Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Procedures
2.1.1. Testing Environment
2.1.2. Designing Growing Container Solution
2.2. Simulation Methods
2.3. Evaluation Indicators
2.3.1. Light Intensity
2.3.2. Energy Consumption per Unit Area
2.3.3. Light Intensity Distribution
3. Results
3.1. Subsection
3.2. Container Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ε | Area of reasonable light intensity divided by total area [%] |
a | Number of lamp beads |
E | Illumination [lx] |
Eave | Average illumination [lx] |
Emax | Maximum illumination [lx] |
H | Irradiation distance [cm] |
h | Plant height [cm] |
L | Irradiated surface length [mm] |
Q | Daily electricity consumption per unit planting area [kWh·m−2·d−1] |
S | Total planted area [m2] |
SA | Reasonable light intensity area [m2] |
T | Photoperiod (h·d−1) |
U | Photosynthetic photon flux density [μmol m−2s−1] |
u | Light uniformity [%] |
PLED | Lamp bead power [W] |
W | Irradiation surface width [mm] |
References
- Kajikawa, Y.; Ohno, J.; Takeda, Y.; Matsushima, K.; Komiyama, H. Creating an academic landscape of sustainability science: An analysis of the citation network. Sustain. Sci. 2007, 2, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Ferdous, Z.; Zulfiqar, F.; Datta, A.; Hasan, A.K.; Sarker, A. Potential and challenges of organic agriculture in Bangladesh: A review. J. Crop Improv. 2021, 35, 403–426. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: A case study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Role of the plant factory with artificial lighting (PFAL) in urban areas. In Plant Factory; Elsevier: Amsterdam, The Netherlands, 2020; pp. 7–34. [Google Scholar]
- Bafort, F.; Kohnen, S.; Maron, E.; Bouhadada, A.; Ancion, N.; Crutzen, N.; Jijakli, M.H. The Agro-Economic Feasibility of Growing the Medicinal Plant Euphorbia peplus in a Modified Vertical Hydroponic Shipping Container. Horticulturae 2022, 8, 256. [Google Scholar] [CrossRef]
- Liebman-Pelaez, M.; Kongoletos, J.; Norford, L.K.; Reinhart, C. Validation of a building energy model of a hydroponic container farm and its application in urban design. Energy Build. 2021, 250, 111192. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Plant factories in the water-food-energy Nexus era: A systematic bibliographical review. Food Secur. 2020, 12, 253–268. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Sipos, L.; Balázs, L.; Székely, G.; Jung, A.; Sárosi, S.; Radácsi, P.; Csambalik, L. Optimization of basil (Ocimum basilicum L.) production in LED light environments–a review. Sci. Hortic. 2021, 289, 110486. [Google Scholar] [CrossRef]
- Xydis, G.A.; Liaros, S.; Avgoustaki, D.-D. Small scale Plant Factories with Artificial Lighting and wind energy microgeneration: A multiple revenue stream approach. J. Clean. Prod. 2020, 255, 120227. [Google Scholar] [CrossRef]
- Imam, S.; Fitzgerald, C.M.; Cook, E.M.; Donohue, T.J.; Noguera, D.R. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. Photosynth. Res. 2015, 123, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light emitting diodes (LEDs) as agricultural lighting: Impact and its potential on improving physiology, flowering, and secondary metabolites of crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, Y.; Zhang, M.; Hong, A.; Liu, Y. Effects of photoperiod extension via red–blue light-emitting diodes and high-pressure sodium lamps on the growth and photosynthetic characteristics in Paeonia lactiflora. Acta Physiol. Plant. 2020, 42, 174. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Cheng, F.; Liu, S.; Liang, Y. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol. 2020, 20, 269. [Google Scholar] [CrossRef]
- Jähne, F.; Hahn, V.; Würschum, T.; Leiser, W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor. Appl. Genet. 2020, 133, 2335–2342. [Google Scholar] [CrossRef]
- Joshi, J.; Zhang, G.; Shen, S.; Supaibulwatana, K.; Watanabe, C.K.; Yamori, W. A combination of downward lighting and supplemental upward lighting improves plant growth in a closed plant factory with artificial lighting. HortScience 2017, 52, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Carotti, L.; Graamans, L.; Puksic, F.; Butturini, M.; Meinen, E.; Heuvelink, E.; Stanghellini, C. Plant factories are heating up: Hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce production. Front. Plant Sci. 2021, 11, 592171. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, A. Learning curve analysis of wind power and photovoltaics technology in US: Cost reduction and the importance of research, development and demonstration. Sustainability 2019, 11, 2310. [Google Scholar] [CrossRef] [Green Version]
- Cong, R.-G. An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization. Renew. Sustain. Energy Rev. 2013, 17, 94–103. [Google Scholar] [CrossRef]
- Liang, X. Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl. 2016, 53, 855–866. [Google Scholar] [CrossRef]
- Zhipeng, W.; Zhiyu, M.; Hongyu, W.; Shaoming, L. Optimized Design of Combined Spectrum LED Light Source for Plant Growth. Zhaoming Gongcheng Xuebao 2018, 29, 25–30. [Google Scholar]
- Ji, Y.; Yuan, Y.; Wu, G.; Feng, C.; Cheng, R.; Ma, Q.; Chen, X.; Tong, Y. A novel spectral-splitting solar indoor lighting system with reflective direct-absorption cavity: Optical and thermal performance investigating. Energy Convers. Manag. 2022, 266, 115788. [Google Scholar] [CrossRef]
- Shibles, R. Terminology Pertaining to Photosynthesis 1. Crop Sci. 1976, 16, 437–438. [Google Scholar] [CrossRef]
- Mao, A.; Wang, J. Calculation and Application of Photosynthetic Photon Flux Density. Period. Ocean Univ. China 2006, 36, 151–155. [Google Scholar]
- Brazaitytė, A.; Sakalauskienė, S.; Samuolienė, G.; Jankauskienė, J.; Viršilė, A.; Novičkovas, A.; Sirtautas, R.; Miliauskienė, J.; Vaštakaitė, V.; Dabašinskas, L. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef]
- Song, J.; Huang, H.; Hao, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 2796. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Sago, Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; He, R.; Tan, J.; Liu, K.; Chen, Y.; Liu, H. Effect of Supplemental UV-A Intensity on Growth and Quality of Kale under Red and Blue Light. Int. J. Mol. Sci. 2022, 23, 6819. [Google Scholar] [CrossRef] [PubMed]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Lefsrud, M.G.; Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol. Plant. 2006, 127, 624–631. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J. Effects of Light Intensity and Temperature on the Photosynthesis Characteristics and Yield of Lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Chen, Z.; Shah Jahan, M.; Mao, P.; Wang, M.; Liu, X.; Guo, S. Functional growth, photosynthesis and nutritional property analyses of lettuce grown under different temperature and light intensity. J. Hortic. Sci. Biotechnol. 2021, 96, 53–61. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, Z.; Li, R.; Wei, H.; Chu, X.; Liu, H. Design method for improving illumination distribution uniformity of LED plant growth light source. In Proceedings of the 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 6–8 December 2021; pp. 202–210. [Google Scholar]
- Bai, J.; Li, X.; Hu, L.; Wei, Y.; Gao, T.; Xu, X.; Sun, X. Research on illumination uniformity in edible mushrooms incubator with genetic algorithm. Optik 2021, 239, 166862. [Google Scholar] [CrossRef]
- Cui, S.; Lv, H.; Wu, X.; Zhang, Y.; He, L. Optimization of plant light source based on simulated annealing particle swarm optimization algorithm. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 700–703. [Google Scholar]
- Zhu, Z.; Ying, S.; Hu, H.; Tong, X.; Zheng, S. Study on illumination distribution and uniformity for LED plant light source array. Acta Agric. Zhejiangensis 2015, 27, 1489–1493. [Google Scholar]
- Yorifuji, R.; Obara, S.y. Economic design of artificial light plant factories based on the energy conversion efficiency of biomass. Appl. Energy 2022, 305, 117850. [Google Scholar] [CrossRef]
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Zhou, X.; Guo, H.; Zhang, X.; Chen, H. Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation. Appl. Energy 2019, 239, 957–968. [Google Scholar] [CrossRef]
- Wei, L.; Yanming, W.; Yalin, X.; Zhijie, T.; Yanbing, Z. Key Technology of Water Electrolysis and Levelized Cost of Hydrogen Analysis under Carbon Neutral Vision. Trans. China Electrotech. Soc. 2022, 37, 2888–2896. [Google Scholar] [CrossRef]
- Chen, X.-l.; Yang, Q.-c. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Filatov, D.; Vetchinnikov, A.; Olonina, S.; Olonin, I.Y. Intermittent LED lighting helps reduce energy costs when growing microgreens on vertical controlled environment farms. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2022; p. 012096. [Google Scholar]
- Sivakumar, G.; Heo, J.; Kozai, T.; Paek, K. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 546–548. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Bartzanas, T.; Xydis, G. Minimising the energy footprint of indoor food production while maintaining a high growth rate: Introducing disruptive cultivation protocols. Food Control. 2021, 130, 108290. [Google Scholar] [CrossRef]
No. of Pixels | Number of Grids | Eave (lx) |
---|---|---|
50 | 2500 | 7103 |
100 | 10,000 | 7138 |
150 | 22,500 | 7150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, R.; Fan, N.; Zhang, W.; Gan, S.; Zhou, X.; Huang, H.; Shen, Y. Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy. Sustainability 2022, 14, 14186. https://doi.org/10.3390/su142114186
Kuang R, Fan N, Zhang W, Gan S, Zhou X, Huang H, Shen Y. Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy. Sustainability. 2022; 14(21):14186. https://doi.org/10.3390/su142114186
Chicago/Turabian StyleKuang, Rao, Nangui Fan, Weifeng Zhang, Song Gan, Xiaomin Zhou, Heyi Huang, and Yijun Shen. 2022. "Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy" Sustainability 14, no. 21: 14186. https://doi.org/10.3390/su142114186
APA StyleKuang, R., Fan, N., Zhang, W., Gan, S., Zhou, X., Huang, H., & Shen, Y. (2022). Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy. Sustainability, 14(21), 14186. https://doi.org/10.3390/su142114186