Willingness to Pay for Weather-Indexed Insurance: Evidence from Cambodian Rice Farmers
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data Collection
4. Econometric Model
5. Results and Discussion
5.1. Descriptive Statistics
5.1.1. Socioeconomic and Demographic Characteristics
5.1.2. Climate Change Experience and Perception
5.1.3. Risk Attitude and Awareness of Crop Insurance
5.1.4. Preference for WII and Period of Coverage
5.2. Regression Results and Discussions
5.3. Limitations
6. Challenges and Recommendations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
WTP | Age | Gender | MaritalStatus | Edu | HHSize | Adult | Child | TotalLabour | FarmLabour | OffFarmLabour | FarmSize | Yield | SalePrice | TotalIncome | RiceIncome | NonRiceIncome | RiskAverse | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WTP | 1.00 | |||||||||||||||||
Age | 0.07 | 1.00 | ||||||||||||||||
Gender | 0.04 | 0.12 | 1.00 | |||||||||||||||
Marital Status | 0.13 | −0.12 | 0.25 | 1.00 | ||||||||||||||
Edu | 0.13 | −0.30 | 0.23 | 0.03 | 1.00 | |||||||||||||
HH Size | −0.01 | 0.21 | −0.06 | −0.02 | −0.12 | 1.00 | ||||||||||||
Adult | 0.15 | 0.46 | 0.05 | −0.08 | −0.18 | 0.71 | 1.00 | |||||||||||
Child | −0.21 | −0.27 | −0.15 | 0.07 | 0.06 | 0.52 | −0.23 | 1.00 | ||||||||||
TotalLabour | 0.18 | 0.39 | 0.19 | −0.07 | −0.09 | 0.55 | 0.75 | −0.15 | 1.00 | |||||||||
FarmLabour | 0.03 | 0.20 | 0.19 | 0.06 | −0.02 | 0.41 | 0.53 | −0.07 | 0.70 | 1.00 | ||||||||
OffFarmLabour | 0.20 | 0.29 | 0.02 | −0.16 | −0.10 | 0.25 | 0.38 | −0.12 | 0.52 | −0.25 | 1.00 | |||||||
FarmSize | 0.19 | −0.05 | 0.12 | −0.08 | 0.28 | 0.22 | 0.13 | 0.14 | 0.28 | 0.31 | 0.01 | 1.00 | ||||||
Yield | 0.14 | −0.22 | 0.03 | −0.04 | 0.31 | 0.12 | −0.05 | 0.23 | 0.07 | 0.20 | −0.14 | 0.82 | 1.00 | |||||
SalePrice | −0.11 | 0.04 | 0.14 | −0.04 | 0.10 | 0.06 | −0.04 | 0.13 | 0.20 | 0.07 | 0.19 | 0.04 | 0.07 | 1.00 | ||||
TotalIncome | 0.20 | −0.18 | 0.11 | 0.01 | 0.33 | 0.21 | 0.04 | 0.24 | 0.15 | 0.16 | 0.02 | 0.73 | 0.88 | 0.14 | 1.00 | |||
RiceIncome | 0.12 | −0.23 | 0.05 | −0.03 | 0.33 | 0.11 | −0.07 | 0.25 | 0.07 | 0.19 | −0.12 | 0.81 | 0.98 | 0.20 | 0.89 | 1.00 | ||
NonRiceIncome | 0.22 | 0.00 | 0.16 | 0.07 | 0.15 | 0.26 | 0.21 | 0.11 | 0.20 | 0.02 | 0.24 | 0.18 | 0.22 | −0.03 | 0.64 | 0.22 | 1.00 | |
RiskAverse | −0.16 | −0.04 | 0.02 | −0.08 | −0.18 | 0.06 | 0.01 | 0.08 | 0.03 | 0.04 | −0.01 | −0.18 | −0.10 | 0.04 | −0.11 | −0.11 | −0.04 | 1.00 |
References
- Touch, V.; Martin, R.J.; Scott, J.F.; Cowie, A.; Liu, D.L. Climate change adaptation options in rainfed upland cropping systems in the wet tropics: A case study of smallholder farms in North-West Cambodia. J. Environ. Manag. 2016, 182, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Touch, V.; Martin, R.J.; Scott, J.F.; Cowie, A.; Liu, D.L. Climate change impacts on rainfed cropping production systems in the tropics and the case of smallholder farms in North-west Cambodia. Environ. Dev. Sustain. 2017, 19, 1631–1647. [Google Scholar] [CrossRef]
- Barnett, B.J.; Mahul, O. Weather index insurance for agriculture and rural areas in lower-income countries. Am. J. Agric. Econ. 2007, 89, 1241–1247. [Google Scholar] [CrossRef]
- Cole, S.; Giné, X.; Tobacman, J.; Topalova, P.; Townsend, R.; Vickery, J. Barriers to household risk management: Evidence from India. Am. Econ. J. Appl. Econ. 2013, 5, 104–135. [Google Scholar] [CrossRef] [Green Version]
- Chiappori, P.-A.; Salanié, B. Testing for asymmetric information in insurance markets. J. Polit. Economy 2000, 108, 56–78. [Google Scholar] [CrossRef] [Green Version]
- Giné, X.; Townsend, R.; Vickery, J. Patterns of rainfall insurance participation in rural India. World Bank Econ. Rev. 2008, 22, 539–566. [Google Scholar] [CrossRef] [Green Version]
- Sibiko, K.W.; Veettil, P.C.; Qaim, M. Small farmers’ preferences for weather index insurance: Insights from Kenya. Agric. Food Secur. 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Binswanger-Mkhize, H.P. Is there too much hype about index-based agricultural insurance? J. Devel. Stud. 2012, 48, 187–200. [Google Scholar] [CrossRef]
- Budhathoki, N.K.; Lassa, J.A.; Pun, S.; Zander, K.K. Farmers’ interest and willingness-to-pay for index-based crop insurance in the lowlands of Nepal. Land Use Policy 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Al-Maruf, A.; Mira, S.A.; Rida, T.N.; Rahman, M.S.; Sarker, P.K.; Jenkins, J.C. Piloting a weather-index-based crop insurance system in Bangladesh: Understanding the challenges of financial instruments for tackling climate risks. Sustainability 2021, 13, 8616. [Google Scholar] [CrossRef]
- Cole, S.A.; Xiong, W. Agricultural insurance and economic development. Annu. Rev. Econom. 2017, 9, 235–262. [Google Scholar] [CrossRef]
- Stein, D. Dynamics of demand for rainfall index insurance: Evidence from a commercial product in India. World Bank Econ. Rev. 2018, 32, 692–708. [Google Scholar]
- Aditya, K.; Kishore, A.; Khan, M.T. Exploring farmers’ willingness to pay for crop insurance products: A case of weather-based crop insurance in Punjab India. Agr. Econ. Res. Rev. 2020, 33, 135–146. [Google Scholar] [CrossRef]
- Matsuda, A.; Kurosaki, T. Demand for temperature and rainfall index insurance in India. Agr. Econ. 2019, 50, 353–366. [Google Scholar] [CrossRef]
- Akter, S.; Krupnik, T.J.; Rossi, F.; Khanam, F. The influence of gender and product design on farmers’ preferences for weather-indexed crop insurance. Glob. Environ. Chang. 2016, 38, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Akter, S.; Krupnik, T.J.; Khanam, F. Climate change skepticism and index versus standard crop insurance demand in coastal Bangladesh. Reg. Environ. Chang. 2017, 17, 2455–2466. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Alam, G.M.; Fahad, S.; Sarker, T.; Moniruzzaman, M.; Rabbany, M.G. Farmers’ willingness to pay for flood insurance as climate change adaptation strategy in northern Bangladesh. J. Clean. Prod. 2022, 130584. [Google Scholar] [CrossRef]
- Jin, J.; Wang, X.; Gao, Y. Gender differences in farmers’ responses to climate change adaptation in Yongqiao District, China. Sci. Total Environ. 2015, 538, 942–948. [Google Scholar] [CrossRef]
- Jin, J.; Wang, W.; Wang, X. Farmers’ risk preferences and agricultural weather index insurance uptake in rural China. Int. J. Disaster Risk Sci. 2016, 7, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Cai, H.; Liu, R. Farmers’ demand for informal risk management strategy and weather index insurance: Evidence from china. Int. J. Disaster Risk Sci. 2021, 12, 281–297. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, H.; Liu, R. Will marketing strategies affect farmers’ preferences and willingness to pay for catastrophe insurance? Evidence from a choice experiment in China. Environ. Dev. Sustain. 2022, 24, 1376–1389. [Google Scholar] [CrossRef]
- Aizaki, H.; Furuya, J.; Sakurai, T.; Mar, S.S. Measuring farmers’ preferences for weather index insurance in the Ayeyarwady Delta, Myanmar: A discrete choice experiment approach. Paddy Water Environ. 2021, 19, 307–317. [Google Scholar] [CrossRef]
- Furuya, J.; Mar, S.S.; Hirano, A.; Sakurai, T. Optimum insurance contract of flood damage index insurance for rice farmers in Myanmar. Paddy Water Environ. 2021, 19, 319–330. [Google Scholar] [CrossRef]
- Leblois, A.; Quirion, P.; Alhassane, A.; Traoré, S. Weather index drought insurance: An ex ante evaluation for millet growers in Niger. Environ. Resource Econ. 2014, 57, 527–551. [Google Scholar] [CrossRef]
- Abugri, S.A.; Amikuzuno, J.; Daadi, E.B. Looking out for a better mitigation strategy: Smallholder farmers’ willingness to pay for drought-index crop insurance premium in the Northern Region of Ghana. Agric. Food Secur. 2017, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, J.P.; Flatnes, J.E.; Gallenstein, R.A.; Miranda, M.J.; Sam, A.G. Climate change and index insurance demand: Evidence from a framed field experiment in Tanzania. J. Econ. Behav. Organ. 2020, 175, 155–184. [Google Scholar] [CrossRef]
- Maganga, A.M.; Chiwaula, L.S.; Kambewa, P. Parametric and non-parametric estimates of willingness to pay for weather index insurance in Malawi. Int. J. Disaster Risk Reduct. 2021, 62, 102406. [Google Scholar] [CrossRef]
- Fisher, M.; Carr, E.R. The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk: The case of drought-tolerant maize seed in eastern Uganda. Glob. Environ. Chang. 2015, 35, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Belissa, T.K.; Lensink, R.; Van Asseldonk, M. Risk and ambiguity aversion behavior in index-based insurance uptake decisions: Experimental evidence from Ethiopia. J. Econ. Behav. Organ. 2020, 180, 718–730. [Google Scholar] [CrossRef]
- Carter, M.R.; Cheng, L.; Sarris, A. Where and how index insurance can boost the adoption of improved agricultural technologies. J. Dev. Econ. 2016, 118, 59–71. [Google Scholar] [CrossRef]
- Ahmed, S.; McIntosh, C.; Sarris, A. The impact of commercial rainfall index insurance: Experimental evidence from Ethiopia. Am. J. Agric. Econ. 2020, 102, 1154–1176. [Google Scholar] [CrossRef]
- Abebe, H.T.; Bogale, A. Willingness to pay for rainfall based insurance by smallholder farmers in Central Rift Valley of Ethiopia: The case of Dugda and Mieso Woredas. Asia Pac. J. Energy Environ. 2014, 1, 117–152. [Google Scholar] [CrossRef] [Green Version]
- Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. Logistic regression; Springer: Berlin, Germany, 2002. [Google Scholar]
- Haile, K.K.; Nillesen, E.; Tirivayi, N. Impact of formal climate risk transfer mechanisms on risk-aversion: Empirical evidence from rural Ethiopia. World Devel. 2020, 130, 104930. [Google Scholar] [CrossRef] [Green Version]
- Janzen, S.; Magnan, N.; Mullally, C.; Shin, S.; Palmer, I.B.; Oduol, J.; Hughes, K. Can experiential games and improved risk coverage raise demand for index insurance? evidence from kenya. Am. J. Agric. Econ. 2021, 103, 338–361. [Google Scholar] [CrossRef]
- Falco, C.; Rotondi, V.; Kong, D.; Spelta, V. Investment, insurance and weather shocks: Evidence from Cambodia. Ecol. Econ. 2021, 188, 107115. [Google Scholar] [CrossRef]
- Adjabui, J.A.; Tozer, P.R.; Gray, D.I. Willingness to participate and pay for index-based crop insurance in Ghana. Agric. Financ. Rev. 2019, 79, 491–507. [Google Scholar] [CrossRef]
- Menard, S. Applied Logistic Regression Analysis, 2nd ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Hill, R.V.; Vigneri, M. Mainstreaming gender sensitivity in cash crop market supply chains. In Gender in Agriculture; Quisumbing, A., Meinzen-Dick, R., Raney, T., Croppenstedt, A., Behrman, J., Peterman, A., Eds.; Springer: Berlin, Germany, 2014; pp. 315–341. [Google Scholar]
- Enjolras, G.; Sentis, P. Crop insurance policies and purchases in France. Agr. Econ. 2011, 42, 475–486. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Y.; Ge, J.; Miranda, M.J. Does experience with natural disasters affect willingness-to-pay for weather index insurance? Evidence from China. Int. J. Disaster Risk Reduct. 2019, 33, 33–43. [Google Scholar] [CrossRef]
- Hill, R.V.; Hoddinott, J.; Kumar, N. Adoption of weather-index insurance: Learning from willingness to pay among a panel of households in rural Ethiopia. Agric. Econ. 2013, 44, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Fonta, W.M.; Sanfo, S.; Kedir, A.M.; Thiam, D.R. Estimating farmers’ willingness to pay for weather index-based crop insurance uptake in West Africa: Insight from a pilot initiative in Southwestern Burkina Faso. Agric. Food Econ. 2018, 6, 11. [Google Scholar] [CrossRef]
- Clarke, D.J.; Grenham, D. Microinsurance and natural disasters: Challenges and options. Environ. Sci. Policy 2013, 27, S89–S98. [Google Scholar] [CrossRef]
- Johnson, L.; Wandera, B.; Jensen, N.; Banerjee, R. Competing expectations in an index-based livestock insurance project. J. Devel. Stud. 2019, 55, 1221–1239. [Google Scholar] [CrossRef]
- Platteau, J.-P.; De Bock, O.; Gelade, W. The demand for microinsurance: A literature review. World Devel. 2017, 94, 139–156. [Google Scholar] [CrossRef]
- Clement, K.Y.; Botzen, W.W.; Brouwer, R.; Aerts, J.C. A global review of the impact of basis risk on the functioning of and demand for index insurance. Int. J. Disaster Risk Reduct. 2018, 28, 845–853. [Google Scholar] [CrossRef]
- Ward, P.; Spielman, D.J.; Ortega, D.; Kumar, N.; Minocha, S. Demand for complementary financial and technological tools for managing drought risk. Econ. Devel. Cult. Chang. 2020, 68, 607–653. [Google Scholar] [CrossRef]
Variable | Description | Mean | SD | Min | Max | Obs |
---|---|---|---|---|---|---|
Age | Age of a respondent in years | 48.59 | 12.62 | 24 | 78 | 96 |
Gender | Male = 1, female = 0 | 0.57 | 0.50 | 0 | 1 | 96 |
MaritalStatus | Married = 1, otherwise (single/divorced/widowed) = 0 | 0.88 | 0.33 | 0 | 1 | 96 |
Edu | Education level in years (No schooling = 0, Primary school = 6, Secondary school = 9, High school = 12, University and above = 16) | 7.29 | 2.94 | 0 | 16 | 96 |
HHSize | Number of persons in the household | 4.57 | 1.65 | 2 | 9 | 96 |
Adult | Number of adults | 3.26 | 1.45 | 1 | 8 | 96 |
Child | Number of children (<15 years old) | 1.31 | 1.19 | 0 | 5 | 96 |
TotalLabour | Number of total labourers in the household | 2.58 | 1.36 | 1 | 8 | 96 |
FarmLabour | Number of labourers working on the farm | 2.09 | 1.20 | 1 | 8 | 96 |
OffFarmLabour | Number of labourers working outside the farm | 0.49 | 1.01 | 0 | 5 | 96 |
FarmSize | Total farm area (ha) | 4.19 | 2.82 | 0.48 | 15 | 96 |
Yield | Yearly rice production (kg) | 12,610.42 | 10,572.42 | 1500 | 56,000 | 96 |
SalePrice | Rice sales price (KHR/kg) | 835.78 | 105.03 | 550 | 1200 | 96 |
TotalIncome | Total yearly income (KHR ‘000) | 13,268.09 | 11,393.17 | 1400 | 74,800 | 96 |
RiceIncome | Yearly income from rice farming (KHR ‘000) | 10,620.78 | 8988.97 | 1125 | 44,800 | 96 |
NonRiceIncome | Yearly income rather from rice farming (KHR ‘000) | 2647.31 | 5285.01 | 0 | 30,000 | 96 |
Type of Extreme Weather | Average Percentage of Respondents Impacted (%) (1) | Average Percentage of Production Loss (%) (2) | Average Percentage of Income Loss (%) (3) | Average Percentage of Respondents Adopting Possible Mitigation/Adaptation Measures (%) (4) |
---|---|---|---|---|
Drought | 97.9 | 61.2 | 61.2 | 5.2 |
Excess rainfall | 81.3 | 43.4 | 44.6 | 1.0 |
Extreme temperature (heat) | 81.3 | 30.7 | 30.7 | 7.3 |
Floods | 81.3 | 58.8 | 58.8 | 0.0 |
Variable | Description | Value | Obs |
---|---|---|---|
Risk attitude (Risk preference) (0: high risk aversion to 10: high risk-seeking) | Average value (standard deviation) | 5.1(2.3) | 96 |
Ranking range | |||
0–3 | 24.0% | 23 | |
4–6 | 53.1% | 51 | |
7–10 | 22.9% | 22 | |
Crop insurance awareness | % of respondents who are aware of crop insurance | 12.5 | 12 |
Crop insurance purchase | % of respondents who purchased crop insurance | 1.0 | 1 |
Reason for purchasing insurance | % of respondents | - | - |
Information sources about insurance | % of respondents | - | - |
Reason for not purchasing insurance | % of respondents | ||
| 2.1 | 2 | |
| 6.3 | 6 | |
| 2.1 | 2 | |
| 2.1 | 2 | |
| 3.1 | 3 | |
| 8.3 | 8 | |
| 2.1 | 2 | |
Insurance knowledge rank (0: not knowledgeable at all to 10: very knowledgeable) | Average value (standard deviation) | 4.4 (2.2) | 11 |
Insurance importance rank (0: not important at all to 10: very important) | Average value (standard deviation) | 6.8 (2.8) | 12 |
Weather Risk | Potential Period to Be Covered | Percentage of Responses to Period Coverage of Particular Weather Risk (%) |
---|---|---|
Drought (87 respondents) | April–May | 28.7 |
May–June | 39.1 | |
June–July | 57.5 | |
July–August | 34..5 | |
Excess rainfall (29 respondents) | July–August | 24.1 |
August–September | 44.8 | |
September–October | 69.0 | |
Extreme temperature (2 respondents) | June–July | 50.0 |
July–August | 50.0 | |
Floods (40 respondents) | September–October | 82.5 |
October–November | 40.0 |
WII Schemes | Number of Respondents |
---|---|
Low rainfall index insurance | 21 |
Excess rainfall index insurance | 8 |
Both | 26 |
N/A | 1 |
Total | 56 |
Variable | Model (1) | Model (2) | ||
---|---|---|---|---|
Coefficient | Marginal Effect | Coefficient | Marginal Effect | |
Age | 0.012 | 0.003 | −0.008 | −0.002 |
(0.021) | (0.022) | (0.024) | (0.004) | |
Gender | −0.490 | −0.100 | −0.615 | −0.113 |
(0.517) | (0.104) | (0.556) | (0.100) | |
MaritalStatus | 1.266 * | 0.259 * | 2.099 ** | 0.386 ** |
(0.764) | (0.148) | (0.976) | (0.164) | |
Edu | 0.109 | 0.022 | 0.103 | 0.019 |
(0.091) | (0.018) | (0.093) | (0.017) | |
HHSize | −0.268 | −0.055 | ||
(0.177) | (0.035) | |||
Adult | −0.068 | −0.013 | ||
(0.267) | (0.049) | |||
Child | −0.525 ** | −0.097 ** | ||
(0.234) | (0.039) | |||
TotalLabour | 0.547 ** | 0.112 ** | ||
(0.258) | (0.048) | |||
FarmLabour | 0.152 | 0.028 | ||
(0.306) | (0.027) | |||
OffFarmLabour | 1.165 ** | 0.214 ** | ||
(0.526) | (0.088) | |||
FarmSize | 0.146 | 0.030 | 0.277 * | 0.051 * |
(0.135) | (0.027) | (0.158) | (0.027) | |
SalePrice | −0.004 | −0.001 | −0.004 | −0.001 |
(0.002) | (0.001) | (0.003) | (0.001) | |
log(TotalIncome) | −0.136 | −0.000 | ||
(0.450) | (0.000) | |||
log(RiceIncome) | −0.341 | −0.000 | ||
(0.504) | (−0.000) | |||
log(1 + NonRiceIncome) | 0.023 | 0.000 | ||
(0.033) | (0.000) | |||
Risk Averse | −0.112 | −0.023 | −0.137 | −0.025 |
(0.110) | (0.022) | (0.120) | (0.022) | |
Constant | 3.068 | 6.599 | ||
(6.925) | (7.688) | |||
Observations | 96 | 96 | ||
Log Likelihood | −57.027 | −52.011 | ||
Akaike Inf. Crit. | 136.053 | 132.022 | ||
Pseudo R2 | 0.125 | 0.202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Soksophors, Y.; Barlis, A.; Mushtaq, S.; Phanna, K.; Swaans, C.; Rodulfo, D. Willingness to Pay for Weather-Indexed Insurance: Evidence from Cambodian Rice Farmers. Sustainability 2022, 14, 14558. https://doi.org/10.3390/su142114558
Wang Q, Soksophors Y, Barlis A, Mushtaq S, Phanna K, Swaans C, Rodulfo D. Willingness to Pay for Weather-Indexed Insurance: Evidence from Cambodian Rice Farmers. Sustainability. 2022; 14(21):14558. https://doi.org/10.3390/su142114558
Chicago/Turabian StyleWang, Qingxia, Yim Soksophors, Angelica Barlis, Shahbaz Mushtaq, Khieng Phanna, Cornelis Swaans, and Danny Rodulfo. 2022. "Willingness to Pay for Weather-Indexed Insurance: Evidence from Cambodian Rice Farmers" Sustainability 14, no. 21: 14558. https://doi.org/10.3390/su142114558