.618 *** | 0.381 ** |
(−18.81) | (−39.50) | (3.35) | (2.36) | |
GROWTH | −0.621 *** | −0.035 *** | −0.010 | −0.014 |
(−25.90) | (−65.57) | (−0.47) | (−0.74) | |
SHR1 | −0.687 *** | −0.006 *** | −0.212 *** | −0.253 *** |
(−10.76) | (−4.44) | (−3.69) | (−5.02) | |
INDEP | 0.851 *** | 0.019 *** | 0.193 | 0.330 ** |
(5.00) | (4.87) | (1.26) | (2.46) | |
MSAHRE | −0.881 *** | −0.012 *** | 0.017 | −0.076 * |
(−15.38) | (−9.01) | (0.33) | (−1.71) | |
SOE | 0.008 | 0.001 ** | 0.067 *** | 0.094 *** |
(0.36) | (2.55) | (3.13) | (4.98) | |
DUAL | −0.070 *** | 0.00001 | −0.012 | 0.022 |
(−3.20) | (0.02) | (−0.62) | (1.30) | |
CASH | −14.107 *** | −0.096 *** | −0.311 ** | −0.080 |
(−88.85) | (−26.98) | (−2.21) | (−0.65) | |
PPE | 1.955 *** | 0.011 *** | −0.548 *** | −0.602 *** |
(27.00) | (6.54) | (−8.40) | (−10.51) | |
RDI | 3.015 *** | 0.031 * | 6.313 *** | 6.429 *** |
(4.29) | (1.95) | (9.88) | (11.47) | |
GDP | 0.020 | −0.002 *** | 0.060 *** | 0.053 *** |
(1.44) | (−6.31) | (4.40) | (4.43) | |
Constant | 3.701 *** | 0.038 *** | −9.357 *** | −8.401 *** |
(14.48) | (6.68) | (−38.73) | (−39.65) | |
YEAR | Yes | Yes | Yes | Yes |
IND | Yes | Yes | Yes | Yes |
Obs. | 15610 | 15610 | 15610 | 15610 |
Adj.R2 | 0.320 | 0.319 | 0.283 | 0.283 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GINOV1 | GINOV2 | GINOV1 | GINOV2 | |
HAPP_DIS | 0.040 *** | 0.037 *** | ||
(7.34) | (7.85) | |||
HAPP_DIS×PC | −0.024 *** | −0.026 *** | ||
(−2.83) | (−3.41) | |||
HAPP | 0.231 *** | 0.209 *** | ||
(6.43) | (6.56) | |||
HAPP×PC | −0.118 ** | −0.121 ** | ||
(−2.09) | (−2.41) | |||
PC | 0.030 * | 0.009 | 0.043 ** | 0.022 |
(1.68) | (0.59) | (2.25) | (1.31) | |
SIZE | 0.439 *** | 0.388 *** | 0.438 *** | 0.388 *** |
(53.21) | (53.12) | (53.13) | (53.02) | |
LEV | 0.041 | −0.091 * | 0.037 | −0.096 ** |
(0.77) | (−1.93) | (0.68) | (−2.02) | |
ROA | 0.287 ** | 0.142 | 0.282 ** | 0.137 |
(2.42) | (1.35) | (2.37) | (1.30) | |
GROWTH | −0.000 | −0.001 | −0.000 | −0.001 |
(−0.86) | (−1.13) | (−0.84) | (−1.11) | |
SHR1 | −0.231 *** | −0.267 *** | −0.230 *** | −0.266 *** |
(−3.99) | (−5.19) | (−3.97) | (−5.16) | |
INDEP | 0.221 | 0.295 ** | 0.206 | 0.280 ** |
(1.47) | (2.21) | (1.37) | (2.10) | |
MSAHRE | 0.012 | −0.081 * | 0.008 | −0.084 * |
(0.23) | (−1.78) | (0.16) | (−1.84) | |
SOE | 0.058 *** | 0.085 *** | 0.054 ** | 0.082 *** |
(2.66) | (4.40) | (2.49) | (4.22) | |
DUAL | −0.001 | 0.032 * | −0.001 | 0.033 * |
(−0.07) | (1.79) | (−0.03) | (1.83) | |
CASH | −0.161 | 0.002 | −0.150 | 0.013 |
(−1.28) | (0.02) | (−1.19) | (0.11) | |
PPE | −0.587 *** | −0.637 *** | −0.589 *** | −0.640 *** |
(−9.04) | (−11.06) | (−9.06) | (−11.10) | |
RDI | 6.192 *** | 6.409 *** | 6.239 *** | 6.430 *** |
(9.61) | (11.22) | (9.66) | (11.23) | |
GDP | 0.077 *** | 0.064 *** | 0.073 *** | 0.060 *** |
(6.18) | (5.75) | (5.82) | (5.39) | |
Constant | −9.699 *** | −8.811 *** | −9.645 *** | −8.762 *** |
(−42.67) | (−43.72) | (−42.44) | (−43.48) | |
YEAR | Yes | Yes | Yes | Yes |
IND | Yes | Yes | Yes | Yes |
Obs. | 15476 | 15476 | 15476 | 15476 |
Adj.R2 | 0.329 | 0.293 | 0.328 | 0.292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Shen, W. Regional Happiness and Corporate Green Innovation: A Financing Constraints Perspective. Sustainability 2022, 14, 2263. https://doi.org/10.3390/su14042263
Li D, Shen W. Regional Happiness and Corporate Green Innovation: A Financing Constraints Perspective. Sustainability. 2022; 14(4):2263. https://doi.org/10.3390/su14042263
Chicago/Turabian StyleLi, Dukangqi, and Weitao Shen. 2022. "Regional Happiness and Corporate Green Innovation: A Financing Constraints Perspective" Sustainability 14, no. 4: 2263. https://doi.org/10.3390/su14042263
APA StyleLi, D., & Shen, W. (2022). Regional Happiness and Corporate Green Innovation: A Financing Constraints Perspective. Sustainability, 14(4), 2263. https://doi.org/10.3390/su14042263