A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemical Analyses
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Environmental Protection of the People’s Republic of China; Ministry of Land and Resources. National Soil Pollution Survey Bulletin. 2014. Available online: http://www.gov.cn/govweb/foot/2014-04/17/content_2661768.htm (accessed on 20 July 2022).
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, P.; Zhang, S.; Dai, J.; Chen, H.P.; Lombi, E.; Howard, D.L.; Van Der Ent, A.; Zhao, F.J.; Kopittke, P.M. Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans. Environ. Sci. Technol. 2020, 54, 12072–12080. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Xie, W.; Wang, P. Soil and human health. Acta Pedol. Sin. 2020, 57, 1–11. (In Chinese) [Google Scholar]
- Zhou, Z.; Kang, Y.; Li, H.; Cao, S.; Xu, J.; Duan, X.; Yang, G.; Shao, K. Estimating inorganic arsenic exposure from rice intake in Chinese Urban Population. Environ. Pollut. 2020, 263, 114397. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Carey, M.; Meharg, C.; Williams, P.N.; Signes-Pastor, A.J.; Triwardhani, E.A.; Pandiangan, F.I.; Campbell, K.; Elliott, C.; Marwa, E.M.; et al. Rice grain cadmium concentrations in the global supply-chain. Expos. Health 2020, 12, 869–876. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. 2022. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 15 August 2022).
- ATSDR. Priority List of Hazardous Substances. 2019. Available online: https://www.atsdr.cdc.gov/spl/#2019spl (accessed on 20 September 2022).
- FAO/WHO. Codex Alimentarius, General Standard for Contaminants and Toxins in Food and Feed. 2019. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 22 September 2022).
- USFDA. Inorganic Arsenic in Rice Cereals for Infants: Action Level Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-level-inorganic-arsenic-rice-cereals-infants (accessed on 15 August 2022).
- The European Commission. Commission regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs. OJEU J. 2021, 7, 3. [Google Scholar]
- GB2762-2017; National Food Safety Standard: Limits of Contaminants in Food. Chinese Journal of Food Hygiene: Beijing, China, 2017.
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Wang, C.; Tian, W.; Xiang, P.; Xu, W.; Guan, D.; Ma, Q. Mechanism of heavy metal uptake and transport in soil-rice/wheat system and regulation measures for safe production. China Environ. Sci. 2022, 42, 794–807. (In Chinese) [Google Scholar]
- Zhao, F.J.; Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock, M.J.; Ricke, S.C. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 2019, 3, 47. [Google Scholar] [CrossRef]
- Mohd Esa, N.; Ling, T.B. By-products of rice processing: An overview of health benefits and applications. J. Rice Res. 2013, 1, 107. [Google Scholar] [CrossRef]
- National Ecological Science Data Center. CERN Soil Environmental Element Content Dataset from 1995 to 2011 [DB/OL]. 2020. Available online: http://www.cnern.org.cn/data/meta?id=40176 (accessed on 16 August 2022).
- Liu, J.; Wolfe, K.; Potter, P.M.; Cobb, G.P. Distribution and speciation of copper and arsenic in rice plants ( oryza sativa japonica ’koshihikari’) treated with copper oxide nanoparticles and arsenic during a life cycle. Environ. Sci. Technol. 2019, 53, 4988–4996. [Google Scholar] [CrossRef]
- Samarajeewa, A.D.; Velicogna, J.R.; Schwertfeger, D.M.; Princz, J.I.; Subasinghe, R.M.; Scroggins, R.P.; Beaudette, L.A. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil. Sci. Total Environ. 2021, 763, 143037. [Google Scholar] [CrossRef]
- Wang, X.; Sun, W.; Ma, X. Differential impacts of copper oxide nanoparticles and copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environ. Pollut. 2019, 252, 967–973. [Google Scholar] [CrossRef]
- Liu, J.; Simms, M.; Song, S.; King, R.S.; Cobb, G.P. Physiological effects of copper oxide nanoparticles and arsenic on the growth and life cycle of rice (oryza sativa japonica ’koshihikari’). Environ. Sci. Technol. 2018, 52, 13728–13737. [Google Scholar] [CrossRef]
- Liu, J.; Dhungana, B.; Cobb, G.P. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ. Toxicol. Chem. 2018, 37, 11–20. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Wu, H.; Zou, L.; Wang, L.; Shi, J. Effects and mechanisms of copper oxide nanoparticles with regard to arsenic availability in soil-rice systems: Adsorption Behavior and microbial response. Environ. Sci. Technol. 2022, 56, 8142–8154. [Google Scholar] [CrossRef]
- Tapia-Gatica, J.; Selles, I.; Bravo, M.A.; Tessini, C.; Barros-Parada, W.; Novoselov, A.; Neaman, A. Global issues in setting legal limits on soil metal contamination: A case study of Chile. Chemosphere 2022, 290, 133404. [Google Scholar] [CrossRef]
- Fu, L.; Su, T.; Wei, D.; Wu, D.; Zhang, G.; Shen, Q. Copper oxide nanoparticles alleviate cadmium toxicity in cereal crops. Environ. Sci. Nano 2022, 9, 3502–3513. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook. 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 16 September 2022).
- Fang, X.; Muntwyler, A.; Schneider, P.; Christl, I.; Wang, P.; Zhao, F.-J.; Kretzschmar, R. Exploring key soil parameters relevant to arsenic and cadmium accumulation in rice grain in southern china. Soil Syst. 2022, 6, 36. [Google Scholar] [CrossRef]
- U.S. EPA (Environmental Protection Agency). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. In Methods for the Determination of Metals in Environmental Samples; U.S. EPA: Washington, DC, USA, 1996; pp. 88–145. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- IRRI Rice Knowlege Bank. Rice Husk. Available online: http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-husk (accessed on 22 August 2022).
- GB15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. China Environmental Science Publishing House: Beijing, China, 2018.
- Zhao, F.J.; Tang, Z.; Song, J.J.; Huang, X.Y.; Wang, P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J. Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils. Front. Agric. Sci. Eng. 2020, 7, 333–338. [Google Scholar] [CrossRef]
- Naziatahir; Ullah, A.; Tahir, A.; Rashid, H.U.; Rehman, T.U.; Danish, S.; Hussain, B.; Akca, H. Strategies for reducing Cd concentration in paddy soil for rice safety. J. Clean Prod. 2021, 316, 128116. [Google Scholar] [CrossRef]
- Shi, L.D.; Zhou, Y.J.; Tang, X.J.; Kappler, A.; Chistoserdova, L.; Zhu, L.Z.; Zhao, H.P. Coupled aerobic methane oxidation and arsenate reduction contributes to soil-arsenic mobilization in agricultural fields. Environ. Sci. Technol. 2022, 56, 11845–11856. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liang, X.; Jiang, N.; Li, Z.; Zu, Y. Three amendments reduced the bioavailability of heavily contaminated soil with arsenic and cadmium and increased the relative feeding value of Lolium perenne L. Sci. Total Environ. 2022, 847, 157572. [Google Scholar] [CrossRef]
- Chi, W.; Yang, Y.; Zhang, K.; Wang, P.; Du, Y.; Li, X.; Sun, Y.; Liu, T.; Li, F. Seawater intrusion induced cadmium activation via altering its distribution and transformation in paddy soil. Chemosphere 2022, 307, 135805. [Google Scholar] [CrossRef]
- Dai, J.; Chen, C.; Gao, A.X.; Tang, Z.; Kopittke, P.M.; Zhao, F.J.; Wang, P. Dynamics of dimethylated monothioarsenate (DMMTA) in paddy soils and its accumulation in rice grains. Environ. Sci. Technol. 2021, 55, 8665–8674. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, H.; Han, S.; Gao, Z.; Niu, X. Controls of geochemical and hydrogeochemical factors on arsenic mobility in the hetao basin, China. Groundwater 2022. [Google Scholar] [CrossRef]
- Ullah, A.; Ma, Y.; Li, J.; Tahir, N.; Hussain, B. Effective amendments on cadmium, arsenic, chromium and lead contaminated paddy soil for rice safety. Agronomy 2020, 10, 359. [Google Scholar] [CrossRef]
- Clemens, S.; Ma, J.F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, M.; Chen, W.; Li, Y.; Peng, C. Cadmium accumulation risk in vegetables and rice in southern china: Insights from solid-solution partitioning and plant uptake factor. J. Agric. Food Chem. 2017, 65, 5463–5469. [Google Scholar] [CrossRef]
- Chi, Y.; Li, F.; Tam, N.F.; Liu, C.; Ouyang, Y.; Qi, X.; Li, W.C.; Ye, Z. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials. Sci. Total Environ. 2018, 643, 1314–1324. [Google Scholar] [CrossRef]
Sampling Sites | Sampling Point | CEC a (cmol/kg) | Available P b (mg/kg) | Available K c (mg/kg) | Total N d (mg/kg) | Organic Matter (g/kg) | Inorganic Anions (mg/L) | pH |
---|---|---|---|---|---|---|---|---|
HN-A | Soil 1 | 7.2 ± 0.30 | 13.0 ± 0.45 | 9.0 ± 0.11 | 129.5 ± 1.5 | 9.9 ± 1.8 | 17.2 ± 0.35 | 5.9 ± 0.1 |
Soil 2 | 7.3 ± 0.05 | 12.9 ± 0.20 | 9.0 ± 0.16 | 126.5 ± 7.5 | 12.3 ± 0.4 | 15.8 ± 0.15 | ||
Soil 3 | 7.3 ± 0.20 | 12.8 ± 0.30 | 9.0 ± 0.13 | 157.5 ± 0.5 | 14.8 ± 0.2 | 15.5 ± 0.30 | ||
Soil 4 | 7.7 ± 0.10 | 12.6 ± 0.00 | 8.9 ± 0.04 | 156.0 ± 2.0 | 20.1 ± 0.3 | 15.9 ± 0.55 | ||
Soil 5 | 7.6 ± 0.10 | 12.4 ± 0.05 | 9.2 ± 0.01 | 152.0 ± 3.0 | 20.6 ± 1.3 | 15.5 ± 0.35 | ||
HN-B | Soil 1 | 7.9 ± 0.45 | 12.5 ± 0.05 | 9.0 ± 0.11 | 150.5 ± 2.5 | 33.7 ± 0.7 | 15.6 ± 0.65 | 5.4 ± 0.1 |
Soil 2 | 7.6 ± 0.05 | 12.7 ± 0.10 | 8.9 ± 0.05 | 153.0 ± 1.0 | 40.0 ± 0.7 | 15.6 ± 0.35 | ||
Soil 3 | 7.4 ± 0.05 | 12.3 ± 0.10 | 9.0 ± 0.05 | 143.0 ± 5.0 | 39.1 ± 0.9 | 15.0 ± 0.20 | ||
Soil 4 | 7.4 ± 0.20 | 12.6 ± 0.05 | 9.0 ± 0.02 | 156.0 ± 5.0 | 45.3 ± 0.1 | 15.1 ± 0.25 | ||
Soil 5 | 7.5 ± 0.05 | 12.5 ± 0.35 | 8.9 ± 0.10 | 154.5 ± 2.5 | 49.9 ± 1.4 | 15.0 ± 0.40 | ||
JX-A | Soil 1 | 7.0 ± 0.15 | 13.7 ± 0.05 | 10.6 ± 0.15 | 155.0 ± 3.0 | 29.9 ± 0.7 | 14.0 ± 0.15 | 5.0 ± 0.1 |
Soil 2 | 6.8 ± 0.25 | 12.6 ± 0.20 | 9.6 ± 0.32 | 164.0 ± 3.0 | 31.8 ± 0.3 | 15.1 ± 2.15 | ||
Soil 3 | 7.5 ± 0.30 | 12.0 ± 0.10 | 10.9 ± 0.05 | 163.5 ± 4.5 | 28.4 ± 3.6 | 17.1 ± 0.90 | ||
Soil 4 | 7.1 ± 0.15 | 13.2 ± 0.05 | 11.2 ± 0.25 | 152.5 ± 0.5 | 30.7 ± 0.1 | 15.6 ± 0.05 | ||
Soil 5 | 7.6 ± 0.05 | 12.5 ± 0.25 | 9.5 ± 0.10 | 126.5 ± 1.5 | 31.5 ± 0.4 | 15.5 ± 0.60 | ||
JX-B | Soil 1 | 7.7 ± 0.10 | 13.0 ± 0.15 | 8.8 ± 0.02 | 111.0 ± 2.0 | 23.9 ± 1.0 | 15.1 ± 0.65 | 5.2 ± 0.0 |
Soil 2 | 7.0 ± 0.15 | 12.4 ± 0.15 | 9.2 ± 0.04 | 125.5 ± 1.5 | 25.2 ± 1.9 | 14.8 ± 2.20 | ||
Soil 3 | 8.3 ± 0.10 | 12.6 ± 0.05 | 9.3 ± 0.02 | 143.5 ± 7.5 | 26.8 ± 1.6 | 16.3 ± 0.10 | ||
Soil 4 | 7.8 ± 0.35 | 13.0 ± 0.15 | 8.7 ± 0.12 | 152.5 ± 5.5 | 21.8 ± 1.7 | 16.1 ± 0.25 | ||
Soil 5 | 7.3 ± 0.45 | 13.0 ± 0.30 | 9.0 ± 0.01 | 152.5 ± 3.5 | 20.2 ± 1.1 | 17.4 ± 0.20 | ||
∗ Significant difference | JX-A∗JX-B | None | HN-A∗JX-A JX-A∗JX-B | HN-B∗JX-B JX-A∗JX-B | HN-A∗JX-A HN-B∗JX-B HN-A∗HN-B JX-A∗JX-B | None | HN-A∗JX-A HN-A∗HN-B | |
Texture of soils | ||||||||
HN-A | HN-B | JX-A | JX-B | |||||
Silt (%) | 3.83 ± 0.10 | 3.77 ± 0.16 | 3.13 ± 0.16 | 3.61 ± 0.17 | ||||
Sand (%) | 9.68 ± 0.14 | 9.05 ± 0.16 | 7.70 ± 0.23 | 9.94 ± 0.24 | ||||
Clay (%) | 86.53 ± 0.14 | 87.18 ± 0.24 | 89.17 ± 0.32 | 86.45 ± 0.40 | ||||
Texture e | Clay | Clay | Clay | Clay |
Sampling Sites | Sample Id | As (mg/kg) | Cd (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|
HN-A | Dehusked rice grain S1 | 0.076 ± 0.003 | 0.302 ± 0.003 | 3.08 ± 0.192 |
Dehusked rice grain S2 | 0.091 ± 0.004 | 0.389 ± 0.029 | 3.04 ± 0.076 | |
Dehusked rice grain S3 | 0.076 ± 0.007 | 0.352 ± 0.000 | 2.85 ± 0.040 | |
Dehusked rice grain S4 | 0.063 ± 0.002 | 0.205 ± 0.010 | 2.33 ± 0.018 | |
Dehusked rice grain S5 | 0.081 ± 0.000 | 0.522 ± 0.012 | 2.44 ± 0.150 | |
Rice husk S1 | 0.107 ± 0.008 | 0.116 ± 0.034 | 2.68 ± 0.018 | |
Rice husk S2 | 0.127 ± 0.005 | 0.111 ± 0.014 | 2.65 ± 0.205 | |
Rice husk S3 | 0.103 ± 0.005 | 0.176 ± 0.083 | 2.43 ± 0.160 | |
Rice husk S4 | 0.108 ± 0.004 | 0.096 ± 0.022 | 2.41 ± 0.072 | |
Rice husk S5 | 0.128 ± 0.003 | 0.141 ± 0.007 | 1.86 ± 0.127 | |
Soil 1 | 60.25 ± 0.65 | 5.11 ± 0.25 | 62.80 ± 3.50 | |
Soil 2 | 55.85 ± 0.15 | 4.92 ± 0.44 | 62.70 ± 1.320 | |
Soil 3 | 56.25 ± 0.45 | 4.10 ± 0.27 | 58.45 ± 4.65 | |
Soil 4 | 57.00 ± 0.80 | 4.13 ± 0.13 | 61.00 ± 1.60 | |
Soil 5 | 47.95 ± 3.65 | 3.96 ± 0.20 | 54.90 ± 5.20 | |
HN-B | Dehusked rice grain S1 | 0.102 ± 0.002 | 0.236 ± 0.013 | 2.22 ± 0.021 |
Dehusked rice grain S2 | 0.101 ± 0.001 | 0.161 ± 0.010 | 1.86 ± 0.037 | |
Dehusked rice grain S3 | 0.112 ± 0.001 | 0.051 ± 0.004 | 1.92 ± 0.064 | |
Dehusked rice grain S4 | 0.126 ± 0.002 | 0.024 ± 0.001 | 1.41 ± 0.034 | |
Dehusked rice grain S5 | 0.139 ± 0.003 | 0.028 ± 0.001 | 1.51 ± 0.122 | |
Rice husk S1 | 0.227 ± 0.013 | 0.182 ± 0.005 | 2.49 ± 0.529 | |
Rice husk S2 | 0.222 ± 0.006 | 0.124 ± 0.003 | 1.92 ± 0.034 | |
Rice husk S3 | 0.213 ± 0.002 | 0.037 ± 0.000 | 1.90 ± 0.035 | |
Rice husk S4 | 0.282 ± 0.011 | 0.026 ± 0.005 | 1.74 ± 0.101 | |
Rice husk S5 | 0.331 ± 0.014 | 0.022 ± 0.002 | 1.73 ± 0.014 | |
Soil 1 | 38.1 ± 4.10 | 2.77 ± 0.004 | 48.45 ± 2.35 | |
Soil 2 | 40.80 ± 0.70 | 2.45 ± 0.09 | 52.25 ± 0.95 | |
Soil 3 | 30.10 ± 1.30 | 2.12 ± 0.07 | 42.30 ± 0.60 | |
Soil 4 | 35.20 ± 2.50 | 2.33 ± 0.12 | 49.65 ± 2.15 | |
Soil 5 | 25.00 ± 1.60 | 1.83 ± 0.17 | 34.10 ± 0.20 |
Sampling Sites | Sample Id | As (mg/kg) | Cd (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|
JX-A | Dehusked rice grain S1 | 0.143 ± 0.005 | 0.102 ± 0.009 | 3.35 ± 0.152 |
Dehusked rice grain S2 | 0.140 ± 0.005 | 0.130 ± 0.001 | 3.73 ± 0.103 | |
Dehusked rice grain S3 | 0.158 ± 0.011 | 0.069 ± 0.004 | 3.12 ± 0.065 | |
Dehusked rice grain S4 | 0.155 ± 0.006 | 0.076 ± 0.001 | 3.23 ± 0.016 | |
Rice husk S1 | 0.358 ± 0.044 | 0.055 ± 0.004 | 3.78 ± 0.796 | |
Rice husk S2 | 0.266 ± 0.008 | 0.093 ± 0.004 | 3.03 ± 0.019 | |
Rice husk S3 | 0.273 ± 0.025 | 0.068 ± 0.026 | 2.42 ± 0.278 | |
Rice husk S4 | 0.360 ± 0.014 | 0.107 ± 0.013 | 3.38 ± 0.006 | |
Soil 1 | 9.92 ± 0.29 | 0.25 ± 0.03 | 24.1 ± 2.3 | |
Soil 2 | 9.35 ± 0.10 | 0.24 ± 0.02 | 23.1 ± 0.9 | |
Soil 3 | 8.60 ± 0.68 | 0.20 ± 0.01 | 24.1 ± 0.8 | |
Soil 4 | 8.01 ± 0.24 | 0.20 ± 0.01 | 22.3 ± 0.6 | |
Soil 5 | 8.68 ± 0.17 | 0.23 ± 0.01 | 21.6 ± 0.7 | |
JX-B | Dehusked rice grain S1 | 0.180 ± 0.003 | 0.424 ± 0.026 | 4.12 ± 0.142 |
Dehusked rice grain S2 | 0.177 ± 0.002 | 0.421 ± 0.016 | 4.96 ± 0.195 | |
Dehusked rice grain S3 | 0.155 ± 0.000 | 0.461 ± 0.000 | 4.57 ± 0.047 | |
Dehusked rice grain S4 | 0.178 ± 0.002 | 0.425 ± 0.011 | 3.47 ± 0.038 | |
Dehusked rice grain S5 | 0.203 ± 0.018 | 0.535 ± 0.000 | 4.69 ± 0.104 | |
Rice husk S1 | 0.331 ± 0.023 | 0.138 ± 0.002 | 3.96 ± 0.081 | |
Rice husk S2 | 0.304 ± 0.017 | 0.130 ± 0.006 | 4.68 ± 0.406 | |
Rice husk S3 | 0.260 ± 0.018 | 0.153 ± 0.006 | 4.76 ± 0.191 | |
Rice husk S4 | 0.309 ± 0.001 | 0.139 ± 0.015 | 3.64 ± 0.125 | |
Rice husk S5 | 0.346 ± 0.030 | 0.214 ± 0.003 | 4.59 ± 0.407 | |
Soil 1 | 4.48 ± 0.10 | 0.29 ± 0.01 | 19.2 ± 0.8 | |
Soil 2 | 3.63 ± 0.04 | 0.28 ± 0.03 | 18.6 ± 1.8 | |
Soil 3 | 3.82 ± 0.26 | 0.34 ± 0.02 | 21.3 ± 1.3 | |
Soil 4 | 3.40 ± 0.10 | 0.30 ± 0.02 | 18.9 ± 0.2 | |
Soil 5 | 4.31 ± 0.14 | 0.29 ± 0.01 | 19.5 ± 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Su, J.; Wang, J.; Song, X.; Wang, H. A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China. Sustainability 2022, 14, 14355. https://doi.org/10.3390/su142114355
Liu J, Su J, Wang J, Song X, Wang H. A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China. Sustainability. 2022; 14(21):14355. https://doi.org/10.3390/su142114355
Chicago/Turabian StyleLiu, Jing, Jiayi Su, Jun Wang, Xu Song, and Haiwen Wang. 2022. "A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China" Sustainability 14, no. 21: 14355. https://doi.org/10.3390/su142114355
APA StyleLiu, J., Su, J., Wang, J., Song, X., & Wang, H. (2022). A Case Study: Arsenic, Cadmium and Copper Distribution in the Soil–Rice System in Two Main Rice-Producing Provinces in China. Sustainability, 14(21), 14355. https://doi.org/10.3390/su142114355