Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Study
2.2. Life Cycle Assessment
2.2.1. Definition of the Scope and Goals
2.2.2. Life Cycle Inventory (LCI)
2.2.3. Life Cycle Impact Assessment (LCIA)
3. Results
3.1. Impact Assessment
3.1.1. Climate Change Category
3.1.2. Human Health Categories
3.1.3. Ecosystem Quality Categories
3.1.4. Resources Categories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Overview of the Midpoint Impact Categories and Related Indicators
Impact Category | Midpoint CharacterizationFactors | Indicator | Abbreviation | Unit | Damage Category | References |
---|---|---|---|---|---|---|
Particulate matter formation | Particulate matter formation potential | PM2.5 population intake | PMFP | kg PM2.5 eq | Human health | [85] |
Human carcinogenic toxicity | Human toxicity potential | Risk increase of cancer disease incidence | HTPc | kg 1.4-DCB | Human health | [85] |
Human non-carcinogenic toxicity | Human toxicity potential | Risk increase of non-cancer disease incidence | HTPnc | kg 1.4-DCB | Human health | [85] |
Ionizing radiation | Ionizing radiation potential | Absorbed dose increase | IRP | kBq Co-60 eq | Human health | [85] |
Ozone formation, Human health | Ozone formation potential—ecosystems | Increase tropospheric ozone increase | EOFP | kg NOx eq | Human health | [86] |
Stratospheric ozone depletion | Ozone depletion potential | Stratospheric ozone decrease | ODP | kg CFC11 eq | Human health | [86] |
Fossil resource scarcity | Fossil fuel potential | Upper heating value | FFP | kg oil eq | Resources | [44] |
Mineral resource scarcity | Surplus ore potential | Increase of ore extracted | SOP | kg Cu eq | Resources | [87] |
Water consumption | Water consumption potential | Increases of water consumed | WCP | m3 | Resources | [88] |
Freshwater ecotoxicity | Freshwater ecotoxicity potential | Hazard-weighted increase in freshwaters | FETP | kg 1.4-DCB | Ecosystem quality | [69] |
Freshwater eutrophication | Freshwater eutrophication potential | Phosphorus increases in freshwater | FEP | kg P eq | Ecosystem quality | [69,89,90] |
Land use | Agricultural land occupation potential | Occupation and time-integrated land transformation | LOP | m2a crop eq | Ecosystem quality | [82,83] |
Marine ecotoxicity | Marine ecotoxicity potential | Hazard-weighted increase in marine water | METP | kg 1,4-DCB | Ecosystem quality | [79,80] |
Marine eutrophication | Marine eutrophication potential | Phosphorus increases in marine water | MEP | kg N eq | Ecosystem quality | [79,80] |
Ozone formation, Terrestrial ecosystems | Ozone formation potential: humans | Tropospheric ozone population intake increase | HOFP | kg NOx eq | Ecosystem quality | [86] |
Terrestrial acidification | Terrestrial acidification potential | Proton increase in natural soils | TAP | kg SO2 eq | Ecosystem quality | [85] |
Terrestrial ecotoxicity | Terrestrial ecotoxicity potential | Hazard-weighted increase in natural soils | TETP | kg 1.4-DCB | Ecosystem quality | [85] |
Global warming | Global warming potential | Infrared radiative forcing increase | GWP | kg CO2 eq | Climate change | [91] |
References
- Jolodar, N.R.; Karimi, S.; Bouteh, E.; Balist, J.; Prosser, R. Human Health and Ecological Risk Assessment of Pesticides from Rice Production in the Babol Roud River in Northern Iran. Sci. Total Environ. 2021, 772, 144729. [Google Scholar] [CrossRef] [PubMed]
- Escobar, N.; Bautista, I.; Peña, N.; Fenollosa, M.L.; Osca, J.M.; Sanjuán, N. Life Cycle Thinking for the Environmental and Financial Assessment of Rice Management Systems in the Senegal River Valley. J. Environ. Manag. 2022, 310, 114722. [Google Scholar] [CrossRef] [PubMed]
- Saber, Z.; Esmaeili, M.; Pirdashti, H.; Motevali, A.; Nabavi-Pelesaraei, A. Exergoenvironmental-Life Cycle Cost Analysis for Conventional, Low External Input and Organic Systems of Rice Paddy Production. J. Clean. Prod. 2020, 263, 121529. [Google Scholar] [CrossRef]
- Alipour, A.; Veisi, H.; Darijani, F.; Mirbagheri, B.; Behbahani, A.G. Study and Determination of Energy Consumption to Produce Conventional Rice of the Guilan Province. Res. Agric. Eng. 2012, 58, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Niajalili, M.; Mayeli, P.; Naghashzadegan, M.; Poshtiri, A.H. Techno-Economic Feasibility of off-Grid Solar Irrigation for a Rice Paddy in Guilan Province in Iran: A Case Study. Sol. Energy 2017, 150, 546–557. [Google Scholar] [CrossRef]
- Lyu, Y.; Raugei, M.; Zhang, X.; Mellino, S.; Ulgiati, S. Environmental Cost and Impacts of Chemicals Used in Agriculture: An Integration of Emergy and Life Cycle Assessment. Renew. Sustain. Energy Rev. 2021, 151, 111604. [Google Scholar] [CrossRef]
- Xue, J.-F.; Pu, C.; Liu, S.-L.; Zhao, X.; Zhang, R.; Chen, F.; Xiao, X.-P.; Zhang, H.-L. Carbon and Nitrogen Footprint of Double Rice Production in Southern China. Ecol. Indic. 2016, 64, 249–257. [Google Scholar] [CrossRef]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A Nitrogen Footprint Model to Help Consumers Understand Their Role in Nitrogen Losses to the Environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Humbert, J.-Y.; Dwyer, J.M.; Andrey, A.; Arlettaz, R. Impacts of Nitrogen Addition on Plant Biodiversity in Mountain Grasslands Depend on Dose, Application Duration and Climate: A Systematic Review. Glob. Change Biol. 2016, 22, 110–120. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Vitousek, P. An Experiment for the World. Nature 2013, 497, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, W.; Ma, L.; Huang, G.; Oenema, O.; Zhang, F.; Dou, Z. An Analysis of China’s Fertilizer Policies: Impacts on the Industry, Food Security, and the Environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Pan, J.; Luo, J.; Liu, J.; Gu, B.; Liu, S.; Zhai, L.; Lindsey, S.; Zhang, Y.; et al. Nitrogen Application Rates Need to Be Reduced for Half of the Rice Paddy Fields in China. Agric. Ecosyst. Environ. 2018, 265, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, X.; Yang, X.; Lv, Y.; Wu, J.; Lin, L.; Zhang, Y.; Wang, G.; Xiao, Y.; Zhu, X.; et al. Emergy Evaluation and Economic Analysis of Compound Fertilizer Production: A Case Study from China. J. Clean. Prod. 2020, 260, 121095. [Google Scholar] [CrossRef]
- Xu, X.; He, C.; Yuan, X.; Zhang, Q.; Wang, S.; Wang, B.; Guo, X.; Zhang, L. Rice Straw Biochar Mitigated More N2O Emissions from Fertilized Paddy Soil with Higher Water Content than That Derived from Ex Situ Biowaste. Environ. Pollut. 2020, 263, 114477. [Google Scholar] [CrossRef] [PubMed]
- Darzi-Naftchali, A.; Motevali, A.; Keikha, M. The Life Cycle Assessment of Subsurface Drainage Performance under Rice-Canola Cropping System. Agric. Water Manag. 2022, 266, 107579. [Google Scholar] [CrossRef]
- Sun, H.; Feng, Y.; Ji, Y.; Shi, W.; Yang, L.; Xing, B. N2O and CH4 Emissions from N-Fertilized Rice Paddy Soil Can Be Mitigated by Wood Vinegar Application at an Appropriate Rate. Atmos. Environ. 2018, 185, 153–158. [Google Scholar] [CrossRef]
- Sujatha, M.P.; Lathika, C.; Smitha, J.K. Sustainable and Efficient Utilization of Weed Biomass for Carbon Farming and Productivity Enhancement: A Simple, Rapid and Ecofriendly Approach in the Context of Climate Change Scenario. Environ. Chall. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Nedbal, V.; Neugschwandtner, R.W. Agricultural LCA for Food Oil of Winter Rapeseed, Sunflower, and Hemp, Based on Czech Standard Cultivation Practices. Agronomy 2021, 11, 2301. [Google Scholar] [CrossRef]
- He, X.; Qiao, Y.; Liang, L.; Knudsen, M.T.; Martin, F. Environmental Life Cycle Assessment of Long-Term Organic Rice Production in Subtropical China. J. Clean. Prod. 2018, 176, 880–888. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Shan, Y.H.; Johnson-Beebout, S.E.; Singh, Y.; Buresh, R.J. Chapter 3 Crop Residue Management for Lowland Rice-Based Cropping Systems in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar]
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The Crop Yield Gap between Organic and Conventional Agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Ahmadpour, M.; Sinkakarimi, M.H.; Arabi, M.H.G.; Abdollahpour, M.; Mansour, A.; Asgharpour, A.; Islami, I.; Ahmadpour, M.; Hosseini, S.H.; Taleshi, M.S.; et al. Minerals and Trace Elements in a Long Term Paddy Soil-Rice System in the North of Iran: Human Health and Ecological Risk Assessment. J. Food Compos. Anal. 2022, 110, 104573. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Kaul, H.-P.; Wagentristl, H.; Moitzi, G.; Neugschwandtner, R.W. Sustainability Estimation of Oat:Pea Intercrops from the Agricultural Life Cycle Assessment Perspective. Agronomy 2021, 11, 2433. [Google Scholar] [CrossRef]
- Fraval, S.; van Middelaar, C.E.; Ridoutt, B.G.; Opio, C. Life Cycle Assessment of Food Products. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 488–496. [Google Scholar]
- Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I. Life Cycle Assessment of Rice Straw-Based Power Generation in Malaysia. Energy 2014, 70, 401–410. [Google Scholar] [CrossRef]
- Hesampour, R.; Bastani, A.; Heidarbeigi, K. Environmental Assessment of Date (Phoenix doctylifera) Production in Iran by Life Cycle Assessment. Inf. Process. Agric. 2018, 5, 388–393. [Google Scholar] [CrossRef]
- Oguzcan, S.; Dvarioniene, J.; Tugnoli, A.; Kruopiene, J. Environmental Impact Assessment Model for Substitution of Hazardous Substances by Using Life Cycle Approach. Environ. Pollut. 2019, 254, 112945. [Google Scholar] [CrossRef]
- Abdul Rahman, M.H.; Chen, S.S.; Abdul Razak, P.R.; Abu Bakar, N.A.; Shahrun, M.S.; Zin Zawawi, N.; Muhamad Mujab, A.A.; Abdullah, F.; Jumat, F.; Kamaruzaman, R.; et al. Life Cycle Assessment in Conventional Rice Farming System: Estimation of Greenhouse Gas Emissions Using Cradle-to-Gate Approach. J. Clean. Prod. 2019, 212, 1526–1535. [Google Scholar] [CrossRef]
- Mansoori, H.; Moghaddam, P.R.; Moradi, R. Energy Budget and Economic Analysis in Conventional and Organic Rice Production Systems and Organic Scenarios in the Transition Period in Iran. Front. Energy 2012, 6, 341–350. [Google Scholar] [CrossRef]
- Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May Smart Technologies Reduce the Environmental Impact of Nitrogen Fertilization? A Case Study for Paddy Rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef] [PubMed]
- Hokazono, S.; Hayashi, K. Life Cycle Assessment of Organic Paddy Rotation Systems Using Land- and Product-Based Indicators: A Case Study in Japan. Int. J. Life Cycle Assess. 2015, 20, 1061–1075. [Google Scholar] [CrossRef]
- Jirapornvaree, I.; Suppadit, T.; Kumar, V. Assessing the Economic and Environmental Impact of Jasmine Rice Production: Life Cycle Assessment and Life Cycle Costs Analysis. J. Clean. Prod. 2021, 303, 127079. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef] [PubMed]
- Saber, Z.; van Zelm, R.; Pirdashti, H.; Schipper, A.M.; Esmaeili, M.; Motevali, A.; Nabavi-Pelesaraei, A.; Huijbregts, M.A.J. Understanding Farm-Level Differences in Environmental Impact and Eco-Efficiency: The Case of Rice Production in Iran. Sustain. Prod. Consum. 2021, 27, 1021–1029. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rajaeifar, M.A.; Clark, S.; Shamahirband, S.; Anuar, N.B.; Mohd Shuib, N.L.; Gani, A. Evaluation of Traditional and Consolidated Rice Farms in Guilan Province, Iran, Using Life Cycle Assessment and Fuzzy Modeling. Sci. Total Environ. 2014, 481, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Motevali, A.; Hashemi, S.J.; Tabatabaeekoloor, R. Environmental Footprint Study of White Rice Production Chain-Case Study: Northern of Iran. J. Environ. Manag. 2019, 241, 305–318. [Google Scholar] [CrossRef]
- Houshyar, E.; Chen, B.; Chen, G.Q. Environmental Impacts of Rice Production Analyzed via Social Capital Development: An Iranian Case Study with a Life Cycle Assessment/Data Envelopment Analysis Approach. Ecol. Indic. 2019, 105, 675–687. [Google Scholar] [CrossRef]
- Rezaei, M.; Soheilifard, F.; Keshvari, A. Impact of Agrochemical Emission Models on the Environmental Assessment of Paddy Rice Production Using Life Cycle Assessment Approach. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 1–16. [Google Scholar] [CrossRef]
- Habibi, E.; Niknejad, Y.; Fallah, H.; Dastan, S.; Tari, D.B. Life Cycle Assessment of Rice Production Systems in Different Paddy Field Size Levels in North of Iran. Environ. Monit. Assess. 2019, 191, 202. [Google Scholar] [CrossRef]
- Morandini, N.P.; Petroudi, E.R.; Mobasser, H.R.; Dastan, S. Life Cycle Assessment of Crop Rotation Systems on Rice Cultivars in Northern Iran. Int. J. Plant Prod. 2020, 14, 531–548. [Google Scholar] [CrossRef]
- Dastan, S.; Ghareyazie, B.; Pishgar, S.H. Environmental Impacts of Transgenic Bt Rice and Non-Bt Rice Cultivars in Northern Iran. Biocatal. Agric. Biotechnol. 2019, 20, 101160. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Zhu, S.; Gao, Y.; Zheng, X.; Xu, Y. The Response of Agronomic Characters and Rice Yield to Organic Fertilization in Subtropical China: A Three-Level Meta-Analysis. Field Crops Res. 2021, 263, 108049. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Kaab, A.; Rafiee, S.; Nabavi-Pelesaraei, A. A Comparative of Modeling Techniques and Life Cycle Assessment for Prediction of Output Energy, Economic Profit, and Global Warming Potential for Wheat Farms. Energy Rep. 2022, 8, 4922–4934. [Google Scholar] [CrossRef]
- Lu, B.; Yang, J.; Ijomah, W.; Wu, W.; Zlamparet, G. Perspectives on Reuse of WEEE in China: Lessons from the EU. Resour. Conserv. Recycl. 2018, 135, 83–92. [Google Scholar] [CrossRef]
- Moradi, M.; Nematollahi, M.A.; Mousavi Khaneghah, A.; Pishgar-Komleh, S.H.; Rajabi, M.R. Comparison of Energy Consumption of Wheat Production in Conservation and Conventional Agriculture Using DEA. Environ. Sci. Pollut. Res. 2018, 25, 35200–35209. [Google Scholar] [CrossRef]
- Hokazono, S.; Hayashi, K. Variability in Environmental Impacts during Conversion from Conventional to Organic Farming: A Comparison among Three Rice Production Systems in Japan. J. Clean. Prod. 2012, 28, 101–112. [Google Scholar] [CrossRef]
- Zappe, A.L.; Fernandes de Oliveira, P.; Boettcher, R.; Rodriguez, A.L.; Machado, Ê.L.; Mantey dos Santos, P.A.; Rodriguez Lopez, D.A.; Amador de Matos, M.A. Human Health Risk and Potential Environmental Damage of Organic and Conventional Nicotiana Tobaccum Production. Environ. Pollut. 2020, 266, 114820. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A Comparison of Methods to Quantify Greenhouse Gas Emissions of Cropping Systems in LCA. J. Clean. Prod. 2018, 172, 4010–4017. [Google Scholar] [CrossRef] [Green Version]
- Regina, K.; Kaseva, J.; Esala, M. Emissions of Nitrous Oxide from Boreal Agricultural Mineral Soils—Statistical Models Based on Measurements. Agric. Ecosyst. Environ. 2013, 164, 131–136. [Google Scholar] [CrossRef]
- Harun, S.N.; Hanafiah, M.M.; Aziz, N.I.H.A. An LCA-Based Environmental Performance of Rice Production for Developing a Sustainable Agri-Food System in Malaysia. Environ. Manag. 2021, 67, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Mungkung, R.; Pengthamkeerati, P.; Chaichana, R.; Watcharothai, S.; Kitpakornsanti, K.; Tapananont, S. Life Cycle Assessment of Thai Organic Hom Mali Rice to Evaluate the Climate Change, Water Use and Biodiversity Impacts. J. Clean. Prod. 2019, 211, 687–694. [Google Scholar] [CrossRef]
- Meng, F.; Olesen, J.E.; Sun, X.; Wu, W. Inorganic Nitrogen Leaching from Organic and Conventional Rice Production on a Newly Claimed Calciustoll in Central Asia. PLoS ONE 2014, 9, e98138. [Google Scholar] [CrossRef]
- Sampanpanish, P. Use of Organic Fertilizer on Paddy Fields to Reduce Greenhouse Gases. Sci. Asia 2012, 38, 323. [Google Scholar] [CrossRef] [Green Version]
- Ikemura, Y.; Shukla, M.K.; Tahboub, M.; Leinauer, B. Some Physical and Chemical Properties of Soil in Organic and Conventional Farms for a Semi-Arid Ecosystem of New Mexico. J. Sustain. Agric. 2008, 31, 149–170. [Google Scholar] [CrossRef]
- Seufert, V.; Mehrabi, Z.; Gabriel, D.; Benton, T.G. Current and Potential Contributions of Organic Agriculture to Diversification of the Food Production System. In Agroecosystem Diversity; Elsevier: Amsterdam, The Netherlands, 2019; pp. 435–452. [Google Scholar]
- Blengini, G.A.; Busto, M. The Life Cycle of Rice: LCA of Alternative Agri-Food Chain Management Systems in Vercelli (Italy). J. Environ. Manag. 2009, 90, 1512–1522. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Bocchi, S.; Fiala, M. Organic Production Systems: Sustainability Assessment of Rice in Italy. Agric. Ecosyst. Environ. 2016, 225, 33–44. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, B.; Qiu, X.; Chen, M.; Ma, Z.; Yu, X. Distribution and Risk Assessment of 82 Pesticides in Jiulong River and Estuary in South China. Chemosphere 2016, 144, 1177–1192. [Google Scholar] [CrossRef]
- Sumon, K.A.; Rashid, H.; Peeters, E.T.H.M.; Bosma, R.H.; Van den Brink, P.J. Environmental Monitoring and Risk Assessment of Organophosphate Pesticides in Aquatic Ecosystems of North-West Bangladesh. Chemosphere 2018, 206, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jaipieam, S.; Visuthismajarn, P.; Sutheravut, P.; Siriwong, W.; Thoumsang, S.; Borjan, M.; Robson, M. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand. Hum. Ecol. Risk Assess. An Int. J. 2009, 15, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, S.; Yin, X.; Yu, X.; Luan, L. Arsenic Accumulation, Distribution and Source Analysis of Rice in a Typical Growing Area in North China. Ecotoxicol. Environ. Saf. 2019, 167, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tang, Z.; Wang, P.; Zhao, F.-J. Geographical Variations of Cadmium and Arsenic Concentrations and Arsenic Speciation in Chinese Rice. Environ. Pollut. 2018, 238, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Guo, Z.; Xiao, X.; Peng, C.; Shi, L.; Ran, H.; Xu, W. Atmospheric Deposition as a Source of Cadmium and Lead to Soil-Rice System and Associated Risk Assessment. Ecotoxicol. Environ. Saf. 2019, 180, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.-W.; Gao, W.-S.; Chen, Y.-Q.; Sui, P.; Eneji, A.E. Use of Life Cycle Assessment Methodology for Determining Phytoremediation Potentials of Maize-Based Cropping Systems in Fields with Nitrogen Fertilizer over-Dose. J. Clean. Prod. 2010, 18, 1530–1534. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment (LCA) Methodology II. The Application to N Fertilizer Use in Winter Wheat Production Systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Helmes, R.J.K.; Huijbregts, M.A.J.; Henderson, A.D.; Jolliet, O. Spatially Explicit Fate Factors of Phosphorous Emissions to Freshwater at the Global Scale. Int. J. Life Cycle Assess. 2012, 17, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Sun, H.; Chen, G.; Zou, G.; Zhou, S. Runoff Loss of Nitrogen and Phosphorus from a Rice Paddy Field in the East of China: Effects of Long-Term Chemical N Fertilizer and Organic Manure Applications. Glob. Ecol. Conserv. 2020, 22, e01011. [Google Scholar] [CrossRef]
- Zanon, J.A.; Favaretto, N.; Democh Goularte, G.; Dieckow, J.; Barth, G. Manure Application at Long-Term in No-till: Effects on Runoff, Sediment and Nutrients Losses in High Rainfall Events. Agric. Water Manag. 2020, 228, 105908. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Bacenetti, J.; Fusi, A.; Niero, M. The Influence of Fertiliser and Pesticide Emissions Model on Life Cycle Assessment of Agricultural Products: The Case of Danish and Italian Barley. Sci. Total Environ. 2017, 592, 745–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.-W. Life Cycle Assessment (LCA) of Different Fertilizer Product Types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Gougoulias, C.; Clark, J.M.; Shaw, L.J. The Role of Soil Microbes in the Global Carbon Cycle: Tracking the below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. J. Sci. Food Agric. 2014, 94, 2362–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Chen, Y.; Yang, X.; Cui, J.; Sui, P. The Effect of Different Organic Materials Amendment on Soil Bacteria Communities in Barren Sandy Loam Soil. Environ. Sci. Pollut. Res. 2017, 24, 24019–24028. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R.; Deng, X.; Li, L. Winter Wheat Yield and Water Use Efficiency Response to Organic Fertilization in Northern China: A Meta-Analysis. Agric. Water Manag. 2020, 229, 105934. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure Acts as a Better Fertilizer for Increasing Crop Yields than Synthetic Fertilizer Does by Improving Soil Fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, A.; Yuan, J.; Jiang, J. PH Buffering Capacity of Acid Soils from Tropical and Subtropical Regions of China as Influenced by Incorporation of Crop Straw Biochars. J. Soils Sediments 2012, 12, 494–502. [Google Scholar] [CrossRef]
- Sangakkara, U.R.; Liedgens, M.; Soldati, A.; Stamp, P. Root and Shoot Growth of Maize (Zea Mays) as Affected by Incorporation of Crotalaria Juncea and Tithonia Diversifolia as Green Manures. J. Agron. Crop Sci. 2004, 190, 339–346. [Google Scholar] [CrossRef]
- Hosseini-Fashami, F.; Motevali, A.; Nabavi-Pelesaraei, A.; Hashemi, S.J.; Chau, K. Energy-Life Cycle Assessment on Applying Solar Technologies for Greenhouse Strawberry Production. Renew. Sustain. Energy Rev. 2019, 116, 109411. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, R.N.; Taylor, A.; Puettmann, M. Hazardous Pollutants Emissions and Environmental Impacts from Fuelwood Burned and Synthetic Fertilizers Applied by Tobacco Growers in Pakistan. Environ. Technol. Innov. 2017, 7, 169–181. [Google Scholar] [CrossRef]
- Su, Y.; He, S.; Wang, K.; Shahtahmassebi, A.R.; Zhang, L.; Zhang, J.; Zhang, M.; Gan, M. Quantifying the Sustainability of Three Types of Agricultural Production in China: An Emergy Analysis with the Integration of Environmental Pollution. J. Clean. Prod. 2020, 252, 119650. [Google Scholar] [CrossRef]
- Lu, H.; Bai, Y.; Ren, H.; Campbell, D.E. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China. J. Environ. Manag. 2010, 91, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- Houshyar, E.; Wu, X.F.; Chen, G.Q. Sustainability of Wheat and Maize Production in the Warm Climate of Southwestern Iran: An Emergy Analysis. J. Clean. Prod. 2018, 172, 2246–2255. [Google Scholar] [CrossRef]
- van Zelm, R.; Huijbregts, M.A.J.; van de Meent, D. USES-LCA 2.0—A Global Nested Multi-Media Fate, Exposure, and Effects Model. Int. J. Life Cycle Assess. 2009, 14, 282–284. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakagawa, A.; Itsubo, N.; Inaba, A. Expanded Damage Function of Stratospheric Ozone Depletion to Cover Major Endpoints Regarding Life Cycle Impact Assessment (12 Pp). Int. J. Life Cycle Assess. 2006, 11, 150–161. [Google Scholar] [CrossRef]
- Vieira, M.; Ponsioen, T.; Goedkoop, M.; Huijbregts, M. Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction. Resources 2016, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, L.B.; van Zelm, R.; Hendriks, A.J.; Bobbink, R.; Huijbregts, M.A.J. Global Assessment of the Effects of Terrestrial Acidification on Plant Species Richness. Environ. Pollut. 2013, 174, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, L.B.; Henderson, A.D.; van Zelm, R.; Jolliet, O.; Huijbregts, M.A.J. Assessing the Importance of Spatial Variability versus Model Choices in Life Cycle Impact Assessment: The Case of Freshwater Eutrophication in Europe. Environ. Sci. Technol. 2013, 47, 13565–13570. [Google Scholar] [CrossRef]
- de Baan, L.; Alkemade, R.; Koellner, T. Land Use Impacts on Biodiversity in LCA: A Global Approach. Int. J. Life Cycle Assess. 2013, 18, 1216–1230. [Google Scholar] [CrossRef]
Physicochemical Characteristics | Organic | Conventional |
---|---|---|
pH | 6.48 ± 0.02 | 6.23 ± 0.06 |
EC (dS m−1) | 1.23 ± 0.04 | 1.39 ± 0.08 |
OC (%) | 1.94 ± 0.19 | 2.14 ± 0.16 |
N (%) | 0.16 ± 0.01 | 0.18 ± 0.01 |
P (mg kg–1) | 7.15 ± 0.20 | 7.45 ± 0.01 |
K (mg kg–1) | 96.4 ± 1.60 | 92.4 ± 1.1 |
CEC (cmol(+) kg−1 soil) | 30.4 ± 0.10 | 32.5 ± 0.2 |
Sand:Silt:Clay (%) | 29.3:49.2:21.3 | 31.1:45.2:23.5 |
Soil Texture | loam | loam |
Chemical Characteristics | Cattle Manure | Vermicompost |
---|---|---|
Moisture (%) | 29.6 | 32.3 |
Content of nitrogen (% dry weight) | 1.54 | 1.68 |
Content of phosphorus (% dry weight) | 0.31 | 0.39 |
Content of potassium (% dry weight) | 0.81 | 0.86 |
Content of organic carbon (% dry weight) | 17.5 | 22.3 |
C/N | 11:1 | 13:1 |
Input/Output | Unit | Conventional | Organic | |
---|---|---|---|---|
Inputs | Urea (as N) | kg ha−1 | 100.85 ± 11.35 | - |
Triple superphosphate (as P2O5) | kg ha−1 | 80.41 ± 5.21 | - | |
Potassium chloride (as K2O) | kg ha−1 | 50.35 ± 3.63 | - | |
Manure (cattle) | kg ha−1 | - | 9700 ± 14.32 | |
Vermicompost | kg ha−1 | - | 5001 ± 15.86 | |
Insecticides | kg ha−1 | 5.03 ± 0.98 | - | |
Herbicides | kg ha−1 | 15.05 ± 2.32 | - | |
Fungicides | kg ha−1 | - | - | |
Diesel | L ha−1 | 170.4 ± 14.76 | 159.6 ± 14.87 | |
Machinery | h ha−1 | 50 ± 22.12 | 42 ± 8.96 | |
Seeds (kg ha−1) | kg ha−1 | 79.14 ± 11.54 | 78 ± 6.36 | |
Water | m3 ha−1 | 11,000 ± 0.12 | 9800 ± 0.12 | |
Outputs | Yield paddy rice | kg ha−1 | 3490 ± 53.18 | 4000 ± 59.35 |
Yield straw | kg ha−1 | 1240 ± 45.53 | 1650 ± 39.12 | |
NO3− SQCB model | kg ha−1 | 8.76 | 30.92 | |
NH3 EMEP/EEA, 2016 | kg ha−1 | 5.04 | 18.67 | |
PO43− SALCA model | kg ha−1 | 0.64 | 0.85 | |
P SALCA model | kg ha−1 | 1 | 1 | |
CO2 IPCC | kg ha−1 | 258.92 | 174.13 | |
N2O IPCC | kg ha−1 | 1.09 | 2.75 | |
CH4 IPCC | kg ha−1 | 148.44 | 330.72 |
Impact Category | Damage Category | Abbreviation | Unit | Conventional | Organic |
---|---|---|---|---|---|
Particulate matter formation | Human health | PMFP | kg PM2.5 eq | 0.29 ns | 0.32 ns |
Human carcinogenic toxicity | Human health | HTPc | kg 1.4-DCB | 28.79 a | 22.3 b |
Human non-carcinogenic toxicity | Human health | HTPnc | kg 1.4-DCB | 20.92 a | 15.4 b |
Ionizing radiation | Human health | IRP | kBq Co-60 eq | 0.36 a | 0.21 b |
Ozone formation | Human health | EOFP | kg NOx eq | 0.45 a | 0.31 b |
Stratospheric ozone depletion | Human health | ODP | kg CFC11 eq | 0.30 ns | 0.36 ns |
Fossil resource scarcity | Resources | FFP | kg oil eq | 0.49 a | 0.42 b |
Mineral resource scarcity | Resources | SOP | kg Cu eq | 0.01 ns | 0.01 ns |
Water consumption | Resources | WCP | m3 | 11.91 a | 9.25 b |
Freshwater ecotoxicity | Ecosystem quality | FETP | kg 1.4-DCB | 1.27 a | 0.48 b |
Freshwater eutrophication | Ecosystem quality | FEP | kg P eq | 1.33 ns | 1.24 ns |
Land use | Ecosystem quality | LOP | m2a crop eq | 0.04a | 0.02 b |
Marine ecotoxicity | Ecosystem quality | METP | kg 1.4-DCB | 91.47 a | 77.17 b |
Marine eutrophication | Ecosystem quality | MEP | kg N eq | 0.06 b | 0.41 a |
Ozone formation, terrestrial ecosystems | Ecosystem quality | HOFP | kg NOx eq | 0.06 a | 0.03 b |
Terrestrial acidification | Ecosystem quality | TAP | kg SO2 eq | 0.21 b | 1.06 a |
Terrestrial ecotoxicity | Ecosystem quality | TETP | kg 104-DCB | 4.35 a | 2.21 b |
Global warming | Climate change | GWP | kg CO2 eq | 0.38 b | 0.72 a |
CO2 Equivalent | |||||||
---|---|---|---|---|---|---|---|
GHGs | Conventional | Organic | Unit | Calculation Method of GHGs | GWP | Conventional | Organic |
CO2 | 258.92 | 174.13 | (kg ha−1) | IPCC, 2006 | 1 | 258.92 | 174.13 |
N2O | 1.09 | 2.75 | (kg ha−1) | IPCC, 2006 | 298 | 324.82 | 819.5 |
CH4 | 148.44 | 330.72 | (kg ha−1) | IPCC, 2006 | 25 | 3711 | 8268 |
Total | 4294.74 | 9261.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amirahmadi, E.; Moudrý, J.; Konvalina, P.; Hörtenhuber, S.J.; Ghorbani, M.; Neugschwandtner, R.W.; Jiang, Z.; Krexner, T.; Kopecký, M. Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability 2022, 14, 15870. https://doi.org/10.3390/su142315870
Amirahmadi E, Moudrý J, Konvalina P, Hörtenhuber SJ, Ghorbani M, Neugschwandtner RW, Jiang Z, Krexner T, Kopecký M. Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability. 2022; 14(23):15870. https://doi.org/10.3390/su142315870
Chicago/Turabian StyleAmirahmadi, Elnaz, Jan Moudrý, Petr Konvalina, Stefan Josef Hörtenhuber, Mohammad Ghorbani, Reinhard W. Neugschwandtner, Zhixiang Jiang, Theresa Krexner, and Marek Kopecký. 2022. "Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach" Sustainability 14, no. 23: 15870. https://doi.org/10.3390/su142315870
APA StyleAmirahmadi, E., Moudrý, J., Konvalina, P., Hörtenhuber, S. J., Ghorbani, M., Neugschwandtner, R. W., Jiang, Z., Krexner, T., & Kopecký, M. (2022). Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability, 14(23), 15870. https://doi.org/10.3390/su142315870