Research on the Control of Mining Instability and Disaster in Crisscross Roadways
Abstract
:1. Introduction
2. Case Analysis on the Mining Influence of Crisscross Roadway
2.1. Project Overview
2.2. The Influence of Crisscross Roadway on Engineering Safety
3. Research Process and Methods
3.1. Numerical Modeling
3.2. The Characteristics of Surrounding Rock Interference in Crisscross Roadway
3.3. The Evolution Pattern of Plastic Zone in Crisscross Roadway
4. Results
4.1. The Key of Mining Instability Control in Crisscross Roadway
4.2. The Collaborative Control Scheme Design of Space Crisscross Roadway
4.3. The Control Effect Analysis of Crisscross Roadway
5. Discussion
5.1. Study on Morphological Law of Plastic Zone of Surrounding Rock of Roadway
5.2. The Mining Instability and Disaster Mechanism in Crisscross Roadway
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Han, L.; Zhao, Z.; Meng, Q.; Liu, H. Influence of principal stress on surrounding rock stability of roadway intersection. Rock Soil Mech. 2015, 36, 1752–1760. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Wang, J. Study on failure mechanism and control measure of deep intersecting roadway. China Min. Mag. 2015, 24, 150–153. [Google Scholar]
- He, X.S.; Liu, K.M.; Zhang, L.; Guo, H. Structural design and application of concrete-filled steel tube support at extremely soft rock roadway intersection. J. China Coal Soc. 2014, 40, 2040–2048. [Google Scholar] [CrossRef]
- Xu, H.; Lai, X.; Shan, P.; Yang, Y.; Zhang, S.; Yan, B.; Zhang, Y.; Zhang, N. Energy dissimilation characteristics and shock mechanism of coal-rock mass induced in steeply-inclined mining: Comparison based on physical simulation and numerical calculation. Acta Geotech. 2022. [Google Scholar] [CrossRef]
- Bu, Q.; Xin, Y.; Wang, C.; Guo, D.; Ye, M. Stability analysis on bearing structure in the surrounding rock between staggered roadways. J. China Coal Soc. 2018, 43, 1866–1877. [Google Scholar] [CrossRef]
- Yan, X.; Xu, Y.; Zhao, J. Surrounding rock stability and control technology of crossing roadway. Coal Sci. Technol. 2018, 46, 81–85. [Google Scholar] [CrossRef]
- Chen, S. Discussion on surrounding rock control and support technology for the crossing part of ultra-close interchange roadway. Coal Eng. 2018, 50, 19–24. [Google Scholar]
- Zheng, B. Study on surrounding rock reinforcement technology of strong mine dynamic pressure large deformation roadway group. Coal Sci. Technol. 2015, 43, 27–31. [Google Scholar] [CrossRef]
- Cao, R.; Cao, P.; Lin, H.; Zhang, K. Deformation law and safety degree of surrounding rock in roadway intersection. J. Min. Saf. Eng. 2013, 30, 728–734. [Google Scholar]
- Cao, R.; Cao, P.; Lin, H.; Zhang, K. Stability analysis of roadway intersection considering strain softening. Rock Soil Mech. 2013, 34, 1760–1765, 1821. [Google Scholar] [CrossRef]
- Lu, X.L.; Liu, Q.S.; Su, P.F.; Cui, W.T. Instability mechanism and bracing optimization for roadway groups with soft and fractured surrounding rock in Pan’er Coal Mine. Chin. J. Geotech. Eng. 2013, 35, 97–102. [Google Scholar]
- Yang, R.; Zhu, Y.; Li, Y.; Li, W.; Xiao, B. Stability analysis and control strategy of weakly cemented layered floor in mining affected roadway. J. China Coal Soc. 2020, 45, 2667–2680. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Li, J.; Guo, X.F.; Lv, K.; Wang, J.Y. Space-time Evolutionary Regularity of Plastic Zone and Stability Control in Repetitive Mining Roadway. J. China Coal Soc. 2020, 45, 3389–3400. [Google Scholar] [CrossRef]
- Lv, K.; Zhao, Z.; Zhao, Z. Study on support technology of equipment removal channel in fully-mechanized top coal caving face in ultra- thick seam. Coal Sci. Technol. 2018, 46, 39–43. [Google Scholar] [CrossRef]
- Wang, E.; Xie, S.; Chen, D.; Chen, P.; Qi, P.; Ren, Y. Distribution laws and control of deviatoric stress of surrounding rock in the coal roadway under intense mining. J. Min. Saf. Eng. 2021, 38, 276–285+294. [Google Scholar] [CrossRef]
- Małkowski, P.; Niedbalski, Z.; Majcherczyk, T.; Bednarek, Ł. Underground monitoring as the best way of roadways support design validation in a long time period. Min. Miner. Depos. 2020, 14, 1–14. [Google Scholar] [CrossRef]
- Iordanov, I.; Buleha, I.; Bachurina, Y.; Boichenko, H.; Dovgal, V.; Kayun, O.; Kohtieva, O.; Podkopayev, Y. Experimental research on the haulage drifts stability in steeply dipping seams. Min. Miner. Depos. 2021, 15, 56–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, G.; Zhang, M.; Ren, H.; Bai, J.; Guo, Y.; Jiang, H.; Kang, L. Residual coal exploitation and its impact on sustainable development of the coal industry in China. Energy Policy 2016, 96, 534–541. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Wang, W.; Tian, C.; Bu, Q.; Wu, L. Study on the Stage Failure Mechanism and Stability Control of Surrounding Rock of Repeated Mining Roadway. Adv. Civ. Eng. 2020, 2020, 8866559. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal. 2022, 141, 106640. [Google Scholar] [CrossRef]
- Hou, C.J.; Wang, X.Y.; Bai, J.B.; Meng, N.K.; Wu, W.D. Basic theory and technology study of stability control for surrounding rock in deep roadway. J. China Univ. Min. Technol. 2021, 50, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Liu, P.; Liu, L.; Zeng, B.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Anchorage performance of a modified cable anchor subjected to different joint opening conditions. Constr. Build. Mater. 2022, 336, 127558. [Google Scholar] [CrossRef]
- Kang, H.P.; Jiang, P.F.; Huang, B.X.; Guan, X.M.; Wang, Z.G.; Wu, Y.Z.; Gao, F.Q.; Yang, J.W.; Cheng, L.X.; Zheng, Y.F.; et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines. J. China Coal Soc. 2020, 45, 845–864. [Google Scholar] [CrossRef]
- Lan, Y.W.; Yan, H.; Xian, P.F.; Li, T.T. Study on cables in roof controlling system to support the intensively dynamic pressure roadway in extra-thick coal seam. J. Min. Saf. Eng. 2018, 35, 276–282. [Google Scholar] [CrossRef]
- Jiang, P.F.; Kang, H.P.; Wang, Z.G. Principle, technology and application of soft rock roadway strata control by means of “rock bolting, U-shaped yielding steel arches and backfilling” in synergy in 1000 m deep coal mines. J. China Coal Soc. 2020, 45, 1020–1035. [Google Scholar] [CrossRef]
- Ma, D.P.; Yang, Y.J.; Cao, J.S.; Xing, L.Y. Optimization design of cross section shape of deep road-ways based on characteristics of energy release. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 3354–3360. [Google Scholar]
- Kang, H. Seventy years development and prospects of strata control technologies for coal mine roadways in China. Chin. J. Rock Mech. Eng. 2021, 40, 1–30. [Google Scholar] [CrossRef]
- Deng, X.; Li, Y.; Wang, F.; Shi, X.; Yang, Y.; Xu, X.; Huang, Y.; de Wit, B. Experimental study on the mechanical properties and consolidation mechanism of microbial grouted backfill. Int. J. Min. Sci. Technol. 2022, 32, 271–282. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Tian, C.; Ji, C.; Wang, J. Failure Mechanism and Stability Control of Surrounding Rock of Docking Roadway under Multiple Dynamic Pressures in Extrathick Coal Seam. Geofluids 2020, 2020, 8871925. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Li, J.; Li, J.; Xu, T.; Wang, E. The Principle of Invariant Stress of the Surrounding Rock of the Hole under the Condition of Equal Pressure in the Deep Rock Mass. Shock. Vib. 2020, 2020, 8878280. [Google Scholar] [CrossRef]
Rock Stratum | Bulk Modulus/GPa | Shear Modulus/GPa | Density/m−3 | Cohesion/MPa | Internal Friction Angle/(°) | Tensile Strength/MPa |
---|---|---|---|---|---|---|
Fine sandstone | 5.4 | 3.1 | 3270 | 9.0 | 34 | 2.67 |
sandy shale | 2.5 | 2.0 | 3180 | 3.5 | 28 | 1.51 |
Coal | 2.2 | 1.5 | 2800 | 2.5 | 26 | 1.22 |
Marlstone | 4.3 | 2.0 | 3270 | 4.0 | 30 | 1.40 |
Siltstone | 4.5 | 3.2 | 3570 | 12.0 | 32 | 2.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, S.; Wang, J.; Wang, Z.; Zhao, S.; Bu, Q. Research on the Control of Mining Instability and Disaster in Crisscross Roadways. Sustainability 2022, 14, 15821. https://doi.org/10.3390/su142315821
Wu X, Wang S, Wang J, Wang Z, Zhao S, Bu Q. Research on the Control of Mining Instability and Disaster in Crisscross Roadways. Sustainability. 2022; 14(23):15821. https://doi.org/10.3390/su142315821
Chicago/Turabian StyleWu, Xiangye, Shuai Wang, Jingya Wang, Zhongchen Wang, Shankun Zhao, and Qingwei Bu. 2022. "Research on the Control of Mining Instability and Disaster in Crisscross Roadways" Sustainability 14, no. 23: 15821. https://doi.org/10.3390/su142315821
APA StyleWu, X., Wang, S., Wang, J., Wang, Z., Zhao, S., & Bu, Q. (2022). Research on the Control of Mining Instability and Disaster in Crisscross Roadways. Sustainability, 14(23), 15821. https://doi.org/10.3390/su142315821