Application of YOLO and ResNet in Heat Staking Process Inspection
Abstract
1. Introduction
2. Related Work
2.1. YOLO Framework
2.2. ResNet Framework
3. Proposed System
3.1. Shortcomings of Existing Models
3.2. Suggested YOLO-ResNet Model
4. Experimental Results
4.1. Experimental Dataset
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Zhang, Y.; Sun, X.; Dai, H.; Chen, X. Intelligent solutions in chest abnormality detection based on YOLOv5 and ResNet50. J. Healthc. Eng. 2021, 2021, 2267635. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Kauppila, O.; Mottonen, M. Measurement system escape and overkill rate analysis. Int. J. Adv. Manuf. Technol. 2011, 57, 1079–1086. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Jung, H.; Jeon, J.; Choi, D.; Park, J.Y. Application of machine learning techniques in injection molding quality prediction: Implications on sustainable manufacturing industry. Sustainability 2021, 13, 4120. [Google Scholar] [CrossRef]
- Jamwal, A.; Agrawal, R.; Sharma, M.; Giallanza, A. Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions. Appl. Sci. 2021, 11, 5725. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Wang, G.; Yu, H.; Sui, Y. Research on maize disease recognition method based on improved ResNet50. Mob. Inf. Syst. 2021, 2021, 9110866. [Google Scholar] [CrossRef]
- Chaschatzis, C.; Karaiskou, C.; Mouratidis, E.G.; Karagiannis, E.; Sarigiannidis, P.G. Detection and characterization of stressed sweet cherry tissues using machine learning. Drones 2021, 6, 3. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Tran, T. Tracking and classification of multiple human objects directly in compressive measurement domain for low quality optical videos. In Proceedings of the IEEE Publications 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; IEEE Publications: Piscataway, NJ, USA, 2019; Volume 2019, pp. 488–494. [Google Scholar]
- Yuan, X.; Xia, J.; Wu, J.; Shi, J.; Deng, L. Low Altitude Small UAV Detection Based on YOLO model. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; IEEE Publications: Piscataway, NJ, USA, 2020; Volume 2020, pp. 7362–7366. [Google Scholar]
- Yuan, J.; Fan, Y.; Lv, X.; Chen, C.; Li, D.; Hong, Y.; Wang, Y. Research on the practical classification and privacy protection of CT images of parotid tumors based on. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1576, p. 012040. [Google Scholar]
- Hendryli, J.; Herwindiati, D.E. Automatic license plate recognition for parking system using convolutional neural networks. In Proceedings of the International Conference on Information Management and Technology (ICIMTech), Indonesia, Southeast Asia, 13–14 August 2020; IEEE Publications: Piscataway, NJ, USA, 2020; Volume 2020, pp. 71–74. [Google Scholar]
- Chakravarthy, A.S.; Raman, S. Early blight identification in tomato leaves using deep learning. In Proceedings of the International Conference on Contemporary Computing and Applications (IC3A), Lucknow, India, 5–7 February 2020; IEEE Publications: Piscataway, NJ, USA, 2020; Volume 2020, pp. 154–158. [Google Scholar]
- Shah, S.; Deshmukh, C. Pothole and bump detection using convolution neural networks. In Proceedings of the IEEE Transportation Electrification Conference (ITEC-India), Bengaluru, India, 17–19 December 2019; IEEE Publications: Piscataway, NJ, USA, 2019; Volume 2019, pp. 1–4. [Google Scholar]
- Abdullah, S.; Hasan, M.M.; Islam, S.M.S. YOLO-based three-stage network for Bangla license plate recognition in Dhaka metropolitan city. In Proceedings of the International Conference on Bangla Speech and Language Processing (ICBSLP), Sylhet, Bangladesh, 21–22 September 2018; IEEE Publications: Piscataway, NJ, USA, 2018; Volume 2018, pp. 1–6. [Google Scholar]
- Hişam, D.; Hişam, E. Deep learning models for classifying cancer and COVID-19 lung diseases. In Proceedings of the Innovations in Intelligent Systems and Applications Conference (ASYU), Elazig, Turkey, 6–8 October 2021; IEEE Publications: Piscataway, NJ, USA, 2021; Volume 2021, pp. 1–4. [Google Scholar]
- Park, G.; Park, N.; Kim, S.; Kim, S.; Kim, J.; Ko, B. Real-time mask facial expression recognition using Tiny-YOLOv3 and ResNet50. In Proceedings of the Korean Society of Broadcast Engineers Conference; The Korean Institute of Broadcast and Media Engineers: Seoul, Republic of Korea, 2021; pp. 232–234. [Google Scholar]
- Li, Y.; Han, Z.; Xu, H.; Liu, L.; Li, X.; Zhang, K. YOLOv3-lite: A lightweight crack detection network for aircraft structure based on depthwise separable convolutions. Appl. Sci. 2019, 9, 3781. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Zhou, B.; Yang, S.; Gong, Z. Real-time Signal Light Detection based on Yolov5 for Railway. In Proceedings of the IOP Conference Series. Earth and Environmental Science, Jakarta, Indonesia, 25–26 September 2021; Volume 769, p. 042069. [Google Scholar]
- Liu, X.; Jiang, X.; Hu, H.; Ding, R.; Li, H.; Da, C. Traffic sign recognition algorithm based on improved YOLOv5s. In Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 14–17 October 2021; Volume 2021, pp. 980–985. [Google Scholar]
- Kim, J.A.; Sung, J.Y.; Park, S.H. Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition. In Proceedings of the IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Republic of Korea, 26–28 October 2020; Volume 2020, pp. 1–4. [Google Scholar]
- Jia, W.; Xu, S.; Liang, Z.; Zhao, Y.; Min, H.; Li, S.; Yu, Y. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector. IET Image Process. 2021, 15, 3623–3637. [Google Scholar] [CrossRef]
- Dharneeshkar, J.; Aniruthan, S.A.; Karthika, R.; Parameswaran, L. Deep Learning based Detection of potholes in Indian roads using YOLO. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; Volume 2020, pp. 381–385. [Google Scholar]
- Junos, M.H.; Mohd Khairuddin, A.S.; Thannirmalai, S.; Dahari, M. Automatic detection of oil palm fruits from UAV images using an improved YOLO model. Vis. Comput. 2022, 38, 2341–2355. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images. In Lecture Notes in Computer Science International Symposium on Neural Networks; Springer: Cham, Swizerland, 2020; pp. 233–243. [Google Scholar] [CrossRef]
- Lyu, S.; Li, R.; Zhao, Y.; Li, Z.; Fan, R.; Liu, S. Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system. Sensors 2022, 22, 576. [Google Scholar] [CrossRef]
- Mukti, I.Z.; Biswas, D. Transfer learning based plant diseases detection using. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 20–22 December 2019; pp. 1–6. [Google Scholar]
- Zhang, L.; Yin, L.; Liu, L.; Zhuo, R.; Zhuo, Y. Forestry pests identification and classification based on improved YOLO v5s. In Proceedings of the International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021; Volume 2021, pp. 670–673. [Google Scholar]
- Zhang, D.; Huang, Z.; Wang, H.; Wu, Y.; Wang, Y.; Zou, J. Research and application of wild edible mushroom detection based on multi-scale features. In Proceedings of the 2nd International Conference on Information Science and Education (ICISE-IE), Nanchang, China, 26–28 November 2021; Volume 2021, pp. 455–459. [Google Scholar]
- Dima, T.F.; Ahmed, M.E. Using YOLOv5 algorithm to detect and recognize American sign language. In Proceedings of the International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; Volume 2021, pp. 603–607. [Google Scholar]
- Yang, Y.C.; Chen, W. An improved YOLO leucocyte classification and recognition method. In Proceedings of the International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xi’an, China, 27–28 March 2021; Volume 2021, pp. 618–621. [Google Scholar]
- Wu, Z.; Zhang, D.; Shao, Y.; Zhang, X.; Zhang, X.; Feng, Y.; Cui, P. Using YOLOv5 for garbage classification. In Proceedings of the 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Yibin, China, 20–22 August 2021; Volume 2021, pp. 35–38. [Google Scholar]
- Cengil, E.; Çinar, A.; Yildirim, M. A case study: Cat-dog face detector based on YOLOv5. In Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Virtual Conference, Zallaq, Bahrain, 29–30 September 2021; Volume 2021, pp. 149–153. [Google Scholar]
- Zhou, Y.; Wu, M.; Bai, Y.; Guo, C. Flame detection with pruned and knowledge distilled YOLOv5. In Proceedings of the 5th Asian Conference on Artificial Intelligence Technology (ACAIT), Haikou, China, 29–31 October 2021; Volume 2021, pp. 780–785. [Google Scholar]
- Bushra, S.N.; Shobana, G.; Maheswari, K.U.; Subramanian, N. Smart video Survillance based weapon identification using Yolov5. In Proceedings of the International Conference on Electronic Systems and Intelligent Computing (ICESIC), Chennai, India, 22–23 April 2022; Volume 2022, pp. 351–357. [Google Scholar]
- Wang, X.; Niu, D.; Luo, P.; Zhu, C.; Ding, L.; Huang, K. A Safety Helmet and Protective Clothing Detection Method based on Improved-Yolo. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; Volume 3, pp. 5437–5441. [Google Scholar]
- Patel, D.; Patel, F.; Patel, S.; Patel, N.; Shah, D.; Patel, V. Garbage detection using advanced object detection techniques. In Proceedings of the International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; Volume 2021, pp. 526–531. [Google Scholar]
- Ji, S.Y.; Jun, H.J. Deep learning model for form recognition and structural member classification of east Asian traditional buildings. Sustainability 2020, 12, 5292. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Deshpande, A.; Estrela, V.V.; Patavardhan, P. The DCT-CNN-ResNet50 architecture to classify brain tumors with super-resolution, convolutional neural network, and the ResNet50. Neurosci. Inform. 2021, 1, 100013. [Google Scholar] [CrossRef]
- Chen, M.; Chen, W.; Chen, W.; Cai, L.; Chai, G. Skin cancer classification with deep convolutional neural networks. J. Med. Imaging Health Inform. 2020, 10, 1707–1713. [Google Scholar] [CrossRef]
- Luo, W.; Liu, J.; Huang, Y.; Zhao, N. An effective vitiligo intelligent classification system. J. Ambient Intell. Human. Comput. 2020, 1–10. [Google Scholar] [CrossRef]
- Jung, H.; Choi, M.K.; Jung, J.; Lee, J.H.; Kwon, S.; Young Jung, W. ResNet-based vehicle classification and localization in traffic surveillance systems. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zheng, Z.; Zhang, H.; Li, X.; Liu, S.; Teng, Y. Resnet-based model for cancer detection. In Proceedings of the IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 15–17 January 2021; Volume 2021, pp. 325–328. [Google Scholar]
- Kutlu, H.; Avci, E.; Özyurt, F. White blood cells detection and classification based on regional convolutional neural networks. Med. Hypotheses 2020, 135, 109472. [Google Scholar] [CrossRef]
- Polat, Ö. Detection of pediatric pneumonia from X-ray images using. In Proceedings of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021; pp. 1–6. [Google Scholar]
- Lu, Z.; Lu, J.; Ge, Q.; Zhan, T. Multi-object detection method based on YOLO and ResNet hybrid networks. In Proceedings of the Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; Volume 2019, pp. 827–832. [Google Scholar]
- Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A hyperspectral image classification method using multifeature vectors and optimized KELM. Proc. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, L.; Zhou, X.; Zhou, Y.; Sun, Y.; Zhu, W.; Chen, H.; Deng, W.; Chen, H.; Zhao, H. Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. In Information Sciences; Elsevier: Amsterdam, The Netherlands, 2022; Volume 612, pp. 576–593. [Google Scholar]
- Ren, Z.; Han, X.; Yu, X.; Skjetne, R.; Leira, B.J.; Sævik, S.; Zhu, M. Data-driven simultaneous identification of the 6DOF dynamic model and wave load for a ship in waves. In Mechanical Systems and Signal Processing; Elsevier: Amsterdam, The Netherlands, 2022; Volume 184, p. 109422. [Google Scholar]
- Yu, Y.; Hao, Z.; Li, G.; Liu, Y.; Yang, R.; Liu, H. Optimal search mapping among sensors in heterogeneous smart homes. In Mathematical Biosciences and Engineering; AIMS Press: Springfield, IL, USA, 2023; Volume 20, pp. 1960–1980. [Google Scholar]
Scheme | Optimizer | Class | Images | Labels | Precision | Recall | mAP@.5 | mAP@ |
---|---|---|---|---|---|---|---|---|
One | AdamW | All | 600 | 25,999 | 0.983 | 0.989 | 0.989 | 0.652 |
Points | 16,163 | 0.989 | 0.999 | 0.99 | 0.699 | |||
Screw | 9523 | 0.98 | 0.996 | 0.992 | 0.679 | |||
Hide | 313 | 0.981 | 0.971 | 0.986 | 0.578 | |||
Two | AdamW | All | 600 | 25,999 | 0.946 | 0.963 | 0.961 | 0.596 |
Points | 16,163 | 0.98 | 0.998 | 0.988 | 0.658 | |||
Screw | 9523 | 0.972 | 0.993 | 0.991 | 0.646 | |||
Hide | 313 | 0.886 | 0.898 | 0.903 | 0.485 | |||
Three | AdamW | All | 600 | 25,999 | 0.986 | 0.969 | 0.977 | 0.594 |
Points | 16,163 | 0.99 | 0.997 | 0.988 | 0.645 | |||
Screw | 9523 | 0.985 | 0.987 | 0.99 | 0.624 | |||
Hide | 313 | 0.983 | 0.923 | 0.953 | 0.514 | |||
Four | AdamW | All | 600 | 25,999 | 0.995 | 0.996 | 0.994 | 0.664 |
Points | 16,163 | 0.998 | 0.999 | 0.995 | 0.693 | |||
Screw | 9523 | 0.995 | 0.996 | 0.995 | 0.647 | |||
Hide | 313 | 0.993 | 0.994 | 0.994 | 0.651 | |||
Five | AdamW | All | 600 | 25,999 | 0.992 | 0.985 | 0.99 | 0.744 |
Points | 16,163 | 0.997 | 1 | 0.995 | 0.785 | |||
Screw | 9523 | 0.996 | 0.994 | 0.995 | 0.782 | |||
Hide | 313 | 0.984 | 0.962 | 0.98 | 0.665 | |||
Hyperparameters | Description | Value | ||||||
lr0 | Initial learning rate | 0.01 | ||||||
lrf | Final OneCycleLR learning rate (lr0 * lrf) | 0.01 | ||||||
momentum | Tuning parameter for the gradient descent algorithm | 0.937 | ||||||
weight_decay | Optimizer weight decay | 0.0005 | ||||||
warmup_epochs | Warmup epochs | 3.0 | ||||||
warmup_momentum | Warmup initial momentum | 0.8 | ||||||
warmup_bias_lr | Warmup initial bias learning rate | 0.1 | ||||||
box | Box loss gain | 0.05 | ||||||
cls | Class loss gain | 0.5 | ||||||
cls_pw | Class BCELoss positive weight | 1.0 | ||||||
obj | Object loss gain (scale with pixels) | 1.0 | ||||||
obj_pw | Object BCELoss positive weight | 1.0 | ||||||
iou_t | IoU training threshold | 0.20 | ||||||
anchor_t | Anchor-multiple threshold | 4.0 | ||||||
hsv_h | Image HSV-Hue augmentation (fraction) | 0.015 | ||||||
hsv_s | Image HSV-Saturation augmentation (fraction) | 0.7 | ||||||
hsv_v | Image HSV-Value augmentation (fraction) | 0.4 | ||||||
translate | Image translation (+/− fraction) | 0.1 | ||||||
scale | Image scale (+/− gain) | 0.5 | ||||||
fliplr | Image flip left-right (probability) | 0.5 | ||||||
mosaic | Image mosaic (probability) | 1.0 |
Model | Class | Opt. | Images | Labels | Precision | Recall | mAP@.5 | mAP@ |
---|---|---|---|---|---|---|---|---|
Yolov5n | All | AdamW | 600 | 100,310 | 0.937 | 0.914 | 0.945 | 0.592 |
Points | 54,060 | 0.978 | 0.99 | 0.992 | 0.622 | |||
Screw | 43,500 | 0.972 | 0.989 | 0.986 | 0.692 | |||
Hide | 2750 | 0.863 | 0.762 | 0.857 | 0.461 | |||
Yolov5s | All | AdamW | 600 | 100,310 | 0.924 | 0.944 | 0.945 | 0.592 |
Points | 54,060 | 0.978 | 0.99 | 0.992 | 0.622 | |||
Screw | 43,500 | 0.969 | 0.993 | 0.987 | 0.692 | |||
Hide | 2750 | 0.826 | 0.848 | 0.855 | 0.461 | |||
Yolov5m | All | AdamW | 600 | 100,310 | 0.947 | 0.93 | 0.956 | 0.591 |
Points | 54,060 | 0.987 | 0.987 | 0.992 | 0.627 | |||
Screw | 43,500 | 0.98 | 0.988 | 0.987 | 0.689 | |||
Hide | 2750 | 0.874 | 0.816 | 0.89 | 0.456 | |||
Yolov5l | All | AdamW | 600 | 100,310 | 0.934 | 0.929 | 0.952 | 0.594 |
Points | 54,060 | 0.982 | 0.99 | 0.992 | 0.614 | |||
Screw | 43,500 | 0.979 | 0.989 | 0.988 | 0.689 | |||
Hide | 2750 | 0.841 | 0.808 | 0.877 | 0.479 | |||
Yolov5x | All | AdamW | 600 | 100,310 | 0.934 | 0.939 | 0.951 | 0.595 |
Points | 54,060 | 0.984 | 0.988 | 0.99 | 0.619 | |||
Screw | 43,500 | 0.982 | 0.99 | 0.988 | 0.696 | |||
Hide | 2750 | 0.836 | 0.839 | 0.876 | 0.469 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
Non-defect | 0.97 | 0.99 | 0.98 | 306 |
Defect | 0.96 | 0.93 | 0.95 | 105 |
Unknown | 0.99 | 0.97 | 0.98 | 160 |
Accuracy | 0.98 | 571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Rhee, J. Application of YOLO and ResNet in Heat Staking Process Inspection. Sustainability 2022, 14, 15892. https://doi.org/10.3390/su142315892
Jung H, Rhee J. Application of YOLO and ResNet in Heat Staking Process Inspection. Sustainability. 2022; 14(23):15892. https://doi.org/10.3390/su142315892
Chicago/Turabian StyleJung, Hail, and Jeongjin Rhee. 2022. "Application of YOLO and ResNet in Heat Staking Process Inspection" Sustainability 14, no. 23: 15892. https://doi.org/10.3390/su142315892
APA StyleJung, H., & Rhee, J. (2022). Application of YOLO and ResNet in Heat Staking Process Inspection. Sustainability, 14(23), 15892. https://doi.org/10.3390/su142315892