Pollution-Induced Changes in the Composition of Atmospheric Deposition and Soil Waters in Coniferous Forests at the Northern Tree Line
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Composition of Atmospheric Precipitation in the Form of Snow
3.2. Composition of Atmospheric Fallout in the Form of Rain
3.3. Soil Water Composition
4. Conclusions
- At different stages of the pollution-induced degradation of the Northern taiga forests, the concentrations of elements in snow, rain, and soil water, their atmospheric fallout, and their removal with soil water in spruce forests are, as a rule, higher than in pine forests. This is explained by the fact that spruce modifies atmospheric fallout and soil water more strongly than pine, due to a longer and dense crown. The concentrations of elements in atmospheric and soil water, as well as their atmospheric fallout and removal with soil water are, as a rule, higher under the crowns of spruce and pine than between the crowns, which is associated with the leaching of element compounds from tree crowns, litter, and soils.
- In defoliating forests and pollution-induced sparse forests, the concentrations of heavy metals and sulfates increase in snow, rain, and soil water compared to the background areas. At these stages of pollution-induced forest degradation, an increase in the concentrations of calcium and magnesium in snow, rain, and soil water was found, which is associated with their leaching from the tree canopy, litter, and soils. In defoliating forests and pollution-induced sparse forests, compared to the background areas, an increase in the actual acidity of atmospheric and soil water, caused by an increase in the number of acid-forming substances, was found. A decrease in carbon concentrations in atmospheric fallout and soil water was found, which is explained by a decrease in the amount of litter due to the degradation and death of trees.
- Long-term dynamics (from 1999 to 2020) of the composition of atmospheric fallout and soil water in coniferous forests in the background areas and defoliating forests demonstrate significant trends toward the increase in nickel concentrations in recent years. This may be due to an increase in nickel concentrations in aerosols propagating over considerable distances. In the pollution-induced sparse forests, there was a trend toward a decrease in the concentration of pollutants, which may indicate a decrease in the fallout of pollutants in the composition of larger particles near the smelter.
- Our results clearly demonstrate that the study of the composition and properties of atmospheric fallout and soil water in forest ecosystems should take into account both inter- and intra-biogeocenotic variability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lukina, N.V.; Nikonov, V.V. Biogeochemical Cycles in the Forests of the North under Aerotechnogenic Pollution, Part. 1; Izd-vo KNC RAN: Apatity, Russia, 1996; 216p. [Google Scholar]
- Ratkin, N.E. Quantitative assessment of the aerotechnogenic flow of matter to the underlying surface by the calculation method. Vestnik MGTU 2000, 3, 145–164. [Google Scholar]
- Fischer, R.; Mues, V.; Ulrich, E.; Becher, G.; Lorenz, M. Monitoring of atmospheric deposition in European forests and an overview on its implication on forest condition. Appl. Geochem. 2007, 22, 1129–1139. [Google Scholar] [CrossRef]
- Dauval’ter, V.A.; Dauval’ter, M.V.; Saltan, N.V.; Semenov, E.N. Effect of emissions from a mining and smelting plant on the chemical composition of atmospheric fallout (Monchegorsk polygon). Geoekologiya 2009, 3, 228–240. [Google Scholar]
- Derome, J.; Lukina, N. Interaction between environmental pollution and land-cover/land-use change in Arctic areas. In Eurasian Arctic Land Cover and Land Use in a Changing Climate; Gutman, G., Reissell, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 269–290. [Google Scholar] [CrossRef]
- Lorenz, M.; Becher, G. Forest Condition in Europe, 2012 Technical Report of ICP Forests. Work Report of the Thünen Institute for World Forestry. ICP Forests, Hamburg. 2012. 159p. Available online: https://www.econstor.eu/handle/10419/96596 (accessed on 3 October 2022).
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather condition on forest ecosystem in Europe: An overview. Plant Soil 2014, 380, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Waldner, P.; Thimonier, A.; Pannatier, E.G.; Etzold, S.; Schmitt, M.; Marchetto, A.; Rautio, P.; Derome, K.; Nieminen, T.M.; Nevalainen, S.; et al. Exceedance of critical loads and of critical limits impacts tree. Ann. For. Sci. 2015, 72, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Pascaud, A.; Sauvage, S.; Coddeville, P.; Nicolas, M.; Croisé, L.; Mezdour, A.; Probst, A. Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France. Atmos. Environ. 2016, 146, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Maas, R.; Grennfelt, P. Towards Cleaner Air. In Scientific Assessment Report 2016; EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution; UNECE: Geneva, Switzerland, 2016; pp. 1–50. [Google Scholar]
- Kowalska, A.; Astel, A.; Boczoń, A.; Polkowska, Ż. Atmospheric deposition in coniferous and deciduous tree stands in Poland. Atmos. Environ. 2016, 133, 145–155. [Google Scholar] [CrossRef]
- Nikonov, V.V.; Koptsik, G.N. (Eds.) Acid Rainfall and Forest Soils; Izd-vo KNC RAN: Apatity, Russia, 1999; 320p. [Google Scholar]
- Nikonov, V.V.; Lukina, N.V. Effect of spruce and pine on the acidity and composition of atmospheric deposition in the north-taiga forests of the industrial-developed region. Ecology 2000, 2, 97–105. [Google Scholar] [CrossRef]
- Kashulina, G.; Caritat, P.; Reimann, C. Snow and rain chemistry around the “Severonikel” industrial complex, NW Russia: Current status and retrospective analysis. Atmos. Environ. 2014, 89, 672–682. [Google Scholar] [CrossRef]
- Lyanguzova, I.V.; Goldvirt, D.K.; Fadeeva, I.K. Spatiotemporal dynamics of the pollution of al–fe-humus podzols in the impact zone of a nonferrous metallurgical plant. Eurasian Soil Sci. 2016, 49, 1189–1203. [Google Scholar] [CrossRef]
- Fedorkov, A.L. Adaptation of Conifers to the Stressful Conditions of the Far North; Izd-vo UroRAN: Ekaterinburg, Russia, 1999; 98p. [Google Scholar]
- Lukina, N.V.; Nikonov, V.V. Nutritional Regime of Northern Taiga Forests; Izd-vo KNC RAN: Apatity, Russia, 1998; 316p. [Google Scholar]
- ICP Forests. Forest Monitoring Methodology under the International Program ICP Forests; ICP Forests: Moscow, Russia, 2008; 46p. [Google Scholar]
- Belov, N.P. Soils of the Murmansk Region; Belov, N.P., Baranovskaja, A.V., Eds.; Izd-vo Nauka: Moscow, Russia, 1969; 147p. [Google Scholar]
- Chertov, O.G.; Men’shikova, G.P. Changes in forest soils under the influence of acid precipitation. Izvestija AN SSSR. Ser. Biol. 1983, 6, 110–115. [Google Scholar]
- Derome, J.; Niska, K.; Lindroos, A.-J.; Valikangas, P. The Ion Balance Monitoring Plot Network. The Lapland Forest Damage Project; Russian-Finnish Cooperation Report; Rovaniemi Research Station, The Finnish Forest Research Institute: Rovaniemi, Finland, 1993; pp. 49–57. [Google Scholar]
- Helmisaari, H.-S.; Mälkönen, E. Acidity and nutrient content of throughfall and soil leachate in three Pinussylvestris stands. Scand. J. For. Res. 1989, 4, 13–28. [Google Scholar] [CrossRef]
- Gandois, L.; Tipping, E.; Dumat, C.; Probst, A. Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall. Atmos. Environ. 2010, 44, 824–833. [Google Scholar] [CrossRef]
- Ershov, V.V.; Lukina, N.V.; Orlova, M.A.; Zukert, N.V. Dynamics of snowmelt water composition in conifer forests Exposed to Airborne Industrial Pollution. Russ. J. Ecol. 2016, 47, 46–52. [Google Scholar] [CrossRef]
- Sukhareva, T.A.; Ershov, V.V.; Isaeva, L.G.; Shkondin, M.A. Analyzing the status of northern taiga forests amid reduced Severonikel emissions. Tsvetnye Met. 2020, 8, 33–41. [Google Scholar] [CrossRef]
- Jakovlev, B.A. (Ed.) The Climate of the Murmansk Region; Knizhnoe izdatel’stvo: Murmansk, Russia, 1961; 200p. [Google Scholar]
- Nikonov, V.V.; Lukina, N.V.; Bezel, V.S.; Bel’skij, E.A.; Bespalova, A.V.; Golovchenko, A.V.; Gorbacheva, T.T.; Dobrovol’skaja, T.G.; Dobrovol’skij, V.V.; Zukert, N.V.; et al. Scattered Elements in Boreal Forests; Izd-vo Nauka: Moscow, Russia, 2004; 616p. [Google Scholar]
- Cvetkov, V.F.; Cvetkov, I.V. Industrial Pollution and Forest; Izd-vo IPC SAFU: Arhangelsk, Russia, 2012; 312p. [Google Scholar]
- Ershov, V.V.; Isaeva, L.G.; Sukhareva, T.A.; Lukina, N.V.; Danilova, M.A.; Smirnov, V.E. Assessment of the composition of rain deposition in coniferous forests at the northern tree line subject to air pollution. Russ. J. Ecol. 2020, 51, 319–328. [Google Scholar] [CrossRef]
- Back, J.; Turunen, M.; Ferm, A.; Huttunen, S. Needle structure and epiphytic microflora of Scots pine (Pinussylvestris L.) under heavy ammonia deposition from fur farming. Water Air Soil Pollut. 1997, 100, 119–132. [Google Scholar] [CrossRef]
- Sukhareva, T.A.; Lukina, N.V. Mineral composition of assimilative organs of conifers after reduction of atmospheric pollution in the Kola Peninsula. Russ. J. Ecol. 2014, 45, 95–102. [Google Scholar] [CrossRef]
- Park, K.; Hung, D.D. Characterization of metal aerosols in PM10 from urban, industrial, and Asian Dust sources. Environ. Monit. Assess. 2008, 160, 289–300. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Biswas, P. Nickel Speciation and aerosol formation during combustion of Kerosene Doped with Nickel Nitrate Aerosol in a Premixed Burner. Aerosol Sci. Technol. 2010, 33, 525–535. [Google Scholar] [CrossRef]
- Koptsik, G.N.; Smirnova, I.E.; Lukina, N. The effect of industrial aerial pollution on the composition of soil solutions in podzols. Eurasian Soil Sci. 2007, 40, 203–214. [Google Scholar] [CrossRef]
- Ershov, V.V.; Isaeva, L.G.; Gorbacheva, T.T.; Lukina, N.V.; Orlova, M.A.; Smirnov, V.E. Assessment of soil-water composition dynamics in the north taiga forests upon the reduction of industrial air pollution by emissions of a copper-nickel smelter. Contemp. Probl. Ecol. 2019, 12, 97–108. [Google Scholar] [CrossRef]
- Lukina, N.V.; Poljanskaja, L.M.; Orlova, M.A. Nutrient Regime of Soils of Northern Taiga Forests; Izd-vo Nauka: Moscow, Russia, 2008; 342p. [Google Scholar]
- Artemkina, N.A.; Gorbacheva, T.T.; Lukina, N. Low-molecular organic acids in soil water in forests of the Kola. Lesovedenie 2008, 6, 37–44. [Google Scholar]
Stages of Degradation | V, mL | pH | Ca | Mg | C | Ni | Cu | SO42− | ANC |
---|---|---|---|---|---|---|---|---|---|
Spruce forests (n = 60–69) | |||||||||
Background UC | 1326 | 4.81 | 0.37 | 0.09 | 3.29 | 0.002 | 0.002 | 0.96 | 0.02 |
83 | 0.07 | 0.02 | 0.01 | 0.37 | 0.001 | 0.0002 | 0.06 | 0.002 | |
Background BC | 2241 | 4.97 | 0.27 | 0.06 | 1.56 | 0.002 | 0.002 | 0.47 | 0.01 |
89 | 0.09 | 0.02 | 0.005 | 0.18 | 0.0005 | 0.0005 | 0.03 | 0.002 | |
Def. UC | 1506 | 4.52 | 0.58 | 0.15 | 2.69 | 0.02 | 0.02 | 2.06 | 0.005 |
100 | 0.05 | 0.05 | 0.01 | 0.28 | 0.003 | 0.005 | 0.19 | 0.003 | |
Def. BC | 2387 | 4.79 | 0.29 | 0.07 | 1.60 | 0.01 | 0.005 | 0.70 | 0.01 |
126 | 0.06 | 0.02 | 0.004 | 0.20 | 0.002 | 0.001 | 0.03 | 0.002 | |
Pol. UC | 2144 | 4.43 | 0.78 | 0.20 | 2.55 | 0.32 | 0.16 | 3.53 | −0.02 |
155 | 0.06 | 0.07 | 0.02 | 0.28 | 0.04 | 0.02 | 0.34 | 0.01 | |
Pol. BC | 2194 | 4.68 | 0.44 | 0.10 | 1.47 | 0.12 | 0.05 | 1.50 | −0.001 |
123 | 0.06 | 0.03 | 0.01 | 0.16 | 0.01 | 0.01 | 0.08 | 0.002 | |
Pine forests (n = 60–75) | |||||||||
Background UC | 1104 | 4.87 | 0.38 | 0.11 | 3.18 | 0.001 | 0.002 | 0.71 | 0.01 |
71 | 0.09 | 0.03 | 0.03 | 0.27 | 0.0003 | 0.0005 | 0.04 | 0.003 | |
Background BC | 1581 | 4.96 | 0.29 | 0.06 | 1.70 | 0.001 | 0.001 | 0.52 | 0.004 |
67 | 0.09 | 0.02 | 0.005 | 0,17 | 0.0003 | 0.0003 | 0.05 | 0.001 | |
Def. UC | 1522 | 4.50 | 0.50 | 0.13 | 2.56 | 0.01 | 0.01 | 1.56 | 0.004 |
92 | 0.06 | 0.04 | 0.01 | 0.22 | 0.002 | 0.001 | 0.08 | 0.002 | |
Def. BC | 2307 | 4.79 | 0.30 | 0.07 | 1.59 | 0.01 | 0.003 | 0.75 | 0.004 |
112 | 0.07 | 0.02 | 0.004 | 0.16 | 0.001 | 0.0005 | 0.04 | 0.003 | |
Pol. UC | 1908 | 4.46 | 0.59 | 0.17 | 1.87 | 0.16 | 0.08 | 2.54 | −0.01 |
92 | 0.05 | 0.05 | 0.01 | 0.18 | 0.01 | 0.01 | 0.14 | 0.003 | |
Pol. BC | 2244 | 4.70 | 0.40 | 0.10 | 1.74 | 0.08 | 0.05 | 1.44 | −0.005 |
99 | 0.05 | 0.03 | 0.01 | 0.18 | 0.01 | 0.01 | 0.06 | 0.002 |
Stages of Degradation | V, mL | pH | Ca | Mg | C | Ni | Cu | SO42− | ANC |
---|---|---|---|---|---|---|---|---|---|
Spruce forests (n = 85–91) | |||||||||
Background UC | 355 | 4.23 | 4.10 | 1.32 | 86.29 | 0.007 | 0.014 | 10.97 | 0.69 |
34 | 0.05 | 0.25 | 0.10 | 3.75 | 0.001 | 0.001 | 0.92 | 0.04 | |
Background BC | 646 | 5.42 | 0.51 | 0.12 | 6.00 | 0.003 | 0.003 | 1.00 | 0.04 |
42 | 0.08 | 0.05 | 0.012 | 0.77 | 0.0005 | 0.0005 | 0.08 | 0.006 | |
Def. UC | 323 | 3.60 | 6.66 | 1.60 | 55.90 | 0.31 | 0.24 | 33.48 | 0.318 |
28 | 0.03 | 0.52 | 0.14 | 6.13 | 0.029 | 0.030 | 2.68 | 0.031 | |
Def. BC | 624 | 4.84 | 0.88 | 0.16 | 4.93 | 0.01 | 0.006 | 2.93 | 0.02 |
47 | 0.08 | 0.09 | 0.02 | 0.34 | 0.002 | 0.001 | 0.26 | 0.004 | |
Pol. UC | 613 | 3.52 | 4.38 | 1.14 | 28.20 | 1.41 | 1.05 | 26.93 | 0.04 |
51 | 0.03 | 0.25 | 0.08 | 1.68 | 0.12 | 0.11 | 1.85 | 0.02 | |
Pol. BC | 631 | 4.19 | 1.38 | 0.25 | 4.59 | 0.09 | 0.07 | 6.24 | −0.005 |
56 | 0.05 | 0.10 | 0.02 | 0.30 | 0.01 | 0.01 | 0.45 | 0.005 | |
Pine forests (n = 85–91) | |||||||||
Background UC | 461 | 4.46 | 2.70 | 0.73 | 45.03 | 0.005 | 0.008 | 3.08 | 0.35 |
41 | 0.06 | 0.16 | 0.04 | 1.77 | 0.0007 | 0.0008 | 0.22 | 0.021 | |
Background BC | 727 | 5.34 | 0.48 | 0.10 | 4.81 | 0.003 | 0.004 | 1.24 | 0.023 |
49 | 0.08 | 0.06 | 0.009 | 0.27 | 0.001 | 0.001 | 0.17 | 0.003 | |
Def. UC | 577 | 3.64 | 4.28 | 1.04 | 55.34 | 0.14 | 0.10 | 16.20 | 0.346 |
65 | 0.03 | 0.24 | 0.06 | 3.03 | 0.013 | 0.01 | 1.05 | 0.02 | |
Def. BC | 640 | 4.72 | 0.72 | 0.14 | 4.61 | 0.01 | 0.005 | 2.70 | 0.023 |
46 | 0.06 | 0.06 | 0.013 | 0.24 | 0.001 | 0.0006 | 0.22 | 0.003 | |
Pol. UC | 571 | 3.64 | 3.51 | 0.80 | 29.82 | 0.60 | 0.53 | 17.28 | 0.11 |
45 | 0.03 | 0.22 | 0.05 | 1.81 | 0.05 | 0.07 | 1.08 | 0.01 | |
Pol. BC | 616 | 4.40 | 1.01 | 0.17 | 4.09 | 0.04 | 0.04 | 4.16 | 0.009 |
44 | 0.05 | 0.07 | 0.01 | 0.22 | 0.01 | 0.01 | 0.28 | 0.003 |
Stages of Degradation | V, mL | pH | Ca | Mg | C | Ni | Cu | SO42− | ANC |
---|---|---|---|---|---|---|---|---|---|
Spruce forests (n = 88–120) | |||||||||
Background UC | 1305 | 4.41 | 6.37 | 1.60 | 84.92 | 0.006 | 0.01 | 7.11 | 0.64 |
72 | 0.04 | 0.39 | 0.10 | 4.63 | 0.0004 | 0.001 | 0.52 | 0.04 | |
Background BC | 1054 | 4.23 | 1.51 | 0.34 | 28.39 | 0.003 | 0.006 | 0.94 | 0.20 |
73 | 0.04 | 0.11 | 0.023 | 1.84 | 0.0004 | 0.0006 | 0.07 | 0.014 | |
Def. UC | 1152 | 3.52 | 6.15 | 1.16 | 37.21 | 0.23 | 0.26 | 29.14 | 0.151 |
52 | 0.02 | 0.28 | 0.05 | 1.77 | 0.015 | 0.015 | 1.51 | 0.014 | |
Def. BC | 709 | 3.84 | 3.58 | 0.81 | 54.93 | 0.08 | 0.035 | 6.66 | 0.34 |
58 | 0.03 | 0.17 | 0.04 | 2.30 | 0.006 | 0.002 | 0.48 | 0.017 | |
Pol. UC | 1641 | 3.96 | 4.62 | 1.25 | 16.90 | 1.31 | 0.82 | 28.47 | −0.03 |
65 | 0.04 | 0.21 | 0.06 | 1.27 | 0.08 | 0.10 | 1.53 | 0.01 | |
Pol. BC | 722 | 4.20 | 3.94 | 0.93 | 16.36 | 0.70 | 0.15 | 18.06 | 0.029 |
80 | 0.04 | 0.27 | 0.06 | 1.57 | 0.06 | 0.02 | 1.40 | 0.007 | |
Pine forests (n = 83–139) | |||||||||
Background UC | 1089 | 3.79 | 4.48 | 0.93 | 82.75 | 0.004 | 0.008 | 2.23 | 0.57 |
65 | 0.03 | 0.24 | 0.05 | 4.17 | 0.0004 | 0.0007 | 0.16 | 0.037 | |
Background BC | 1100 | 3.90 | 2.17 | 0.46 | 44.84 | 0.003 | 0.009 | 1.02 | 0.331 |
76 | 0.03 | 0.14 | 0.028 | 2.79 | 0.001 | 0.002 | 0.10 | 0.024 | |
Def. UC | 828 | 3.63 | 3.85 | 0.79 | 55.62 | 0.04 | 0.02 | 7.92 | 0.303 |
70 | 0.02 | 0.24 | 0.04 | 2.58 | 0.004 | 0.00 | 0.41 | 0.02 | |
Def. BC | 1779 | 4.17 | 1.99 | 0.44 | 28.06 | 0.02 | 0.03 | 2.96 | 0.177 |
54 | 0.03 | 0.10 | 0.020 | 1.19 | 0.002 | 0.002 | 0.23 | 0.010 | |
Pol. UC | 1613 | 3.63 | 5.49 | 1.36 | 36.93 | 1.21 | 0.68 | 26.04 | 0.12 |
57 | 0.03 | 0.27 | 0.07 | 1.94 | 0.07 | 0.05 | 1.23 | 0.02 | |
Pol. BC | 1302 | 4.21 | 3.02 | 0.81 | 17.47 | 0.31 | 0.11 | 12.86 | 0.069 |
55 | 0.03 | 0.13 | 0.04 | 1.07 | 0.02 | 0.01 | 0.69 | 0.006 |
Stages of Degradation | V, mL | pH | Ca | Mg | C | Ni | Cu | SO42− | ANC |
---|---|---|---|---|---|---|---|---|---|
Spruce forests (n = 88–120) | |||||||||
Background UC | 554.44 | 4.98 | 3.62 | 1.07 | 52.34 | 0.005 | 0.008 | 5.87 | 0.30 |
114.75 | 0.08 | 0.45 | 0.12 | 5.44 | 0.001 | 0.002 | 0.59 | 0.04 | |
Background BC | 641.19 | 4.76 | 1.39 | 0.41 | 21.90 | 0.004 | 0.006 | 2.54 | 0.12 |
106.87 | 0.08 | 0.12 | 0.03 | 1.73 | 0.002 | 0.001 | 0.20 | 0.01 | |
Def. UC | 755.35 | 3.91 | 3.69 | 1.05 | 22.35 | 0.128 | 0.037 | 22.97 | 0.04 |
58.63 | 0.02 | 0.18 | 0.05 | 0.95 | 0.007 | 0.003 | 1.22 | 0.01 | |
Def. BC | 590.03 | 4.41 | 1.58 | 0.41 | 21.64 | 0.015 | 0.016 | 5.29 | 0.10 |
78.35 | 0.04 | 0.11 | 0.03 | 1.78 | 0.002 | 0.002 | 0.19 | 0.01 | |
Pol. UC | 962.15 | 4.49 | 3.25 | 0.90 | 9.71 | 0.81 | 0.15 | 15.47 | −0.02 |
90.30 | 0.03 | 0.20 | 0.05 | 0.72 | 0.06 | 0.01 | 0.87 | 0.01 | |
Pol. BC | 815.66 | 4.53 | 3.09 | 0.71 | 9.35 | 0.47 | 0.04 | 13.15 | −0.02 |
77.83 | 0.03 | 0.14 | 0.03 | 0.67 | 0.03 | 0.00 | 0.68 | 0.01 | |
Pine forests (n = 83–139) | |||||||||
Background UC | 1166.18 | 4.30 | 2.07 | 0.73 | 46.54 | 0.004 | 0.007 | 2.29 | 0.30 |
78.45 | 0.03 | 0.10 | 0.03 | 1.77 | 0.001 | 0.001 | 0.17 | 0.02 | |
Background BC | 710.36 | 4.46 | 1.23 | 0.36 | 29.77 | 0.003 | 0.005 | 1.08 | 0.20 |
90.84 | 0.05 | 0.07 | 0.02 | 1.65 | 0.001 | 0.001 | 0.11 | 0.01 | |
Def. UC | 376.22 | 4.55 | 3.03 | 0.90 | 24.22 | 0.049 | 0.011 | 10.56 | 0.08 |
56.68 | 0.04 | 0.24 | 0.06 | 1.94 | 0.007 | 0.001 | 0.56 | 0.01 | |
Def. BC | 774.93 | 4.83 | 0.86 | 0.24 | 18.28 | 0.006 | 0.005 | 3.63 | 0.03 |
90.61 | 0.05 | 0.05 | 0.02 | 1.72 | 0.001 | 0.001 | 0.21 | 0.00 | |
Pol. UC | 782.15 | 4.14 | 3.03 | 0.89 | 15.76 | 0.61 | 0.13 | 16.49 | 0.01 |
65.70 | 0.03 | 0.13 | 0.04 | 1.06 | 0.03 | 0.01 | 0.66 | 0.01 | |
Pol. BC | 774.68 | 4.63 | 2.52 | 0.70 | 12.29 | 0.26 | 0.05 | 10.18 | 0.04 |
67.97 | 0.05 | 0.12 | 0.04 | 0.94 | 0.03 | 0.01 | 0.48 | 0.00 |
Stages of Degradation | V, mL | pH | Ca | Mg | C | Ni | Cu | SO42− | ANC |
---|---|---|---|---|---|---|---|---|---|
Spruce forests (n = 88–120) | |||||||||
Background UC | 629.46 | 5.17 | 2.38 | 0.85 | 24.08 | 0.003 | 0.005 | 7.56 | 0.13 |
99.87 | 0.08 | 0.19 | 0.06 | 2.73 | 0.001 | 0.001 | 0.55 | 0.02 | |
Background BC | 608.00 | 4.73 | 1.19 | 0.40 | 14.20 | 0.001 | 0.007 | 3.95 | 0.05 |
165.72 | 0.09 | 0.15 | 0.06 | 1.30 | 0.000 | 0.001 | 0.40 | 0.01 | |
Def. UC | 886.00 | 4.34 | 2.35 | 0.71 | 11.16 | 0.06 | 0.01 | 13.18 | 0.01 |
204.66 | 0.04 | 0.16 | 0.05 | 1.09 | 0.01 | 0.00 | 0.91 | 0.01 | |
Def. BC | 652.40 | 4.47 | 1.72 | 0.46 | 14.18 | 0.02 | 0.01 | 7.18 | 0.05 |
84.91 | 0.03 | 0.10 | 0.02 | 1,50 | 0.00 | 0.00 | 0.30 | 0.01 | |
Pol. UC | 1350.28 | 4.56 | 3.96 | 1.21 | 14.15 | 1.22 | 0.50 | 22.06 | −0.05 |
95.10 | 0.04 | 0.17 | 0.09 | 1.40 | 0.11 | 0.05 | 1.33 | 0.01 | |
Pol. BC | 1452.82 | 4.68 | 3.59 | 0.72 | 7.36 | 0.43 | 0.01 | 10.72 | −0.06 |
101.46 | 0.03 | 0.15 | 0.03 | 1.34 | 0.05 | 0.00 | 0.79 | 0.01 | |
Pine forests (n = 83–139) | |||||||||
Background UC | 286.81 | 4.71 | 1.68 | 0.53 | 24.99 | 0.002 | 0.004 | 5.37 | 0.11 |
40.93 | 0.05 | 0.15 | 0.03 | 1.86 | 0.000 | 0.000 | 0.27 | 0.01 | |
Background BC | 547.66 | 4.91 | 1.25 | 0.38 | 27.27 | 0.004 | 0.005 | 1.51 | 0.17 |
85.31 | 0.06 | 0.08 | 0.03 | 1.87 | 0.001 | 0.001 | 0.17 | 0.02 | |
Def. UC | 531.47 | 4.43 | 3.90 | 1.11 | 34.90 | 0.11 | 0.03 | 13.95 | 0.12 |
85.85 | 0.05 | 0.31 | 0.08 | 3.35 | 0.01 | 0.01 | 0.86 | 0.02 | |
Def. BC | 918.34 | 4.83 | 1.07 | 0.32 | 13.04 | 0.003 | 0.004 | 4.10 | 0.04 |
145.59 | 0.06 | 0.14 | 0.03 | 1.87 | 0.001 | 0.001 | 0.22 | 0.01 | |
Pol. UC | 956.56 | 4.19 | 5.81 | 1.43 | 19.88 | 1.12 | 0.30 | 24.64 | 0.02 |
72.96 | 0.03 | 0.36 | 0.09 | 0.96 | 0.11 | 0.04 | 1.67 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershov, V.; Sukhareva, T.; Isaeva, L.; Ivanova, E.; Urbanavichus, G. Pollution-Induced Changes in the Composition of Atmospheric Deposition and Soil Waters in Coniferous Forests at the Northern Tree Line. Sustainability 2022, 14, 15580. https://doi.org/10.3390/su142315580
Ershov V, Sukhareva T, Isaeva L, Ivanova E, Urbanavichus G. Pollution-Induced Changes in the Composition of Atmospheric Deposition and Soil Waters in Coniferous Forests at the Northern Tree Line. Sustainability. 2022; 14(23):15580. https://doi.org/10.3390/su142315580
Chicago/Turabian StyleErshov, Vyacheslav, Tatyana Sukhareva, Ludmila Isaeva, Ekaterina Ivanova, and Gennadii Urbanavichus. 2022. "Pollution-Induced Changes in the Composition of Atmospheric Deposition and Soil Waters in Coniferous Forests at the Northern Tree Line" Sustainability 14, no. 23: 15580. https://doi.org/10.3390/su142315580
APA StyleErshov, V., Sukhareva, T., Isaeva, L., Ivanova, E., & Urbanavichus, G. (2022). Pollution-Induced Changes in the Composition of Atmospheric Deposition and Soil Waters in Coniferous Forests at the Northern Tree Line. Sustainability, 14(23), 15580. https://doi.org/10.3390/su142315580