Health Impact Assessment of Air Pollution under a Climate Change Scenario: Methodology and Case Study Application
Abstract
:1. Introduction
2. Data and Methods
2.1. Climate and Air Quality Modelling
2.2. Health Impacts Assessment
- CAMx surface concentrations results for PM2.5, NO2, and O3, by grid cell, for each period analysed (steps 1a and 1b in Figure 2 scheme);
- Baseline concentration (C0) and concentration-response functions (CRF) were used for the estimation of the relative risk (RR) (2a and 2b from Figure 2 scheme) as follows:
Pollutant | RR per 10 µg·m−3 (95% CI) | Baseline Concentration (C0) | Source of Mortality Data | Health Outcome | ||
---|---|---|---|---|---|---|
WHO 2013 | WHO 2021 | WHO 2013 | WHO 2021 | |||
PM2.5, annual mean | 1.062 (1.040; 1.083), in [68] | 1.08 (1.06; 1.09), in [69] | >0 µg·m−3 | >5 µg·m−3 | European mortality database in [81], ICD-10: A-R | Mortality, all-cause (natural), age 30+ years |
NO2, annual mean | 1.055 (1.031; 1.080), in [68] | 1.02 (1.01; 1.04), in [70] | >20 µg·m−3 | >10 µg·m−3 | ||
O3, SOMO35 1 | 1.014 (1.005; 1.024), in [67] | 1.01 (1.00; 1.02), in [70] | >70 µg·m−3 | >70 µg·m−3 | European mortality database in [81], ICD-10: J00-J99 | Mortality, respiratory diseases, age 30+ years |
3. Results and Discussion
3.1. Climate and Air Quality Modelling
3.2. Health Impact Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
NO2 | O3 | PM10 | |||||||
---|---|---|---|---|---|---|---|---|---|
EST | ILH | FRN | EST | ILH | FRN | EST | ILH | FRN | |
Nrº Observations [%] | 100 | 97 | 100 | 344 | 356 | 365 | 100 | 99 | 100 |
Correlation [-] | 0.39 | 0.32 | 0.68 | 0.52 | 0.50 | 0.54 | 0.33 | 0.54 | 0.52 |
Mean Bias [µg·m−3] | −1.56 | −0.26 | −0.72 | 1.72 | 2.50 | 3.22 | −6.79 | −1.10 | −5.65 |
Mean Error [µg·m−3] | 5.67 | 0.99 | 3.76 | 15.95 | 12.87 | 13.93 | 10.67 | 3.53 | 7.10 |
Index of Agreement [-] | 0.62 | 0.64 | 0.89 | 0.70 | 0.68 | 0.68 | 0.73 | 0.64 | 0.48 |
RMSE [µg·m−3] | 7.31 | 1.27 | 5.24 | 20.43 | 16.86 | 17.36 | 14.72 | 5.57 | 9.18 |
MQI [-] | 0.35 | 0.07 | 0.26 | 0.26 | 0.21 | 0.22 | 0.90 | 0.93 | 0.86 |
References
- Grossberndt, S.; Bartonova, A.; Ortiz, A.G. Public Awareness and Efforts to Improve Air Quality in Europe; Eionet Report-ETC/ATNI 2020/2; European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution: Kjeller, Norway, 2021. [Google Scholar]
- Von Schneidemesser, E.; Monks, P.S.P.S.; Allan, J.D.J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Urban Europe: Statistics on Cities, Towns and Suburbs–2016 Edition; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- EEA. Exceedance of Air Quality Standards in Europe. Available online: https://www.eea.europa.eu/ims/exceedance-of-air-quality-standards#footnote-RWRZZSXA (accessed on 29 August 2022).
- EC. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Eur. Comm.-Off. J. Eur. Union 2008, L152, 1–44. [Google Scholar]
- WHO. Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—“A Clean Air Programme for Europe”; European Commision: Brussels, Belgium, 2013. [Google Scholar]
- EC. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—“The European Green Deal”; European Commision: Brussels, Belgium, 2019. [Google Scholar]
- WHO. World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- EEA. Air Quality in Europe 2021; Report No. 15/2021; European Environmental Agency: Luxembourg, 2021. [Google Scholar]
- Seo, J.; Kim, J.Y.; Youn, D.; Lee, J.Y.; Kim, H.; Lim, Y.B.; Kim, Y.; Jin, H.C. On the Multiday Haze in the Asian Continental Outflow: The Important Role of Synoptic Conditions Combined with Regional and Local Sources. Atmos. Chem. Phys. 2017, 17, 9311–9332. [Google Scholar] [CrossRef] [Green Version]
- Coelho, S.; Rafael, S.; Lopes, D.; Miranda, A.I.; Ferreira, J. How Changing Climate May Influence Air Pollution Control Strategies for 2030? Sci. Total Environ. 2021, 758, 143911. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Revi, A.; Satterthwaite, D.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. ISBN 9781107415379. [Google Scholar]
- Radhakrishnan, M.; Islam, T.; Ashley, R.M.; Pathirana, A.; Quan, N.H.; Gersonius, B.; Zevenbergen, C. Context Specific Adaptation Grammars for Climate Adaptation in Urban Areas. Environ. Model. Softw. 2018, 102, 73–83. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Pathirana, A.; Ashley, R.; Zevenbergen, C. Structuring Climate Adaptation through Multiple Perspectives: Framework and Case Study on Flood Risk Management. Water 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Coelho, S.; Ferreira, J.; Rodrigues, V.; Lopes, M. Source Apportionment of Air Pollution in European Urban Areas: Lessons from the ClairCity Project. J. Environ. Manag. 2022, 320, 115899. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, L.; Shi, T.; Gui, Q. A Review of Urban Planning Research for Climate Change. Sustainability 2017, 9, 2224. [Google Scholar] [CrossRef] [Green Version]
- Monjardino, J.; Dias, L.; Vale, G.; Tente, H.; Gouveia, J.P.; Barroso, J.E.; Dias, L.; Aires, N.; Fortes, P.; Ferreira, F.; et al. Relatório Setorial: Estimativa de Poluentes Atmosféricos. Trabalhos de Base Para o Roteiro Para a Neutralidade Carbónica 2050; UNFCC: Bonn, Germany, 2019. [Google Scholar]
- Rodrigues, V.; Gama, C.; Ascenso, A.; Oliveira, K.; Coelho, S.; Monteiro, A.; Hayes, E.; Lopes, M. Assessing Air Pollution in European Cities to Support a Citizen Centered Approach to Air Quality Management. Sci. Total Environ. 2021, 799, 149311. [Google Scholar] [CrossRef]
- Coelho, S.; Rodrigues, V.; Barnes, J.; Boushel, C.; Devito, L.; Lopes, M. Air Pollution in the Aveiro Region, Portugal: A Citizens’ Engagement Approach. WIT Trans. Ecol. Environ. 2018, 230, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Slingerland, S.; Artola, I.; Lopes, M.; Rodrigues, V.; Borrego, C.; Miranda, A.I.; Silva, S.; Coelho, S.; Cravo, O.; Matos, J.E. D6.2 Air Quality and Climate Related Policies in the Intermunicipal Community of the Region of Aveiro (CIRA, Portugal)—Baseline Analysis; CESAM: Rotterdam, The Netherlands, 2018. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR; UCAR: Boulder, CO, USA, 2019. [Google Scholar]
- ENVIRON CAMx. User’s Guide. Comprehensive Air Quality Model with Extensions. Version 7.10; Ramboll Environment and Health: Arlington, VA, USA, 2020. [Google Scholar]
- Ferreira, J.; Lopes, D.; Rafael, S.; Relvas, H.; Almeida, S.M.; Miranda, A.I. Modelling Air Quality Levels of Regulated Metals: Limitations and Challenges. Environ. Sci. Pollut. Res. 2020, 27, 33916–33928. [Google Scholar] [CrossRef] [PubMed]
- Rafael, S.; Martins, H.; Marta-Almeida, M.; Sá, E.; Coelho, S.; Rocha, A.; Borrego, C.; Lopes, M. Quantification and Mapping of Urban Fluxes under Climate Change: Application of WRF-SUEWS Model to Greater Porto Area (Portugal). Environ. Res. 2017, 155, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Brands, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. How Well Do CMIP5 Earth System Models Simulate Present Climate Conditions in Europe and Africa? Clim. Dyn. 2013, 41, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High Resolution WRF Climatic Simulations for the Iberian Peninsula: Model Validation. Phys. Chem. Earth, Parts A/B/C 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Rafael, S.; Martins, H.; Matos, M.J.; Cerqueira, M.; Pio, C.; Lopes, M.; Borrego, C. Application of SUEWS Model Forced with WRF: Energy Fluxes Validation in Urban and Suburban Portuguese Areas. Urban Clim. 2020, 33, 100662. [Google Scholar] [CrossRef]
- Russo, M.A.; Carvalho, D.; Martins, N.; Monteiro, A. Future Perspectives for Wind and Solar Energy Production in Portugal under High-Resolution Climate Change Scenarios. Renew. Sustain. Energy Rev. 2022; under review. 2022. [Google Scholar]
- Coelho, S.; Rafael, S.; Coutinho, M.; Monteiro, A.; Medina, J.; Figueiredo, S.; Cunha, S.; Lopes, M.; Miranda, A.I.A.I.; Borrego, C. Climate-Change Adaptation Framework for Multiple Urban Areas in Northern Portugal. Environ. Manag. 2020, 66, 1–12. [Google Scholar] [CrossRef]
- Coelho, S.; Rafael, S.; Fernandes, A.P.; Lopes, M.; Carvalho, D. How the New Climate Scenarios Will Affect Air Quality Trends: An Exploratory Research. Urban Clim. under review.
- Hong, S.; Lim, S. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuence, R.; et al. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Ascenso, A.; Augusto, B.; Silveira, C.; Rafael, S.; Coelho, S.; Monteiro, A.; Ferreira, J.; Menezes, I.; Roebeling, P.; Miranda, A.I. Impacts of Nature-Based Solutions on the Urban Atmospheric Environment: A Case Study for Eindhoven, The Netherlands. Urban For. Urban Green. 2021, 57, 126870. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, K.C. Estimation of Atmospheric Mixing Layer Height from Radiosonde Data. Atmos. Meas. Tech. 2014, 7, 1701–1709. [Google Scholar] [CrossRef] [Green Version]
- Kayes, I.; Shahriar, S.A.; Hasan, K.; Akhter, M.; Kabir, M.M.; Salam, M.A. The Relationships between Meteorological Parameters and Air Pollutants in an Urban Environment. Glob. J. Environ. Sci. Manag. 2019, 5, 265–278. [Google Scholar] [CrossRef]
- Aw, J.; Kleeman, M.J. Evaluating the First-Order Effect of Intraannual Temperature Variability on Urban Air Pollution. J. Geophys. Res. Atmos. 2003, 108, 688. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of Climate Change on Air Quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The Marker Quantification of the Shared Socioeconomic Pathway 2: A Middle-of-the-Road Scenario for the 21st Century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Emmons, L.K.; Schwantes, R.H.; Orlando, J.J.; Tyndall, G.; Kinnison, D.; Lamarque, J.-F.; Marsh, D.; Mills, M.J.; Tilmes, S.; Bardeen, C.; et al. The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001882. [Google Scholar] [CrossRef] [Green Version]
- EMEP. European Monitoring and Evaluation Programme. Available online: http://www.emep.int/ (accessed on 21 March 2022).
- Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond Mechanism for Version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010. [Google Scholar]
- Sá, E.; Ferreira, J.; Carvalho, A.; Borrego, C. Development of Current and Future Pollutant Emissions for Portugal. Atmos. Pollut. Res. 2015, 6, 849–857. [Google Scholar] [CrossRef]
- WHO. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project; Technical Report; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Amnuaylojaroen, T.; Parasin, N.; Limsakul, A. Health Risk Assessment of Exposure Near-Future PM2.5 in Northern Thailand. Air Qual. Atmos. Health 2022, 1–17. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Næss, Ø.; Nafstad, P.; Aamodt, G.; Claussen, B.; Rosland, P. Relation between Concentration of Air Pollution and Cause-Specific Mortality: Four-Year Exposures to Nitrogen Dioxide and Particulate Matter Pollutants in 470 Neighborhoods in Oslo, Norway. Am. J. Epidemiol. 2007, 165, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Marmett, B.; Carvalho, R.B.; Nunes, R.B.; Rhoden, C.R. Exposure to O3 and NO2 in Physically Active Adults: An Evaluation of Physiological Parameters and Health Risk Assessment. Environ. Geochem. Health 2022, 1–16. [Google Scholar] [CrossRef]
- Brunekreef, B. Health Effects of Air Pollution Observed in Cohort Studies in Europe. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S61–S65. [Google Scholar] [CrossRef]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-Term Exposure to Urban Air Pollution and Mortality in a Cohort of More than a Million Adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.R.; Silva, C. Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades. Atmosphere 2022, 13, 434. [Google Scholar] [CrossRef]
- Lipfert, F.W.; Wyzga, R.E.; Baty, J.D.; Miller, J.P. Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans. Atmos. Environ. 2006, 40, 154–169. [Google Scholar] [CrossRef]
- Soares, J.; Horálek, J.; Ortiz, A.G.; Guerreiro, C.; Gsella, A. Health Risk Assessment of Air Pollution in Europe. Methodology Description and 2017 Results; ETC/ATNI Report 13/2019; European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution: Kjeller, Norway, 2019. [Google Scholar]
- EEA. Assessing the Risks to Health from Air Pollution; Briefing No. 11/2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- WHO. Health Risk Assessment of Air Pollution—General Principles; World Health Organization: Copenhagen, Denmark, 2016. [Google Scholar]
- INE. Resident Population (No.) by Place of Residence, Sex and Age Group; Decennial—Statistics Portugal, Population and Housing Census—2021. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0011166&contexto=bd&selTab=tab2 (accessed on 28 July 2022).
- INE. Resident Population (Projections 2015-2080—No.) by Place of Residence (NUTS—2013), Sex, Age and Scenario; Annual—Statistics Portugal, Resident Population Projections. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0009098&contexto=bd&selTab=tab2 (accessed on 28 July 2022).
- WHO. Health Risks of Air Pollution in Europe—HRAPIE Project: Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Jerrett, M.; Burnett, R.T.; Pope, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-Term Air Pollution Exposure and Cardio-Respiratory Mortality: A Review. Environ. Health A Glob. Access Sci. Source 2013, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hoek, G. Long-Term Exposure to PM and All-Cause and Cause-Specific Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, P.; Atkinson, R. Long-Term Exposure to NO2 and O3 and All-Cause and Respiratory Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2020, 144, 105998. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Villeneuve, P.J.; Burnett, R.T.; van Donkelaar, A.; Martin, R.V.; Jones, R.R.; DellaValle, C.T.; Sandler, D.P.; Ward, M.H.; Hoppin, J.A. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort. Environ. Health Perspect. 2014, 122, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinault, L.; Tjepkema, M.; Crouse, D.L.; Weichenthal, S.; Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Chen, H.; Burnett, R.T. Risk Estimates of Mortality Attributed to Low Concentrations of Ambient Fine Particulate Matter in the Canadian Community Health Survey Cohort. Environ. Health A Glob. Access Sci. Source 2016, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pinault, L.L.; Weichenthal, S.; Crouse, D.L.; Brauer, M.; Erickson, A.; van Donkelaar, A.; Martin, R.V.; Hystad, P.; Chen, H.; Finès, P.; et al. Associations between Fine Particulate Matter and Mortality in the 2001 Canadian Census Health and Environment Cohort. Environ. Res. 2017, 159, 406–415. [Google Scholar] [CrossRef]
- Cakmak, S.; Hebbern, C.; Pinault, L.; Lavigne, E.; Vanos, J.; Crouse, D.L.; Tjepkema, M. Associations between Long-Term PM 2.5 and Ozone Exposure and Mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by Spatial Synoptic Classification Zone. Environ. Int. 2018, 111, 200–211. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Weichenthal, S.A.; Crouse, D.; Miller, A.B.; To, T.; Martin, R.V.; Van Donkelaar, A.; Wall, C.; Burnett, R.T. Long-Term Exposure to Fine Particulate Matter Air Pollution and Mortality among Canadian Women. Epidemiology 2015, 26, 536–545. [Google Scholar] [CrossRef]
- Tonne, C.; Wilkinson, P. Long-Term Exposure to Air Pollution Is Associated with Survival Following Acute Coronary Syndrome. Eur. Heart J. 2013, 34, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, J.E.; Rimm, E.B.; Rexrode, K.M.; Laden, F. Changes in Traffic Exposure and the Risk of Incident Myocardial Infarction and All-Cause Mortality. Epidemiology 2013, 24, 734–742. [Google Scholar] [CrossRef]
- Carey, I.M.; Atkinson, R.W.; Kent, A.J.; Van Staa, T.; Cook, D.G.; Anderson, H.R. Mortality Associations with Long-Term Exposure to Outdoor Air Pollution in a National English Cohort. Am. J. Respir. Crit. Care Med. 2013, 187, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.E.; Garshick, E.; Dockery, D.W.; Smith, T.J.; Ryan, L.; Laden, F. Long-Term Ambient Multipollutant Exposures and Mortality. Am. J. Respir. Crit. Care Med. 2011, 183, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Mortality Database. Available online: https://www.who.int/data/data-collection-tools/who-mortality-database (accessed on 28 May 2022).
- Murray, C.J.L. Rethinking DALYs. In The Global Burden of Disease; Murray, C.J.L., Lopez, A.D., Eds.; Harvard University Press: Cambridge, UK, 1996; pp. 1–98. [Google Scholar]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future; First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; ISBN 978-2-9577416-0-1. [Google Scholar]
- Duhanyan, N.; Roustan, Y. Below-Cloud Scavenging by Rain of Atmospheric Gases and Particulates. Atmos. Environ. 2011, 45, 7201–7217. [Google Scholar] [CrossRef]
- Guo, L.-C.; Zhang, Y.; Lin, H.; Zeng, W.; Liu, T.; Xiao, J.; Rutherford, S.; You, J.; Ma, W. The Washout Effects of Rainfall on Atmospheric Particulate Pollution in Two Chinese Cities. Environ. Pollut. 2016, 215, 195–202. [Google Scholar] [CrossRef]
- Coelho, S.; Ferreira, J.; Carvalho, D.; Miranda, A.I.; Lopes, M. Climate Change Impact on Source Contributions to the Air Quality in Aveiro Region. In Air Pollution Modeling and its Application XXVIII, Proceedings of the ITM 2021, Barcelona, Spain, 18–22 October 2021; Springer Proceedings in Complexity; Mensink, C., Jorba, O., Eds.; Springer International Publishing: Cham, Switzerland, 2023; p. 308. [Google Scholar]
- Coelho, S.; Ferreira, J.; Carvalho, D.; Miranda, A.I.; Lopes, M. Air Quality Impacts on Human Health, under a Climate Change Scenario: The Aveiro Region Case Study. In Proceedings of the 21st International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Aveiro, Portugal, 27–30 September 2022; Trini-Castelli, S., Miranda, A.I., Augusto, B., Ferreira, J., Eds.; Universidade de Aveiro: Aveiro, Portugal, 2022; pp. 409–414. [Google Scholar]
- Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C. Climate Change and Pollutant Emissions Impacts on Air Quality in 2050 over Portugal. Atmos. Environ. 2016, 131, 209–224. [Google Scholar] [CrossRef]
- Lacressonnière, G.; Peuch, V.-H.H.; Vautard, R.; Arteta, J.; Déqué, M.; Joly, M.; Josse, B.; Marécal, V.; Saint-Martin, D. European Air Quality in the 2030s and 2050s: Impacts of Global and Regional Emission Trends and of Climate Change. Atmos. Environ. 2014, 92, 348–358. [Google Scholar] [CrossRef]
- Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S. Air Quality in the Mid-21st Century for the City of Paris under Two Climate Scenarios; From the Regional to Local Scale. Atmos. Chem. Phys. 2014, 14, 7323–7340. [Google Scholar] [CrossRef] [Green Version]
- Markakis, K.; Valari, M.; Engardt, M.; Lacressonniere, G.; Vautard, R.; Andersson, C. Mid-21st Century Air Quality at the Urban Scale under the Influence of Changed Climate and Emissions-Case Studies for Paris and Stockholm. Atmos. Chem. Phys. 2016, 16, 1877–1894. [Google Scholar] [CrossRef]
- EEA. Air Quality E-Reporting (AQ e-Reporting); European Environmental Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Janssen, S.; Thunis, P. FAIRMODE Guidance Document on Modelling Quality Objectives and Benchmarking (Version 3.3); EUR 31068 EN; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- EEA. Air Quality in Europe: 2017 Report; Report No. 13/2017; European Environment Agency: Luxembourg, 2017. [Google Scholar]
- Silva, R.A.; West, J.J.; Lamarque, J.-F.; Shindell, D.T.; Collins, W.J.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; Horowitz, L.W.; Nagashima, T.; et al. The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble. Atmos. Chem. Phys. 2016, 16, 9847–9862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partanen, A.-I.; Landry, J.-S.; Matthews, H.D. Climate and Health Implications of Future Aerosol Emission Scenarios. Environ. Res. Lett. 2018, 13, 024028. [Google Scholar] [CrossRef]
- Likhvar, V.N.; Pascal, M.; Markakis, K.; Colette, A.; Hauglustaine, D.; Valari, M.; Klimont, Z.; Medina, S.; Kinney, P. A Multi-Scale Health Impact Assessment of Air Pollution over the 21st Century. Sci. Total Environ. 2015, 514, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepe, N.; Pirovano, G.; Lonati, G.; Balzarini, A.; Toppetti, A.; Riva, G.M.; Bedogni, M. Development and Application of a High-Resolution Hybrid Modelling System for the Evaluation of Urban Air Quality. Atmos. Environ. 2016, 141, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.; Tai, E.; Yarwood, G.; Morris, R. Investigation into Approaches to Reduce Excessive Vertical Transport over Complex Terrain in a Regional Photochemical Grid Model. Atmos. Environ. 2011, 45, 7341–7351. [Google Scholar] [CrossRef]
- Oikonomakis, E.; Aksoyoglu, S.; Ciarelli, G.; Baltensperger, U.; Prévôt, A.S.H. Low Modeled Ozone Production Suggests Underestimation of Precursor Emissions (Especially NOx) in Europe. Atmos. Chem. Phys. 2018, 18, 2175–2198. [Google Scholar] [CrossRef]
Pollutant | Health Outcome | WHO 2013 | WHO 2021 | ||||
---|---|---|---|---|---|---|---|
Future | Recent Past | Difference | Future | Recent Past | Difference | ||
PM2.5, annual mean | Premature deaths | 3297 (1914; 4836) | 6945 (3864; 9767) | −3648 (−1950; −4931) | 93 (49; 109) | 2234 (1579; 2546) | −2141 (−1530; −2437) |
YLL | 34,029 (19,124; 50,281) | 73,823 (40,185; 105,728) | −39,794 (−21,061; −55,446) | 891 (472; 1044) | 22,699 (15,706; 26,260) | −21,808 (−15,234; −25,216) | |
NO2, annual mean | Premature deaths | 0 (0; 0) | 13 (6; 21) | −13 (−6; −21) | 0 (0; 0) | 241 (83; 560) | −241 (−83; −560) |
YLL | 0 (0; 0) | 124 (58; 213) | −124 (−58; −213) | 0 (0; 0) | 2472 (794; 6113) | −2472 (−794; −6113) | |
O3, SOMO35 | Premature deaths | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) |
YLL | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) | 0 (0; 0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, S.; Ferreira, J.; Carvalho, D.; Lopes, M. Health Impact Assessment of Air Pollution under a Climate Change Scenario: Methodology and Case Study Application. Sustainability 2022, 14, 14309. https://doi.org/10.3390/su142114309
Coelho S, Ferreira J, Carvalho D, Lopes M. Health Impact Assessment of Air Pollution under a Climate Change Scenario: Methodology and Case Study Application. Sustainability. 2022; 14(21):14309. https://doi.org/10.3390/su142114309
Chicago/Turabian StyleCoelho, Sílvia, Joana Ferreira, David Carvalho, and Myriam Lopes. 2022. "Health Impact Assessment of Air Pollution under a Climate Change Scenario: Methodology and Case Study Application" Sustainability 14, no. 21: 14309. https://doi.org/10.3390/su142114309
APA StyleCoelho, S., Ferreira, J., Carvalho, D., & Lopes, M. (2022). Health Impact Assessment of Air Pollution under a Climate Change Scenario: Methodology and Case Study Application. Sustainability, 14(21), 14309. https://doi.org/10.3390/su142114309