Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development
Abstract
:1. Introduction
2. Research Conducted at CRDPI and the Agenda 2030 of the United Nations
2.1. Sustainable Development Goal 1 of ‘No Poverty’
2.2. Sustainable Development Goal 2 of ‘Zero Hunger’
2.3. Good Health and Well-Being
2.4. Sustainable Development Goal 4 of ‘Quality Education’
2.5. Sustainable Development Goal 6 of ‘Clean Water and Sanitation’
2.6. Sustainable Development Goal 7 of ‘Affordable and Clean Energy’
2.7. Sustainable Development Goal 12 of ‘Sustainable Production and Consumption’
2.8. Sustainable Development Goal 13 of ‘Climate Action’
2.9. Sustainable Development Goal 15 of ‘Life on Land’
2.10. Sustainable Development Goal 17 of ‘Partnership for the Goals’
3. Recommendations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandl, R.; Rasmussen, K.M.; Tomé, M.; Johnson, D.W. The Role of Forests in Carbon Cycles, Sequestration, and Storage 4; Forest Management and Carbon Sequestration. 2006. Available online: http://www.iufro.org/science/taskforces/carbonsequestration/ (accessed on 19 February 2022).
- Lal, R. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric. Res. 2012, 1, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cecillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Lescuyer, G.; Karsenty, A.; Eba’a Atyi, R. A new tool for sustainable forest management in Central Africa: Payments for environmental services. In The Forests of the CongoBasin: State of the Forest 2008? de Wasseige, C., Devers, D., de Marcken, P., Eba’a Atyi, R., Nasi, R., Mayaux, P., Eds.; Publications Office of the European Union: Luxembourg; CIFOR: Kinshasa, Democratic Republic of the Congo, 2009; pp. 131–143. [Google Scholar]
- Shure, J.; Marien, J.N.; de Wasseige, C.; Drigo, R.; Salbitano, F.; Dirou, S.; Nkoua, M. Contribution du bois énergie à La Satisfaction des besoins énergétiques des populations d’afrique centrale: Perspectives pour une gestion durable des ressources disponibles. In Les Forêts du Bassin du Cong: Etat des Forêts 2010; Office des Publications de l’Union Européenne: Luxembourg, 2012; Volume 5, pp. 109–122. ISBN 978-92-79-22717-2. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Koutika, L.-S.; Zagatto, M.R.G.; Pereira, A.P.d.A.; Miyittah, M.; Tabacchioni, S.; Bevivino, A.; Rumpel, C. Does the introduction of N2-fixing trees in forest plantations on tropical soils ameliorate low Fertility and enhance carbon sequestration via interactions between biota and nutrient availability? Case studies from Central Africa and South America. Front. Soil Sci. 2021, 1, 752747. [Google Scholar] [CrossRef]
- Bisiaux, F.; Peltier, R.; Muliele, J.C. Plantations industrielles et agroforesterie au service des populations des plateaux Batéké, Mampu, en République démocratique du Congo. Bois For. Trop. 2009, 301, 21–32. [Google Scholar] [CrossRef]
- Koutika, L.-S. Boosting C Sequestration and Land Restoration through Forest Management in Tropical Ecosystems: A Mini-Review. Ecologies 2022, 3, 13–29. [Google Scholar] [CrossRef]
- Koutika, L.S.; Obame, R.M.; Nkouamoussou, C.K.; Musadji, N.Y. Research priorities for sandy soils in Central Africa. Geoderma Reg. 2022, 29, e00519. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Bossio, D.; Chenu, C.; Henry, B.; Fuentes Espinoza, A.; Koutika, L.-S.; Ladha, J.; Madari, B.; Minasny, B.; et al. The Role of Soil Carbon Sequestration in Enhancing Human Resilience in Tackling Global Crises including Pandemics. Soil Secur. 2022, 8, 100069. [Google Scholar] [CrossRef]
- Makany, L. The Atlantic coast of the Congo geographical and geological frameworks, their influence on the distribution of vegetation and on the agricultural possibilities of the territory. In The Peking Science Symposium; Institute of Current World Affairs: Washington, DC, USA, 1964; pp. 891–907. [Google Scholar]
- Delwaulle, J.C.; Garbaye, J.; Laplace, Y. Ligniculture en milieu tropical: Les reboisements en eucalyptus hybrides de la savane côtière Congolaise. Rev. For. Fr. 1981, 3, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Louppe, D.; Depommier, D. Expansion, Research and Development of the Eucalyptus in Africa Wood Production, Livelihoods and Environmental Issues: An Unlikely Reconciliation? In Proceedings of the FAO/MEEATU Workshop “Eucalyptus in East Africa, the Socio-Economic and Environmental Issues”, Bujumbura, Burundi, 31 March–1 April 2010; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjonLXHkcb5AhVkolwKHeTGCRMQFnoECCIQAQ&url=https%3A%2F%2Fagritrop.cirad.fr%2F554151%2F1%2Fdocument_554151.pdf&usg=AOvVaw36q9uLK1hcRJ2aqrLZFvPg (accessed on 22 February 2022).
- Marsden, C.; Nouvellon, Y.; Thongo M’Bou, A.; Saint-Andre, L.; Jourdan, C.; Kinana, A.; Epron, D. Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: Up scaling of direct measurements on roots versus the trenched-plot technique. New Phytol. 2008, 177, 676–687. [Google Scholar] [CrossRef]
- Nouvellon, Y.; Epron, D.; Kinana, A.; Hamel, O.; Mabiala, A.; D’Annunzio, R.; Deleporte, P.; Saint-Andre, L.; Marsden, C.; Roupsard, O.; et al. Soil CO2 effluxes, soil carbon balance, and early tree growth following savannah afforestation in Congo: Comparison of two site preparation treatments. For. Ecol. Manag. 2008, 255, 1926–1936. [Google Scholar] [CrossRef]
- Epron, D.; Nouvellon, Y.; Mareschal, L.; Moreira, R.M.E.; Koutika, L.-S.; Geneste, B.; Delgado-Rojas, J.S.; Laclau, J.-P.; Sola, G.; Gonçalves, J.L.M.; et al. Partitioning of Net Primary Production in Eucalyptus and Acacia Stands and in Mixed-Species Plantations: Two Case-Studies in Contrasting Tropical Environments. For. Ecol. Manag. 2013, 301, 102–111. [Google Scholar] [CrossRef]
- Koutika, L.S.; Epron, D.; Bouillet, J.P.; Mareschal, L. Changes in N and C Concentrations, Soil Acidity and P Availability in Tropical Mixed Acacia and Eucalypt Plantations on a Nutrient-Poor Sandy Soil. Plant Soil 2014, 379, 205–216. [Google Scholar] [CrossRef]
- Tchichelle, V.S. Production de biomasse et quantification des flux d’azote dans une plantation mixte d’Eucalyptus urophylla x grandis et d’Acacia mangium au Congo. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2016. Available online: https://scanr.enseignementsup-recherche.gouv.fr/publication/these2016LORR0115 (accessed on 22 February 2022).
- Missamba-Lola, A.P.; Matondo, R.; Marien, J.N.; Samba-Kimbata, M.; Gillet, J.F. Dynamique spatio-temporelle des recrûs forestiers au bord des pistes secondaires: Cas des UFA-CIB dans la cuvette congolaise. Rev. Sci. Tech. Environ. Bassin Congo 2015, 4, 34–45. [Google Scholar]
- Schwartz, D.; Namri, M. Mapping the total organic carbon in the soils of the Congo. Glob. Planet Change 2002, 33, 77–93. [Google Scholar] [CrossRef]
- Bouvet, J.-M.; Vigneron, P.; Gouma, R.; Saya, A.R. Trends in variances and heritabilities with age for growth traits in eucalyptus spacing experiments. Silvae Genet. 2003, 52, 121–133. [Google Scholar]
- Saya, A.R.; Mankessi, F.; Toto, M.; Marien, J.N.; Monteuuis, O. Advances in mass clonal propagation of Eucalyptus urophylla x E. grandis in Congo. Bois For. Trop. 2008, 297, 15–26. [Google Scholar]
- Mankessi, F.; Saya, A.; Toto, M.; Monteuuis, O. Propagation of Eucalyptus urophylla × Eucalyptus grandis clones by rooted cuttings: Influence of 171 genotype and cutting type on rooting ability. Propag. Ornam. Plants 2010, 10, 42–49. [Google Scholar]
- Mankessi, F.; Saya, A.; Boudon, F.; Guedon, Y.; Montes, F.; Lartaud, M.; Verdeil, J.L.; Monteuuis, O. Phase change-related variations of dome shape in Eucalyptus urophylla x Eucalyptus grandis shoot apical meristems. Trees 2010, 24, 743–752. [Google Scholar] [CrossRef]
- Mankessi, F.; Saya, A.; Toto, M.; Monteuuis, O. Cloning field growing Eucalyptus urophylla × Eucalyptus grandis by rooted cuttings: Age, within-shoot position and season effects. Propag. Ornam. Plants 2011, 11, 3–9. [Google Scholar]
- Mankessi, F.; Saya, A.; Favreau, B.E.; Doulbeau, S.; Conejero, G.; Lartaud, M.; Verdeile, J.L.; Monteuuis, O. Variations of DNA methylation in Eucalyptus urophylla × Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol. Plant. 2011, 143, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Mankessi, F.; Saya, A.; Montes, F.; Boudon, F.; Lartaud, M.; Verdeil, J.L.; Monteuuis, O. Histocytological characteristics of Eucalyptus urophylla X Eucalyptus grandis shoot apical meristems of different physiological. Trees 2011, 25, 415–424. [Google Scholar] [CrossRef]
- Safou-Matondo, R.; Deleporte, P.; Laclau, J.-P.; Bouillet, J.-P. Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. For. Ecol. Manag. 2005, 210, 193–204. [Google Scholar] [CrossRef]
- Nouvellon, Y.; Laclau, J.-P.; Epron, D.; Kinana, A.; Mabiala, A.; Roupsard, O.; Bonnefond, J.-M.; le Maire, G.; Marsden, C.; Bontemps, J.-D.; et al. Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo. For. Ecol. Manag. 2010, 259, 1796–1807. [Google Scholar] [CrossRef]
- Nouvellon, Y.; Epron, D.; Marsden, C.; Kinana, A.; Maire, G.L.; Deleporte, P.; Saint-André, L.; Bouillet, J.-P.; Laclau, J.-P. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry 2012, 111, 515–533. [Google Scholar] [CrossRef]
- Gomat, H.; Deleporte, P.; Moukini, R.; Mialounguila, G.; Ognouabi, N.; Saya, A.; Vigneron, P.; Saint-Andre, L. What factors influence the stem taper of Eucalyptus growth, environmental conditions, or genetics? Ann. For. Sci. 2011, 68, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Gomat, H.Y. La production des plantations clonales d’eucalyptus dans la plaine côtière du Congo/Brazzaville: Effet des facteurs densité de plantation, fertilisation et régimes d’éclaircies. Ph.D. Thesis, l’Université Marien Ngouabi, Brazzaville, Congo, 2013. [Google Scholar]
- Bouillet, J.P.; Laclau, J.P.; Gonçalves, J.L.M.; Voigtlaender, M.; Gava, J.L.; Leite, F.P.; Hakamada, R.; Mareschal, L.; Mabiala, A.; Tardy, F.; et al. Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. For. Ecol. Manag. 2013, 301, 89–101. [Google Scholar] [CrossRef]
- Bikindou, F.D.A.; Gomat, H.Y.; Deleporte, P.; Bouillet, J.-P.; Moukini, R.; Mbedi, Y.; Ngouaka, E.; Brunet, D.; Sita, S.; Diazenza, J.-B.; et al. Are NIR Spectra Useful for Predicting Site Indices in Sandy Soils under Eucalyptus Stands in Republic of Congo? For. Ecol. Manag. 2012, 266, 126–137. [Google Scholar] [CrossRef]
- Laclau, J.P.; Ranger, J.; Deleporte, P.; Nouvellon, Y.; Saint André, L.; Marlet, S.; Bouillet, J.P. Nutrient cycling in a clonal stand of eucalyptus and an adjacent savanna ecosystem in Congo. 3. Input-output budget and consequences for the sustainability of the plantations. For. Ecol. Manag. 2005, 210, 375–391. [Google Scholar] [CrossRef]
- Nzila, J.D.; Bouillet, J.-P.; Laclau, J.-P.; Ranger, J. The effects of slash management on nutrient cycling and tree growth in Eucalyptus plantations in the Congo. For. Ecol. Manag. 2002, 171, 209–221. [Google Scholar] [CrossRef]
- Laclau, J.P.; Deleporte, P.; Ranger, J.; Bouillet, J.P.; Kazotti, G. Nutrient Dynamics throughout the Rotation of Eucalyptus Clonal Stands in Congo. Ann. Bot. 2003, 91, 879–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laclau, J.-P.; Ranger, J.; Bouillet, J.-P.; Nzila, J.D.; Deleporte, P. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo: 1. Chemical composition of rainfall, throughfall and stemflow solutions. For. Ecol. Manag. 2003, 176, 105–119. [Google Scholar] [CrossRef]
- Laclau, J.-P.; Ranger, J.; Nzila, J.d.D.; Bouillet, J.-P.; Deleporte, P. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo: 2. Chemical composition of soil solutions. For. Ecol. Manag. 2003, 180, 527–544. [Google Scholar] [CrossRef]
- D’Annunzio, R.; Conche, S.; Landais, D.; Saint-Andre, L.; Joffre, R.; Barthes, B.G. Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. For. Ecol. Manag. 2008, 255, 1050–1056. [Google Scholar] [CrossRef]
- Versini, A.; Zeller, B.; Derrien, D.; Mazoumbou, J.C.; Mareschal, L.; Saint André, L.; Ranger, J.; Laclau, J.P. The role of harvest residues to sustain tree growth and soil nitrogen stocks in a tropical Eucalyptus plantation. Plant Soil 2014, 376, 245–260. [Google Scholar] [CrossRef]
- Epron, D.; Mouanda, C.; Mareschal, L.; Koutika, L.-S. Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biol. Biochem. 2015, 85, 183–189. [Google Scholar] [CrossRef]
- Tchichelle, S.V.; Epron, D.; Mialoundama, F.; Koutika, L.S.; Harmand, J.M.; Bouillet, J.P.; Mareschal, L. Differences in nitrogen cycling and soil mineralization between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. South. For. 2017, 79, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tchichelle, S.; Mareschal, L.; Koutika, L.-S.; Epron, D. Biomass production, nitrogen accumulation and symbiotic 1 nitrogen fixation in a mixed species plantation of eucalypt and acacia on a nutrient-poor tropical soil. For. Ecol. Manag. 2017, 403, 103–111. [Google Scholar] [CrossRef]
- Mareschal, L.; Nzila, J.D.D.; Turpault, M.P.; M’Bou, A.T.; Mazoumbou, J.C.; Bouillet, J.P.; Ranger, J.; Laclau, J.P. Mineralogical and physico-chemical properties of Ferralic Arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 2011, 162, 159–170. [Google Scholar] [CrossRef]
- Bernhard-Reversat, F. Dynamics of Litter and Organic Matter at the Soil-Litter Interface in Fast-Growing Tree Plantations on Sandy Ferrallitic Soils (Congo). Acta Oecol. 1993, 14, 179–195. [Google Scholar]
- Bouillet, J.P.; Safou Matondo, R.; Laclau, J.-P.; Nzila, J.D.; Ranger, J.; Deleporte, P. Pour une production durable des plantations d’eucalyptus au Congo: La fertilisation. Bois Forêts Trop. 2004, 279, 23–35. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Taba, K.; Ndongo, M.; Kaonga, M. Nitrogen-fixing trees increase organic carbon sequestration in forest and agroforestry ecosystems in the Congo basin. Reg. Environ. Chang. 2021, 21, 109. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Mareschal, L. Planting acacia and eucalypt change P, N and C concentrations in POM of arenosols in the Congolese coastal plains. Geoderma Reg. 2017, 11, 37–43. [Google Scholar] [CrossRef]
- Koutika, L.S.; Cafiero, L.; Bevivino, A.; Merino, A. Organic Matter Quality of Forest Floor as a Driver of C and P Dynamics in Acacia and Eucalypt Plantations Established on a Ferralic Arenosols, Congo. For. Ecosyst. 2020, 7, 40. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Ngoyi, S.; Cafiero, L.; Bevivino, A. Soil organic matter dynamics along rotations in acacia and eucalyptus plantations in the Congolese coastal plains. For. Ecosyst. 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.P.A.; De Andrade, P.A.M.; Bini, D.; Durrer, A.; Robin, A.; Bouillet, J.P.; Andreote, F.D.; Cardoso, E.J.B.N. Shifts in the Bacterial Community Composition along Deep Soil Profiles in Monospecific and Mixed Stands of Eucalyptus Grandis and Acacia Mangium. PLoS ONE 2017, 12, e018037. [Google Scholar] [CrossRef] [Green Version]
- Voigtlaender, M.; Laclau, J.P.; de Gonçalves, J.L.M.; de Piccolo, M.C.; Moreira, M.Z.; Nouvellon, Y.; Ranger, J.; Bouillet, J.P. Introducing Acacia Mangium Trees in Eucalyptus Grandis Plantations: Consequences for Soil Organic Matter Stocks and Nitrogen Mineralization. Plant Soil 2012, 352, 99–111. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L. Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can. J. For. Res. 2005, 35, 2942–2950. [Google Scholar] [CrossRef]
- Forrester, D.I.; Pares, A.; O’Hara, C.; Khanna, P.K.; Bauhus, J. Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Pereira, A.P.A.; Zagatto, M.R.G.; Brandani, C.B.; Mescolotti, D.D.L.; Cotta, S.R.; Gonçalves, J.L.M.; Cardoso, E.J.B.N. Acacia Changes Microbial Indicators and Increases C and N in Soil Organic Fractions in Intercropped Eucalyptus Plantations. Front. Microbiol. 2018, 9, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bini, D.; Figueiredo, A.F.; Silva, M.C.P.; Vasconcellos, R.L.F.; Cardoso, E.J.B.N. Microbial Biomass and Activity in Litter during the Initial Development of Pure and Mixed Plantations of Eucalyptus Grandis and Acacia Mangium. Rev. Bras. Ciência Solo 2013, 37, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Bini, D.; Dos Santos, C.A.; Bouillet, J.-P.; Gonçalves, J.L.M.; Cardoso, E.J.B.N. Eucalyptus Grandis and Acacia Mangium in Monoculture and Intercropped Plantations: Evolution of Soil and Litter Microbial and Chemical Attributes during Early Stages of Plant Development. Appl. Soil Ecol. 2013, 63, 57–66. [Google Scholar] [CrossRef]
- Bini, D.; dos Santos, C.A.; da Silva, M.C.P.; Bonfim, J.A.; Cardoso, E.J.B.N. Intercropping Acacia Mangium Stimulates AMF Colonization and Soil Phosphatase Activity in Eucalyptus Grandis. Sci. Agric. 2018, 75, 102–110. [Google Scholar] [CrossRef]
- Rocha, J.H.T.; Menegale, M.L.C.; Rodrigues, M.; Gonçalves, J.L.M.; Pavinato, P.S.; Foltran, E.C.; Harrison, R.; James, J.N. Impacts of timber harvest intensity and P fertilizer application on soil P Fractions. For. Ecol. Manag. 2019, 437, 295–303. [Google Scholar] [CrossRef]
- Brezard, J.M. Les Eucalyptus Introduits au Congo 1953–1981; GERDAT-CTFT: Nogent-sur-Marne, France, 1983; 148p, Available online: https://agritrop.cirad.fr/361610. (accessed on 1 August 2022).
- Roux, J.; Coutinho, T.A.; Wingfield, M.J.; Bouillet, J.P. Diseases of plantation Eucalyptus in the Republic of Congo. S. Afr. J. Sci. 2000, 96, 454–456. [Google Scholar]
- Bouvet, J.M.; Vigneron, P.; Saya, A.; Gouma, R. Early Selection of Eucalyptus clones in retrospective nursery test using growth, morphological and dry matter criteria, in Congo. South. Afr. For. J. 2004, 200, 5–17. [Google Scholar] [CrossRef]
- Bouvet, J.M.; Vigneron, P.; Saya, A. Phenotypic Plasticity of Growth Trajectory and Ontogenic Allometry in Response to Density for Eucalyptus hybrid clones and familles. Ann. Bot. 2005, 96, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Makouanzi, G.; Bouvet, J.-M.; Denis, M.; Saya, A.; Mankessi, F.; Vigneron, P. Assessing the additive and dominance genetic effects of vegetative propagation ability in Eucalyptus -influence of modeling on genetic gain. Tree Genet. Genomes 2014, 10, 1243–1256. [Google Scholar] [CrossRef] [Green Version]
- Makouanzi, G.; Chaix, G.; Nourissier, S.; Vigneron, P. Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo. South. For. South. For. J. For. Sci. 2017, 80, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Tassin, J.; Missamba-Lola, A.P.; Marien, J.N. Biodiversité des plantations d’eucalyptus. Bois For. Trop. 2011, 309, 27–35. [Google Scholar] [CrossRef]
- Lejolly, J. Modèle agroforestier pour le développement à Ibi/Plateau de Batéké, Université Libre de Bruxelles, Belgique, 2018. p. 12. Available online: www.cairn.info/revue-mondes-en-developpement-2019-3-page113.html (accessed on 27 April 2022).
- Nsombo, B.M. Evaluation des nutriments et du carbone organique du sol dans le système agroforestier du plateau des Batéké en République Démocratique du Congo. Ph.D. Thesis, Ecole Régionale Post-Universitaire d’Aménagement et de Gestion Intégrés des Forêts et Territoires Tropicaux (ERAIFT), Kinshasa, Democratic Republic of the Congo, 2016; pp. 79–80. [Google Scholar]
- Koutika, L.-S. How hydrogen sulphide deposition from oil exploitation may affect bacterial communities and the health of forest soils in Congolese coastal plains? Front. Soil Sci. 2022, 2, 920142. [Google Scholar] [CrossRef]
- Asaah, E.K.; Tchoundjeu, Z.; Leakey, R.R.B.; Takousting, B.; Njong, J.; Edang, I. Trees, agroforestry and multifunctional agriculture in Cameroon. Int. J. Agric. Sustain. 2011, 9, 110–119. [Google Scholar] [CrossRef]
- Dubiez, E.; Freycon, V.; Marien, J.M.; Peltier, R.; Harmand, J.M. Long term impact of Acacia auriculiformis woodlots growing in rotation with cassava and maize on the carbon and nutrient contents of savannah sandy soils in the humid tropics (Democratic Republic of Congo). Agrofor. Syst. 2019, 93, 1167–1178. [Google Scholar] [CrossRef]
- Mankessi, F.; Saya, A.; Baptiste, C.; Nourissier, S.; Monteuis, O. In vitro rooting of genetically related Eucalyptus urophylla × Eucalyptus grandis clones in relation to the time spent in culture. Trees 2009, 23, 931–940. [Google Scholar] [CrossRef]
- Thongo M’bou, A.; Jourdan, C.; Deleporte, P.; Nouvellon, Y.; Saint-André, L.; Bouillet, J.-P.; Mialoundama, F.; Mabiala, A.; Epron, D. Root elongation in tropical Eucalyptus plantations: Effect of soil water content. Annals For. Sci. 2008, 65, 609–615. [Google Scholar] [CrossRef]
- Thongo M’Bou, A.; Saint-André, L.; de Grandcourt, A.; Nouvellon, Y.; Jourdan, C.; Mialoundama, F.; Epron, D. Growth and maintenance respiration of roots of clonal Eucalyptus cuttings: Scaling to stand-level. Plant Soil 2010, 332, 41–53. [Google Scholar] [CrossRef]
- Martin, B.; Quillet, G. Bouturage des arbres forestiers au Congo. 1e partie: Résultats des essais effectués à Pointe-Noire de 1969 à 1973. Bois For. Trop. 1974, 154, 41–57. [Google Scholar] [CrossRef]
- Versini, A.; Mareschal, L.; Matsoumbou, T.; Zeller, B.; Ranger, J.; Laclau, J.-P. Effects of litter manipulation in a tropical Eucalyptus plantation on leaching of mineral nutrients, dissolved organic nitrogen and dissolved organic carbon. Geoderma 2014, 232, 426–436. [Google Scholar] [CrossRef]
- Koutika, L.-S. Soil fertility improvement of nutrient-poor and sandy soils in the Congolese coastal plains. Recarbonizing global soils: A technical manual of recommended management practices. In Forestry, Wetlands, Urban—Case Studies; FAO & ITPS: Rome, Italy, 2021; Volume 6, pp. 4–13. [Google Scholar] [CrossRef]
- Epron, D.; Mareschal, L.; Marron, N.; Laclau, J.P.; Marsden, C.; Ranger, J.; Nouvellon, Y.; Saint-André, L.; Bouillet, J.-P. Les enjeux environnementaux des plantations forestières intensives. Forêt Privée 2011, 320, 66–74. [Google Scholar]
- Kasongo, R.K.; Van Ranst, E.; Verdoodt, A.; Kanyankagote, P.; Baert, G. Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Batéké plateau, D.R. Congo. Soil Use Manag. 2009, 25, 21–27. [Google Scholar] [CrossRef]
- Epron, D.; Marsden, C.; Thongo M’Bou, A.; Saint-André, L.; d’Annunzio, R.; Nouvellon, Y. Soil carbon dynamics following afforestation of a tropical savannah with Eucalyptus in Congo. Plant Soil 2009, 323, 309–322. [Google Scholar] [CrossRef]
- Epron, D.; Nouvellon, Y.; Deleporte, P.; Ifo, S.; Kazotti, G.; Thongo M’Bou, A.; Mouvondy, W.; Saint-André, L.; Roupsard, O.; Jourdan, C.; et al. Soil carbon balance in a clonal Eucalyptus plantation in Congo: Effects of logging on carbon inputs and soil CO2 efflux. Glob. Change Biol. 2006, 12, 1021–1031. [Google Scholar] [CrossRef]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 1993, 57, 105–128. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Andreux, F.; Hassink, J.; Choné, T.; Cerri, C.C. Characterisation of soil organic matter in the topsoils under rain forest and pastures in the eastern Brazilian Amazon Basin. Biol. Fertil. Soils 1999, 29, 309–313. [Google Scholar] [CrossRef]
- Laclau, J.P.; Toutain, F.; Thongo M’Bou, A.; Arnaud, M.; Joffre, R.; Ranger, J. The Function of the Superficial Root Mat in the Biogeochemical Cycles of Nutrients in Congolese Eucalyptus plantations. Ann. Bot. 2004, 93, 249–261. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Tchichelle, S.V.; Mareschal, L.; Epron, D. Nitrogen dynamics in a nutrient-poor soil under mixed-species plantations of eucalypts and acacias. Soil Biol. Biochem. 2017, 108, 84–90. [Google Scholar] [CrossRef]
- Koutika, L.S.; Mareschal, L.; Epron, D. Soil P Availability under Eucalypt and Acacia on Ferralic Arenosols, Republic of the Congo. Geoderma Reg. 2016, 7, 153–158. [Google Scholar] [CrossRef]
- Hartemink, A.E.; Lal, R.; Gerzabek, M.H.; Jama, B.; McBratney, A.B.; Six, J.; Tornquist, C.G. Soil carbon research and global environmental challenges. PeerJ PrePrints 2014, 2, e366v1. [Google Scholar] [CrossRef]
- Tarus, G.K.; Nadir, S.W. Effect of Forest management types on soil carbon stocks in montane forest: A case study of Eastern M au Forest in Kenya. Inter. J. For. Res. 2020, 2020, 8862813. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Richardson, D.M. Acacia mangium Willd: Benefits and threats associated with its increasing use around the world. For. Ecosyst. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Koutika, L.-S.; Fiore, A.; Tabacchioni, S.; Aprea, G.; Pereira, A.P.A.; Bevivino, A. Influence of Acacia mangium on soil fertility and bacterial community in Eucalyptus Plantations in the Congolese Coastal Plains. Sustainability 2020, 12, 8763. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Mareschal, L.; Rudowski, S. Fate of Acacia mangium in eucalypt mixed-species plantation during drought conditions in the Congolese coastal plains. Bosque 2018, 39, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Shi, H.; Liu, Y. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System. Front. Microbiol. 2017, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fan, J.; Ding, W.; Bol, R.; Chen, Z.; Luo, J.; Bolan, N. Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil. Biol. Fertil. Soils 2016, 52, 711–724. [Google Scholar] [CrossRef]
- Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An introduction to actinobacteria. In Actinobacteria—Basics and Biotechnological Applications; Intech Open Sciences and Open Minds: London, UK, 2016; pp. 3–37. [Google Scholar] [CrossRef]
Eucalyptus Species Name | Characteristic Features | Height (m) | Suitable/Unsuitable |
---|---|---|---|
Acmenioïdes | Clear branch stem, two-tone leaves | 30–40 | Suitable |
Alba | Forked and flexuous tree, broad, deltoid to broadly lanceolate leaves | <15 | Unsuitable |
Andrewsii | Persistent sub fibrous bark on large branches | up to 40 | Suitable |
Apodophylla | Forked and flexuous tree | <15 | Unsuitable |
Argophloia | Grows on slopes and creeds | <15 | Unsuitable |
Bigalerita | Similar to E. alba | <15 | Unsuitable |
Botryoïdes | Evergreen bark, thick and bicolored leaves | 30–40 | Suitable |
Brassiana | Rough trunk, pedunculate and lanceolate leaves | 30 | Suitable |
Brassii | Light cutlery and defective shape | 15 | Unsuitable |
Camaldulensis | Smooth bark of light color with buff and bluish hues, elongated leaves | 40 | Suitable |
Citriodora | Smooth, white or bluish bark, lemon-smelling leaves | 20–40 | Suitable |
Cloeziana | Poor shape, leaves and pruning | >20 | Unsuitable |
Contracta | Vigor and average shape (only 7.1 m at 52 months) | <15 | Unsuitable |
Crebra | Fairly narrow crown, quite narrow, green or grey-green leaves | 20–30 | Suitable |
Cullenii | Similar to E. creba (but only 13 m height at 55 months) | <15 | Unsuitable |
Deanei | Gum-like bark, broad leaves and also lanceolate leaves (adults) | 45–55 | Suitable |
Deglupta | Thin, variegated bark, conical crown with horizontal branches | 30–60 | Suitable |
Drepanophylla | Very dark ironbark bark type, lanceolate leaves | 25–30 | Suitable |
Exserta | Sub fibrous bark, very narrow linear, lanceolate leaves | up to 25 | Unsuitable |
Ferruginea | No information available | - | - |
Grandis | Strip bark at base, pedunculate, lanceolate and wavy leaves | 40–60 | Suitable |
Hendersonii | Vigor and average shape (8.2 m at 52 months) | <15 | Unsuitable |
Houseana | Similar to E. alba (13.1 m at 70 months) | <15 | Unsuitable |
Huberiana | No information available | - | - |
Kirtoniana | Stable hybrid tereticornis X robusta | - | - |
Leptophleba | Unsuitable species with a height of 11.5 m at 55 months | - | - |
Maculata | Wide crown, thick and smooth bark, pedunculate and lanceolate leaves | 35–45 | Suitable |
Maïdenii | Barrel without branches on more than half the height | 60–75 | Suitable |
Melanophloïa | Stem often flexuous, glaucous, amplexicaule and lanceolate leaves | 5–30 | Unsuitable |
Microcorys | Persistent sub fibrous bark, bicolored and acuminate leaves | 30–55 m | Suitable |
Microtheca | Short-trunked and often multiple-trunked tree | 15–20 | Unsuitable |
Miniata | Straight barrel, grey or rusty bark, oblong or lanceolate leaves | 15–30 | Suitable |
Moluccana | Straight barrel, evergreen bark grey, glossy green and lanceolate leaves | 20–30 | Suitable |
Nesophila | Balanced barrel and crown, bark in small scales, pedunculate leaves, | 25–30 | Suitable |
Normantonensis | No information available | - | - |
Oligantha | Unsuitable species (6.0 m ate 62 months) | <15 | Unsuitable |
Pachycalyx | Unsuitable species (7.9 m at 55 months) | <15 | Unsuitable |
Papuana | Good shaped barrel, coarse bark, lanceolate and bicolored leaves | 25–30 | Suitable |
Phaeotricha | Fibrous bark, pedunculate, lanceolate and somewhat falsified leaves | 24–30 | Suitable |
Paniculata | Pedunculate, lanceolate, bicolored with a green top leaf | 25–30 | Suitable |
Pellita | Strongly framed crown, thick, pedunculate, and a little falsified leaf | 25–45 | Suitable |
Peltata | Peeled leaves (11.8 m tall at 52 months) | <15 | Unsuitable |
Pilularis | Rough bark, pedunculate, dark green, lanceolate, varnished leaves | 35–60 | Suitable |
Polycarpa | Bark in strip or rough scales, bicolored and lanceolate leaves | 20 | Unsuitable |
Propinqua | Plate bark and rough surface, thick, pedunculate and bicolored leaves | 35–40 | Suitable |
Punctata | Bark in irregular plates, pedunculate, lanceolate and bicolored leaves | 35 | Suitable |
Raveretiana | Scaled bark, pedunculate, lanceolate, bicolored, firm leaves | 15–25 | Suitable |
Regnans | Shaft straight and net of branches | 90 | Suitable |
Resinifera | Red-brown fibrous bark, pedunculate, lanceolate, glossy green leaves | 30–40 | Suitable |
Robusta | Subfibrous bark, glossy green bicolored on top, thick, lanceolate leaves | 25–30 | Suitable |
Rudis | Bad shape and unsuitable species for the region | 10–20 | Unsuitable |
Saligna | Persistent bark at base, pedunculate, lanceolate and bicolored leaves | 40–55 | Suitable |
Scabra | No information available | - | - |
Sideroxylon | Dark brown coarse bark, concolored, pedunculate and lanceolate leaves | 20–30 | Suitable |
Tereticornis | Gum-like bark, whitish gray surface, pedunculate and lanceolate leaves | >45 | Suitable |
Tesselaris | Short trunk, bark in scales, pedunculate and lanceolate leaves | >30 | Suitable |
Tetrodonta | Bark in long compact fibres, lanceolate, curved and concoloured leaves | 25–30 | Suitable |
Thozetiana | Bark leaving in plates, alternate and lanceolate leaves | 20–25 | Suitable |
Torelliana | Subfibrous then scaly bark, lanceolate and two-colored leaves | 25_30 | Suitable |
Umbra | Dense crown and fairly straight trunk (height < 10 m to 60 months) | <10 m | - |
Urophylla | Fibrous bark and smooth (top), pedunculate, lanceolate, pointed leaves | up to 50 | Suitable |
Viminaliso | Rough bark, alternate pedunculate and lanceolate leaves | 30–55 | Suitable |
Period | Activities | Forest Productivity (m−3 ha−1 y−1) | Remarks | References |
---|---|---|---|---|
The 1950s | Introduction of 62 species 1 | 7 | Most species unsuitable for the agro ecological area | [14] |
The 1960s | Species sorting | 10 | Best species (E. torelliana, saligna, tereticornis, urophylla, alba) | [14] |
The 1960s | Appearance of natural hybrids (unknown fathers) | <12 | E. PF1 E. 12ABL x E. saligna | [14] |
The 1980s | Herbaceous cuttings Implementation of clonal tests | Production cap: 18 Mean production: 12 | Possibility of multiplication of clones | [15] |
The 1980s | First controlled crossings | Production cap: 20 Best clones: 30 | without precise scheme (SP) | [24,65,66] |
The 1990s | Reciprocal recurrent production scheme (SRR) | Production cap: 25 Best clones: 40 | E. urophylla x E. grandis and E. urophylla x E. pellita | [27,28,29,67,68,75] |
The 1990s | Reciprocal recurrent production scheme (SRR) | Production cap: 25 Best clones: 40 | E. urophylla x E. grandis and E. urophylla x E. pellita | [27,28,29,67,68,75] |
SDG and CRDPI’s Units | Some Important Research Findings | Direct SDGs | Indirect SDGs |
---|---|---|---|
Genetics, Breeding and Diversity (GBD) | - Improved germplasms [24,65,67,68,75] | ||
- Increased productivity (from 7 to 40 m3/ha/year) [14,24,67,68,75]. | SDG 15 SDG 13 SDG 17 | SDG 1 SDG 2 SDG 3 SDG 7 SDG 12 | |
Plant and Environment Interactions (PEI) | - Planting spacing, density, use of starter dose, optimal growth), [30,34]. - Nitrogen transfer from NFTs to non-NFTs [18,35]. - Increased stand wood biomass in mixtures (NFTs and non-NFTs) [18,20]. - Improved soil health in mixed-species plantations [19,45,46] | SDG 12 SDG 13 SDG 15 SDG 17 | SDG 1 SDG 2 SDG 3 SDG 6 SDG 7 |
Socio-environmental management (SEM) | - High reliance and consumption of fuel wood energy in most countries located in the Congo basin [5,6] - Benefits of mixed-species plantations (incomes, crop and fuel wood supply and other forest products) [5,6,8] - Transfer of knowledge and technologies | SDG 1 SDG 2 SDG 3 SDG 4 SDG 7 SDG 13 SDG 12 SDG 15 SDG 17 | SDG 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutika, L.-S.; Matondo, R.; Mabiala-Ngoma, A.; Tchichelle, V.S.; Toto, M.; Madzoumbou, J.-C.; Akana, J.A.; Gomat, H.Y.; Mankessi, F.; Mbou, A.T.; et al. Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development. Sustainability 2022, 14, 14624. https://doi.org/10.3390/su142114624
Koutika L-S, Matondo R, Mabiala-Ngoma A, Tchichelle VS, Toto M, Madzoumbou J-C, Akana JA, Gomat HY, Mankessi F, Mbou AT, et al. Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development. Sustainability. 2022; 14(21):14624. https://doi.org/10.3390/su142114624
Chicago/Turabian StyleKoutika, Lydie-Stella, Rosalie Matondo, André Mabiala-Ngoma, Viviane Sogni Tchichelle, Mélanie Toto, Jean-Claude Madzoumbou, Juste Armand Akana, Hugues Y. Gomat, François Mankessi, Armel Thongo Mbou, and et al. 2022. "Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development" Sustainability 14, no. 21: 14624. https://doi.org/10.3390/su142114624
APA StyleKoutika, L.-S., Matondo, R., Mabiala-Ngoma, A., Tchichelle, V. S., Toto, M., Madzoumbou, J.-C., Akana, J. A., Gomat, H. Y., Mankessi, F., Mbou, A. T., Matsoumbou, T., Diamesso, A., Saya, A. R., & Nzila, J. d. D. (2022). Sustaining Forest Plantations for the United Nations’ 2030 Agenda for Sustainable Development. Sustainability, 14(21), 14624. https://doi.org/10.3390/su142114624