Effect of LMWOAs on Maize Remediation of Cadmium and Plumbum Pollution in Farmland
Abstract
:1. Introduction
2. Materials and Methods
EA (Pb) = QRoot × CPb-Root + QStem × CPb-Stem + QLeaf × CPb-Maize cob + QKernel × CPb-Kernel
3. Results
3.1. Effects of LMWOAs on Maize Biomass, Yield, and Physiological Indexes
3.2. Effects of LMWOAs on Absorption, Enrichment, and Transport of Heavy Metals in Maize
3.2.1. Effect of LMWOAs on Cd and Pb Concentration in Maize Grains
3.2.2. Effect of LMWOAs on Cd Concentration in Different Parts of Maize
3.2.3. Effect of LMWOAs on Pb Concentration in Different Parts of Maize
3.2.4. Effects of LMWOAs on Cd Enrichment and Transport in Different Parts of Maize
3.2.5. Effects of LMWOAs on Pb enrichment and Transport in Different Parts of Maize
3.3. Remediation Capacity of LMWOAs for Contaminated Soil
3.3.1. Remediation Capacity of LMWOAs for Cd Contaminated Soil
3.3.2. Remediation Capacity of LMWOAs for Pb-Contaminated Soil
3.4. Effects of LMWOAs on Heavy Metals in Rhizosphere Soil of Maize at Maturity Stage
3.4.1. Effects of LMWOAs on Total Heavy Metals Cd and Pb in Rhizosphere Soil of Maize at Maturity Stage
3.4.2. Effects of LMWOAs on Heavy Metals DTPA-Cd and Pb in Rhizosphere Soil of Maize at Maturity Stage
3.4.3. Effects of LMWOAs on Rhizosphere Soil pH and Nutrients at Maize Maturity Stage
4. Discussion
4.1. LMWOAs Enhances Heavy Metal Absorption, Enrichment, and Transport in Plants
4.2. LMWOAs Increase the Availability of Soil Heavy Metals and Change Soil Properties
4.3. LMWOAs Promote Plant Nutrient Uptake and Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; You, S.; Zheng, J. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals. IOP Conf. Ser. Earth Environ. Sci. 2019, 242, 052003. [Google Scholar] [CrossRef]
- Cui, L.Q.; Noerpel, M.R.; Scheckel, K.G.; Ippolito, J.A. Wheat straw biochar reduces environmental cadmium bioavailability. Environ. Int. 2019, 126, 69–75. [Google Scholar]
- Liu, L.; Fan, S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 8688–8700. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; He, W.; Qi, S.; Wu, J.; Gu, X.S. A novel phytoremediation method assisted by magnetized water to decontaminate soil Cd based on harvesting senescent and dead leaves of Festuca anmdinacea. J. Hazard. Mater. 2020, 383, 121115. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Amini, M.M.; Behbahani, M.; Rabiee, G. Low cost thiol-functionalized mesoporous silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH. Microchem 2019, 145, 460–469. [Google Scholar] [CrossRef]
- Huang, R.; Li, Y.; Li, F.; Yin, X.; Li, R.; Wu, Z.; Liang, X.; Li, Z. Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization, plant toxicity, and soil microbial community. Ecotoxicol. Environ. Saf. 2022, 234, 113388. [Google Scholar] [CrossRef]
- Awuah, K.F.; Cousins, M.; Renaud, M.; Jegede, O.; Hale, B.; Siciliano, S.D. Toxicity assessment of metal mixtures to soil enzymes is influenced by metal dosing method. Chemosphere 2019, 232, 366–376. [Google Scholar] [CrossRef]
- Cui, M.; Lee, Y.; Choi, J.; Kim, J.; Han, Z.; Son, Y.; Khim, J. Evaluation of stabilizing materials for immobilization of toxic heavy metals in contaminated agricultural soils in China. J. Clean. Prod. 2018, 193, 748–758. [Google Scholar] [CrossRef]
- De Souza, E.S.; Dias, Y.N.; Da Costa, H.S.C.; Pinto, D.A.; Oliveira, D.M.; Souz, N.P.; Teixeira, F.A.; Fernandes, A.R. Organic residues and biochar to immobilize potentially toxic elements in soil from a gold mine in the Amazon. Ecotoxicol. Environ. Saf. 2019, 169, 425–434. [Google Scholar] [CrossRef]
- Chaney, R.L. Plant uptake of inorganic waste constituents. In L and T Reatment of H az Ardous Wastes; Parr, J.F., Ed.; Noyes Data Corporation: Park Ridge, NJ, USA, 1983; pp. 50–76. [Google Scholar]
- Ma, Y.; Rajkumar, M.; Moreno, A.; Zhang, C.; Freitas, H. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 2017, 185, 75–85. [Google Scholar] [CrossRef]
- Bian, X.G.; Cui, J.; Tang, B.P.; Yang, L. Chelant-induced phytoextraction of heavy metals from contaminated soils: A review. Pol. J. Environ. Stud. 2018, 27, 2417–2424. [Google Scholar] [CrossRef]
- Alkorta, I.; Hernández-Allica, J.; Becerril, J.M.; Amezaga, I.; Onaindia, M.; Garbisu, C. Chelate-Enhanced Phytoremediation of Soils Polluted with Heavy Metals. Rev. Environ. Sci. Biotechnol. 2004, 3, 55–70. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.; Khanlari, Z.V. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Arch. Environ. Contam. Toxicol. 2007, 53, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Meers, E.; Tack, F.M.G.; Verloo, M.G. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: Implications for its use soil remediation. Chemosphere 2008, 70, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Chen, P.J.; Chen, S.H.; Chang, F.C.; Lin, F.C.; Chen, K.K. Extraction of chromium, copper, and arsenic from CCA-treated wood using biodegradable chelating agents. Bioresour. Technol. 2010, 101, 1528–1531. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.Y.; Wang, D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J. Clean. Prod. 2020, 263, 121491. [Google Scholar] [CrossRef]
- Dalvi, A.A.; Bhalerao, S.A. Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Kim, S.H.; Lee, I.S. Comparison of the ability of organic acids and edta to enhance the phytoextraction of metals from a multi-metal contaminated soil. Bull. Environ. Contam. Toxicol. 2010, 84, 255–259. [Google Scholar] [CrossRef]
- Dresler, S.; Hanaka, A.; Bednarek, W.; Maksymiec, W. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 2014, 36, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Lu, M.; Li, F.; Yang, B.; Hu, Z.T. Citric acid-assisted phytoextraction of trace elements in composted municipal sludge by garden plants. Environ. Pollut. 2021, 288, 117699. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Gu, J.; Zhao, J.; Fu, J. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings. Int. Biodeterior. Biodegrad. 2018, 128, 15–21. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zeng, G.; Zhou, L.; Wang, X.; Wang, Y.Q.; Wang, C.L.; Hu, X.J.; Xu, W.H. Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J. Environ. Sci. 2014, 26, 2508–2516. [Google Scholar] [CrossRef]
- Qiao, D.; Lu, H.; Zhang, X. Change in phytoextraction of cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere. Environ. Pollut. 2020, 267, 115452. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.G.; Zeng, G.M.; Xie, J.L.; Zheng, B.H.; Tang, X.F.; Wang, D.F.; Sun, Z.C.; Nie, J.; Jiang, Z.J.; et al. Mitigation mechanism of Cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. R. Soc. Chem. 2015, 5, 45502–45509. [Google Scholar]
- Jones, D.L.; Edwards, A.C. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 1998, 30, 1859–2190. [Google Scholar] [CrossRef]
- Xu, G.; Shao, H.; Xu, R.; Nie, Y.Y.; Pei, Y.; Sun, Z.J.; Blackwell, M.S.A. The role of root-released organic acids and anions in phosphorus transformations in a sandy loam soil from Yantai, China. Afr. J. Microbiol. Res. 2012, 6, 674–679. [Google Scholar]
- Han, R.; Dai, H.; Skuza, L.; Wei, S.H. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil. Chemosphere 2021, 278, 130446. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Amna; Kamran, M.A.; Javed, M.T.; Hayat, K.; Farooq, M.A.; Ali, N.; Ali, M.; Manghwar, H.; Jan, F.; et al. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ. Exp. Bot. 2019, 159, 23–33. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Q.; Wang, Z. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass. Ecotoxicol. Environ. Saf. 2017, 145, 200–206. [Google Scholar] [CrossRef]
- Chen, L.; Hu, W.F.; Long, C.; Wang, D. Exogenous plant growth regulator alleviate the adverse effects of Cu and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of Cu and Cd remediation. Chemosphere 2021, 262, 127809. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, M.W.; Ebel, M.; Schaeffer, A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 2006, 63, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Prasad, M.N.V. Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: Probing role of cadmium localization and iron nutrition. Ecotoxicol. Environ. Saf. 2018, 166, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Liu, J.; Long, Y.; Chen, Z.; Sunahare, G.I.; Jiang, P.P.; You, S.H.; Lin, H.; Xiao, H. Phytoextraction of cadmium-contaminated soils: Comparison of plant species and low molecular weight organic acids. Int. J. Phytoremediation 2020, 22, 383–391. [Google Scholar] [CrossRef]
- Wu, D.; Yu, X.; Lai, M.; Feng, J.Y.; Dong, X.Q.; Peng, W.X.; Su, S.N.; Zhang, X.P.; Wan, L.X.; Jacobs, D.F. Diversified effects of co-planting landscape plants on heavy metals pollution remediation in urban soil amended with sewage sludge. J. Hazard. Mater. 2021, 403, 123855. [Google Scholar] [CrossRef]
- Fu, H.; Yu, H.; Li, T.; Zhang, X.Z. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2018, 150, 168–175. [Google Scholar] [CrossRef]
- Tanwir, K.; Akram, M.S.; Masood, S.; Chaudhary, H.J.; Lindberg, S.; Javed, M.T. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environ. Sci. Pollut. Res. 2015, 22, 9193–9203. [Google Scholar] [CrossRef]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef]
- Toro, M.; Azcon, R.; Barea, J. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate. Appl. Environ. Microbiol. 1997, 63, 4408–4412. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Li, X.; Wei, M.; Zeng, G.Q.; Hou, S.Y.; Li, D.; Xu, H. Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere 2020, 239, 124706. [Google Scholar] [CrossRef]
- Sengar, R.S.; Gautam, M.; Sengar, R.S.; Garg, S.K.; Sengar, K.; Chaudhary, R. Lead stress effects on physiobiochemical activities of higher plants. Rev. Environ. Contam. Toxicol. 2008, 196, 73–93. [Google Scholar] [PubMed]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S.; Matraszek, R. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol. Biochem. 2015, 94, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Nardi, S.; Concheri, G.; Pizzeghello, D.; Sturaro, A.; Rella, R.; Parvoli, G. Soil organic matter mobilization by root exudates. Chemosphere 2000, 41, 653–658. [Google Scholar] [CrossRef]
- Lam, N.T.; Song, S.; Dung, B.T.N.; Binh, T.N.; Maleki, A.; Godini, K.; Tang, V.T. Potential Role of Combined Microbial Inoculants and Plant of Limnocharis flava on Eliminating Cadmium from Artificial Contaminated Soil. Sustainability 2022, 14, 12209. [Google Scholar] [CrossRef]
- Farid, M.; Ali, S.; Rizwan, M.; Ali, Q.; Abbas, F.; Bukhari, S.A.H.; Saeed, R.; Wu, L.H. Citric acid assisted phytoextraction of chromium by sunflower; morphophysiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf. 2017, 145, 90–102. [Google Scholar] [CrossRef]
- Tao, Q.; Zhao, J.; Li, J.; Liu, Y.; Luo, J.; Yuan, S.; Li, B.; Li, Q.; Xu, Q.; Yu, X.; et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in cdhyperaccumulator Sedum alfredii. J. Hazard. Mater. 2020, 383, 121177. [Google Scholar] [CrossRef]
- Huang, G.; You, J.; Zhou, X.; Ren, C.; Islam, M.S.; Hu, H. Effects of low molecular weight organic acids on Cu accumulation by castor bean and soil enzyme activities. Ecotoxicol. Environ. Saf. 2020, 203, 110983. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Khan, M.A.; Luo, W.; Xiang, Z.; Xu, W.; Zhong, B.; Ma, J.; Ye, Z.; Zhu, Y.; et al. Effect of plant extracts and citric acid on phytoremediation of metalcontaminated soil. Ecotoxicol. Environ. Saf. 2021, 211, 111902. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Yang, Y. Effects of exogenous phenolic acids on roots of poplar hydroponic cuttings. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 7836–7840. [Google Scholar]
Test | Treatments | Maize Biomass (g·Plant−1) | Yield (t·hm−2) | Plant Height (cm) | Leaf Length (cm) | Leaf Width (cm) | |||
---|---|---|---|---|---|---|---|---|---|
Root | Straw | Cob | Kernel | ||||||
A | CK | 4.670 ± 0.090 b | 43.37 ± 1.459 a | 26.12 ± 2.440 a | 152.2 ± 3.660 b | 9.133 ± 0.217 c | 222.9 ± 8.281 ab | 70.83 ± 4.517 bc | 8.900 ± 0.557 a |
CA | 4.677 ± 0.085 b | 42.78 ± 3.440 a | 26.77 ± 2.523 a | 155.9 ± 2.916 ab | 9.350 ± 0.171 abc | 218.0 ± 17.49 ab | 91.77 ± 8.893 a | 8.833 ± 0.321 a | |
CaCl2 | 4.670 ± 0.056 b | 44.09 ± 2.455 a | 27.49 ± 2.735 a | 153.7 ± 2.581 ab | 9.223 ± 0.155 bc | 207.7 ± 9.016 ab | 75.07 ± 7.332 abc | 9.567 ± 0.681 a | |
TA | 4.647 ± 0.060 b | 45.08 ± 2.315 a | 26.55 ± 2.359 a | 152.7 ± 5.633 b | 9.263 ± 0.234 bc | 209.1 ± 9.028 ab | 84.40 ± 7.825 abc | 8.800 ± 0.781 a | |
PASP | 4.600 ± 0.089 b | 42.45 ±3.452 a | 25.63 ± 1.539 a | 152.7 ± 3.505 b | 9.240 ± 0.128 bc | 229.0 ± 11.17 a | 80.37 ± 0.850 abc | 9.100 ± 1.411 a | |
B | CK | 4.690 ± 0.089 b | 44.39 ± 1.842 a | 27.06 ± 1.330 a | 154.3 ± 3.025 ab | 9.160 ± 0.050 c | 222.9 ± 3.707 ab | 70.67 ± 2.967 bc | 8.833 ± 0.306 a |
CA | 4.950 ± 0.079 a | 45.28 ± 3.055 a | 28.87 ± 1.064 a | 159.6 ± 2.116 ab | 9.580 ± 0.128 abc | 209.3 ± 13.68 ab | 82.90 ± 10.95 abc | 9.000 ± 0.458 a | |
CaCl2 | 5.013 ± 0.047 a | 48.10 ± 1.545 a | 29.62 ± 2.047 a | 162.3 ± 2.666 a | 9.740 ± 0.161 a | 202.6 ± 7.399 b | 90.07 ± 9.019 ab | 7.833 ± 0.404 a | |
TA | 4.913 ± 0.047 a | 46.64 ± 2.536 a | 28.71 ± 1.471 a | 160.8 ± 3.263 ab | 9.653 ± 0.193 ab | 203.4 ± 10.32 b | 67.33 ± 0.643 c | 8.633 ± 0.681 a | |
PASP | 4.953 ± 0.070 a | 46.33 ± 2.025 a | 28.01 ± 1.488 a | 157.7 ± 1.878 ab | 9.463 ± 0.110 abc | 202.0 ± 13.43 b | 85.63 ± 9.448 abc | 8.433 ± 0.379 a |
Test | Treatments | Maize Cob Cd (mg·kg−1) | Straw Cd (mg·kg−1) | Root Cd (mg·kg−1) |
---|---|---|---|---|
A | CK | 0.292 ± 0.009 ab | 0.840 ± 0.049 c | 0.701 ± 0.023 e |
CA | 0.284 ± 0.012 b | 1.237 ± 0.059 ab | 0.937 ± 0.093 d | |
CaCl2 | 0.280 ± 0.017 b | 1.359 ± 0.218 a | 1.002 ± 0.072 d | |
TA | 0.316 ± 0.022 a | 1.247 ± 0.238 ab | 1.307 ± 0.012 b | |
PASP | 0.320 ± 0.018 a | 1.079 ± 0.059 bc | 1.312 ± 0.027 b | |
B | CK | 0.282 ± 0.012 b | 0.839 ± 0.047 c | 0.716 ± 0.006 e |
CA | 0.299 ± 0.019 ab | 1.316 ± 0.074 ab | 0.964 ± 0.049 d | |
CaCl2 | 0.303 ± 0.005 ab | 1.219 ± 0.076 ab | 1.184 ± 0.111 c | |
TA | 0.283 ± 0.003 b | 1.149 ± 0.145 ab | 1.468 ± 0.039 a | |
PASP | 0.305 ± 0.014 ab | 1.162 ± 0.042 ab | 1.584 ± 0.052 a |
Test | Treatments | Maize Cob Pb (mg·kg−1) | Straw Pb (mg·kg−1) | Root Pb (mg·kg−1) |
---|---|---|---|---|
A | CK | 2.417 ± 0.113 e | 31.56 ± 0.980 e | 53.48 ± 5.135 ef |
CA | 2.528 ± 0.051 de | 39.31 ± 1.289 d | 60.46 ± 3.072 de | |
CaCl2 | 2.794 ± 0.110 bc | 44.61 ± 3.424 c | 59.07 ± 4.835 e | |
TA | 2.636 ± 0.147 cd | 48.88 ± 1.201 ab | 74.83 ± 2.709 b | |
PASP | 2.744 ± 0.030 bc | 46.18 ± 0.721 bc | 74.18 ± 2.758 bc | |
B | CK | 2.368 ± 0.016 e | 32.25 ± 0.447 e | 51.26 ± 0.298 f |
CA | 3.033 ± 0.098 a | 41.28 ± 1.077 d | 66.83 ± 1.020 cd | |
CaCl2 | 2.907 ± 0.035 ab | 48.30 ± 0.698 b | 72.01 ± 1.853 bc | |
TA | 2.714 ± 0.079 c | 52.05 ± 1.877 a | 78.69 ± 4.971 b | |
PASP | 2.653 ± 0.020 cd | 48.89 ± 1.938 ab | 86.63 ± 5.560 a |
Test | Treatments | BCFStraw | BCFRoot | TFStraw/Root | TFKernel/Straw |
---|---|---|---|---|---|
A | CK | 0.349 ± 0.021 b | 0.291 ± 0.010 d | 1.200 ± 0.101 ab | 0.327 ± 0.018 a |
CA | 0.513 ± 0.024 a | 0.389 ± 0.038 c | 1.332 ± 0.198 a | 0.254 ± 0.007 bc | |
CaCl2 | 0.564 ± 0.091 a | 0.416 ± 0.030 c | 1.356 ± 0.196 a | 0.212 ± 0.037 c | |
TA | 0.517 ± 0.099 a | 0.542 ± 0.005 b | 0.955 ± 0.183 cd | 0.254 ± 0.060 bc | |
PASP | 0.448 ± 0.025 ab | 0.544 ± 0.011 b | 0.823 ± 0.056 cd | 0.267 ± 0.017 bc | |
B | CK | 0.348 ± 0.019 b | 0.297 ± 0.003 d | 1.171 ± 0.070 ab | 0.325 ± 0.019 a |
CA | 0.546 ± 0.031 a | 0.400 ± 0.020 c | 1.370 ± 0.139 a | 0.297 ± 0.020 ab | |
CaCl2 | 0.506 ± 0.032 a | 0.491 ± 0.046 b | 1.036 ± 0.124 bc | 0.274 ± 0.022 ab | |
TA | 0.476 ± 0.060 ab | 0.609 ± 0.016 a | 0.781 ± 0.085 cd | 0.252 ± 0.033 bc | |
PASP | 0.482 ± 0.018 ab | 0.657 ± 0.022 a | 0.734 ± 0.036 d | 0.261 ± 0.000 bc |
Test | Treatments | BCFStraw | BCFRoot | TFStraw/Root | TFKernel/Straw |
---|---|---|---|---|---|
A | CK | 0.155 ± 0.005 e | 0.263 ± 0.025 e | 0.593 ± 0.050 cd | 0.013 ± 0.001 a |
CA | 0.193 ± 0.007 d | 0.297 ± 0.015 de | 0.651 ± 0.016 b | 0.012 ± 0.001 a | |
CaCl2 | 0.219 ± 0.017 c | 0.291 ± 0.024 de | 0.755 ± 0.007 a | 0.009 ± 0.001 bc | |
TA | 0.240 ± 0.006 ab | 0.368 ± 0.013 bc | 0.654 ± 0.031 b | 0.009 ± 0.001 bc | |
PASP | 0.227 ± 0.004 bc | 0.365 ± 0.014 bc | 0.623 ± 0.028 bc | 0.009 ± 0.000 bc | |
B | CK | 0.159 ± 0.002 e | 0.252 ± 0.002 e | 0.629 ± 0.006 bc | 0.013 ± 0.000 a |
CA | 0.203 ± 0.005 d | 0.328 ± 0.005 cd | 0.618 ± 0.022 bcd | 0.013 ± 0.001 a | |
CaCl2 | 0.237 ± 0.003 b | 0.354 ± 0.009 bc | 0.671 ± 0.012 b | 0.010 ± 0.001 b | |
TA | 0.256 ± 0.009 a | 0.387 ± 0.024 ab | 0.663 ± 0.032 b | 0.008 ± 0.001 c | |
PASP | 0.240 ± 0.009 ab | 0.426 ± 0.027 a | 0.566 ± 0.041 d | 0.009 ± 0.001 bc |
Test | Treatments | EA (mg·Plant−1) | Extracting Amount (g·hm−2) | Extraction Yield % |
---|---|---|---|---|
A | CK | 0.078 ± 0.005 d | 4.683 ± 0.244 d | 0.073 ± 0.008 c |
CA | 0.099 ± 0.007 c | 5.963 ± 0.391 c | 0.100 ± 0.008 bc | |
CaCl2 | 0.111 ± 0.013 abc | 6.667 ± 0.769 abc | 0.132 ± 0.018 ab | |
TA | 0.106 ± 0.009 bc | 6.360 ± 0.515 bc | 0.117 ± 0.016 b | |
PASP | 0.097 ± 0.007 c | 5.833 ± 0.455 c | 0.120 ± 0.014 b | |
B | CK | 0.080 ± 0.003 d | 4.787 ± 0.201 d | 0.074 ± 0.006 c |
CA | 0.120 ± 0.002 ab | 7.223 ± 0.162 ab | 0.136 ± 0.011 ab | |
CaCl2 | 0.124 ± 0.008 a | 7.453 ± 0.531 a | 0.159 ± 0.016 a | |
TA | 0.120 ± 0.007 ab | 7.177 ± 0.428 ab | 0.134 ± 0.017 ab | |
PASP | 0.110 ± 0.006 abc | 6.583 ± 0.365 abc | 0.125 ± 0.011 ab |
Test | Treatments | EA (mg·Plant−1) | Extracting Amount (g·hm−2) | Extraction Yield % |
---|---|---|---|---|
A | CK | 1.880 ± 0.039 e | 122.8 ± 2.360 a | 0.021 ± 0.001 d |
CA | 2.273 ± 0.161 d | 136.4 ± 9.700 d | 0.026 ± 0.002 c | |
CaCl2 | 2.578 ± 0.185 cd | 154.7 ± 11.10 cd | 0.030 ± 0.002 b | |
TA | 2.913 ± 0.189 ab | 174.8 ± 11.34 ab | 0.033 ± 0.002 ab | |
PASP | 2.636 ± 0.209 bc | 158.2 ± 12.49 bc | 0.031 ± 0.003 b | |
B | CK | 1.942 ± 0.040 e | 116.5 ± 2.396 a | 0.021 ± 0.001 d |
CA | 2.564 ± 0.175 cd | 153.8 ± 10.50 cd | 0.030 ± 0.002 b | |
CaCl2 | 3.084 ± 0.125 a | 185.1 ± 7.482 a | 0.036 ± 0.001 a | |
TA | 3.202 ± 0.140 a | 192.1 ± 8.419 a | 0.037 ± 0.002 a | |
PASP | 3.068 ± 0.155 a | 184.0 ± 9.296 a | 0.037 ± 0.002 a |
Test | Treatments | Soil pH | Organic Matter (g·kg−1) | Total N (g·kg−1) | Alkali-Hydrolyzed N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|---|---|---|
A | CK | 4.850 ± 0.053 ab | 19.83 ± 1.963 ab | 1.090 ± 0.020 a | 76.29 ± 2.182 ab | 13.62 ± 1.197 a | 118.7 ± 1.607 a |
CA | 4.753 ± 0.032 bc | 20.60 ± 1.006 ab | 1.080 ± 0.010 ab | 75.36 ± 2.457 ab | 14.07 ± 1.951 a | 118.5 ± 5.766 a | |
CaCl2 | 4.823 ± 0.055 abc | 19.99 ± 2.500 ab | 1.063 ± 0.068 ab | 70.11 ± 4.623 b | 13.37 ± 0.979 a | 121.0 ± 3.123 a | |
TA | 4.793 ± 0.031 abc | 21.22 ± 2.174 ab | 1.043 ± 0.032 abc | 79.40 ± 2.605 a | 13.80 ± 0.885 a | 117.7 ± 5.508 a | |
PASP | 4.820 ± 0.046 abc | 23.34 ± 2.116 a | 1.017 ± 0.078 abc | 70.53 ± 4.946 b | 9.00 ± 0.887 b | 118.3 ± 2.754 a | |
B | CK | 4.887 ± 0.038 a | 19.08 ± 0.393 b | 1.000 ± 0.036 bc | 76.56 ± 2.881 ab | 13.24 ± 1.115 a | 119.7 ± 1.258 a |
CA | 4.750 ± 0.046 abc | 20.45 ± 0.972 ab | 0.967 ± 0.015 c | 75.51 ± 4.117 ab | 13.95 ± 1.505 a | 116.7 ± 3.253 a | |
CaCl2 | 4.810 ± 0.036 abc | 20.30 ± 1.286 ab | 1.057 ± 0.032 ab | 76.76 ± 4.502 ab | 13.03 ± 0.340 a | 123.5 ± 2.291 a | |
TA | 4.770 ± 0.072 bc | 21.45 ± 0.954 ab | 1.050 ± 0.010 ab | 75.69 ± 2.175 ab | 13.48 ± 0.858 a | 118.8 ± 1.258 a | |
PASP | 4.800 ± 0.046 abc | 22.00 ± 1.368 ab | 1.007 ± 0.032 bc | 74.83 ± 4.045 ab | 13.55 ± 0.965 a | 117.8 ± 1.258 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.; Hu, J.; Cao, C.; Zheng, J.; Zhou, X.; Hu, H.; Ma, Y.; Ye, W.; Ma, Z.; Lu, H. Effect of LMWOAs on Maize Remediation of Cadmium and Plumbum Pollution in Farmland. Sustainability 2022, 14, 14580. https://doi.org/10.3390/su142114580
Tao R, Hu J, Cao C, Zheng J, Zhou X, Hu H, Ma Y, Ye W, Ma Z, Lu H. Effect of LMWOAs on Maize Remediation of Cadmium and Plumbum Pollution in Farmland. Sustainability. 2022; 14(21):14580. https://doi.org/10.3390/su142114580
Chicago/Turabian StyleTao, Ronghao, Jingyi Hu, Chi Cao, Jing Zheng, Xiaotian Zhou, Hongxiang Hu, Youhua Ma, Wenling Ye, Zhongwen Ma, and Hongjuan Lu. 2022. "Effect of LMWOAs on Maize Remediation of Cadmium and Plumbum Pollution in Farmland" Sustainability 14, no. 21: 14580. https://doi.org/10.3390/su142114580
APA StyleTao, R., Hu, J., Cao, C., Zheng, J., Zhou, X., Hu, H., Ma, Y., Ye, W., Ma, Z., & Lu, H. (2022). Effect of LMWOAs on Maize Remediation of Cadmium and Plumbum Pollution in Farmland. Sustainability, 14(21), 14580. https://doi.org/10.3390/su142114580