Climate Change during the Third Millennium—The Gulf Cooperation Council Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Data
2.2. Land Surface Temperatures and Precipitation Data
2.3. Sea Surface Temperatures Data
2.4. Data Analysis and Visualization
3. Results
3.1. Greenhouse Gases and Air Pollution
3.2. Precipitation, Land Surface Temperatures and Anomalies of Surface Temperatures
3.3. Sea Surface Temperatures
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. 2020. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 4 April 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Nyambuu, U.; Semmler, W. Climate change and the transition to a low carbon economy—Carbon targets and the carbon budget. Econ. Model. 2020, 84, 367–376. [Google Scholar] [CrossRef]
- Department of Energy and Climate Change (DECC). The UK Low Carbon Transition Plan: National Strategy for Climate and Energy; Department of Energy and Climate Change: London, UK, 2009. [Google Scholar]
- Borroni, E.; Pesatori, A.; Bollati, V.; Buoli, M.; Carugno, M. Air pollution exposure and depression: A comprehensive updated systematic review and meta-analysis. Environ. Pollut. 2022, 292, 118245. [Google Scholar] [CrossRef]
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Statistical Review of World Energy, June 2008; BP: London, UK, 2008. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 15 January 2022).
- Asif, M. Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE. Renew. Sustain. Energy Rev. 2016, 55, 1267–1273. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J. Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries. Energy 2014, 73, 44–58. [Google Scholar] [CrossRef]
- Charabi, Y.; Al Nasiri, N.; Al Awadhi, T.; Choudri, B.; Al Bimani, A. GHG emissions from the transport sector in Oman: Trends and potential decarbonization pathways. Energy Strategy Rev. 2020, 32, 100548. [Google Scholar] [CrossRef]
- Rahman, S.; Khondaker, A.; Hasan, M.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia—A challenging frontier. Renew. Sustain. Energy Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
- Khondaker, A.N.; Hassan, M.; Rahman, S.; Malik, K.; Shafiullah, M.; Muhyedeen, M. Greenhouse gas emissions from energy sector in the United Arab Emirates—An overview. Renew. Sustain. Energy Rev. 2016, 59, 1317–1325. [Google Scholar] [CrossRef]
- Al-Maamary, H.M.; Kazem, H.A.; Chaichan, M.T. Climate change: The game changer in the Gulf Cooperation Council Region. Renew. Sustain. Energy Rev. 2017, 76, 555–576. [Google Scholar] [CrossRef]
- Omidvarborna, H.; Baawain, M.; Al-Mamun, A. Ambient air quality and exposure assessment study of the Gulf Cooperation Council countries: A critical review. Sci. Total Environ. 2018, 636, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Byun, H.-R. Future pattern of Asian drought under global warming scenario. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2009, 98, 137–150. [Google Scholar] [CrossRef]
- Scafetta, N. Climate change and its causes, a discussion about some key issues. arXiv 2010, arXiv:1003.1554. [Google Scholar]
- Hereher, M. Assessment of climate change impacts on sea surface temperatures and sea level rise—The Arabian Gulf. Climate 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Al-Fazari, A.; El-Kenawy, A.; Al-Nasiri, N.; Hereher, M. Monitoring Urban Heat Islands in Selected Cities of the Gulf Region Based on Nighttime MODIS LST Data (2003–2018). Urban Heat Island (UHI) Mitigation: Hot and Humid Regions; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 12; pp. 249–276. [Google Scholar]
- IPCC. Global Warming of 1.5 °C; IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W.C., Péan, R., Pidcock, S., et al., Eds.; The Intergovermnetal Panel on Climate Change: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15 (accessed on 20 February 2022).
- Martins, F.; Benassi, R.; Torres, R.; Neto, F. Impacts of 1.5 °C and 2 °C global warming on Eucalyptus plantations in South America. Sci. Total Environ. 2022, 825, 153820. [Google Scholar] [CrossRef] [PubMed]
- Fotso-Nguemo, T.; Vondou, D.; Diallo, I.; Diedhiou, A.; Weber, T.; Tanessong, R.; Nghonda, J.; Yepdo, Z. Potential impact of 1.5, 2 and 3 °C global warming levels on heat and discomfort indices changes over Central Africa. Sci. Total Environ. 2021, 804, 150099. [Google Scholar] [CrossRef]
- Hereher, M.; El Kenawy, A. Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach. Renew. Energy 2020, 161, 662–675. [Google Scholar] [CrossRef]
- Elrahmani, A.; Hannun, J.; Eljack, F.; Kazi, M.-K. Status of renewable energy in the GCC region and future opportunities. Curr. Opin. Chem. Eng. 2020, 31, 100664. [Google Scholar] [CrossRef]
- Ünal, F.; Temir, G.; Köten, H. Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season. J. Mech. Sci. Technol. 2018, 32, 3929–3942. [Google Scholar] [CrossRef]
- Cura, D.; Yilmaz, M.; Koten, H.; Senthilraja, S.; Awad, M.M. Evaluation of the technical and economic aspects of solar photovoltaic plants under different climate conditions and feed-in tariff. Sustain. Cities Soc. 2022, 80, 103804. [Google Scholar] [CrossRef]
- Alharbi, F.; Csala, D. Gulf Cooperation Council Countries’ Climate Change Mitigation Challenges and Exploration of Solar and Wind Energy Resource Potential. Appl. Sci. 2021, 11, 2648. [Google Scholar] [CrossRef]
- Flores, R.; Kaya, N.; Eser, O.; Saltan, S. The effect of mineral dust transport on PM 10 concentrations and physical properties in Istanbul during 2007–2014. Atmos. Res. 2017, 197, 342–355. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Carlson, D.F.; Yarbro, L.A.; Scolaro, S.; Poniatowski, M.; McGee-Absten, V.; Carlson, P.R., Jr. Sea surface temperatures and seagrass mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data. Remote. Sens. Environ. 2018, 208, 171–188. [Google Scholar] [CrossRef]
- Apaydin, H.; Sonmez, F.; Yildirim, Y. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Chang. 2004, 28, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ozelkan, E.; Bagis, S.; Ozelkan, E.; Ustundag, B.; Yucel, M.; Ormeci, C. Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. Int. J. Remote Sens. 2015, 36, 1000–1025. [Google Scholar] [CrossRef]
- Mahmood, H. The effects of natural gas and oil consumption on CO2 emissions in GCC countries: Asymmetry analysis. Environ. Sci. Pollut. Res. 2022, 1–17. Available online: https://pubmed.ncbi.nlm.nih.gov/35359204/ (accessed on 15 January 2022). [CrossRef]
- Farahat, A. The Impact of the 2020 Oil Production Fluctuations on Methane Emissions over the Gulf Cooperation Council (GCC) Countries: A Satellite Approach. Atmosphere 2022, 13, 11. [Google Scholar] [CrossRef]
- Charabi, Y. Digging deeper into cutting methane emissions from the oil and gas industry in the era of volatile prices. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 6. [Google Scholar] [CrossRef]
- Al-Jahdali, M.O.; Bin Bisher, A.S. Sulfur Dioxide (SO2) Accumulation in Soil and Plant’s Leaves around an Oil Refinery: A Case Study from Saudi Arabia. Am. J. Environ. Sci. 2008, 4, 84–88. [Google Scholar] [CrossRef]
- Dahiya, S.; Myllyvirta, L.; Global SO2 Emission Hotspot Database. Greenpeace Environment Trust. 2019. Available online: https://www.greenpeace.org (accessed on 29 March 2022).
- Al-Rashidi, M.; Nassehi, V.; Wakeman, R. Investigation of the efficiency of existing air pollution monitoring sites in the state of Kuwait. Environ. Pollut. 2005, 138, 219–229. [Google Scholar] [CrossRef]
- Hereher, M.; Eissa, R.; Alqasemi, A.; El Kenawy, A.M. Assessment of air pollution at Greater Cairo in relation to the spatial variability of surface urban heat island. Environ. Sci. Pollut. Res. 2021, 29, 21412–21425. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hoor, P.; Jöckel, P.; Pozzer, A.; Hadjinicolaou, P.; Cammas, J.P.; Beirle, S. Severe ozone air pollution in the Persian Gulf region. Atmos. Chem. Phys. 2009, 9, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Al-Salem, S. Seasonal variation effect on airborne pollutants in an urban area of the state of Kuwait. J. Environ. Res. Dev. 2007, 1, 215–218. [Google Scholar]
- Chaichan, M.T.; Al-Asadi, K.A. Environmental impact assessment of some vehicles pollutants in Sohar, Oman. Int. J. Sci. Eng. Res. 2015, 6, 493–496. [Google Scholar]
- Wyche, K.P.; Cordell, R.L.; Smallbone, K.L.; Lyons, P.; Hama, S.M.L.; Monks, P.S.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; et al. The spatio-temporal evolution of black carbon in the North-West European ‘air pollution hotspot’. Atmos. Environ. 2020, 243, 117874. [Google Scholar] [CrossRef]
- Comer, B. Including Estimates of Black Carbon Emissions in the Fourth IMO GHG Study. The International Council of Clean Transportation (ICCT). 2019. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/CSC-Bryan%20Comer.pdf (accessed on 31 March 2021).
- Varotsos, C.A.; Cracknell, A.P.; Efstathiou, M.N. The global signature of the El Niño/La Niña Southern Oscillation. Int. J. Remote Sens. 2018, 39, 5965–5977. [Google Scholar] [CrossRef]
- Xue, P.; Eltahir, E. Estimation of the Heat and Water Budgets of the Persian (Arabian) Gulf Using a Regional Climate Model. J. Clim. 2015, 28, 5041–5062. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy. 2019. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2019.html (accessed on 5 April 2022).
- Iriani, M.; Trabelsi, M. The economic impact of phasing out energy consumption subsidies in GCC countries. J. Bus. Econ. Manag. 2016, 87, 35–49. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G.; Klemeš, J.J. A review of progress in renewable energy implementation in the Gulf Cooperation Council countries. J. Clean. Prod. 2014, 71, 168–180. [Google Scholar] [CrossRef]
- OICA. International Organization of Motor Vehicle Manufacturers, Vehicle in Use by Country and Type 2005–2015. Available online: https://www.oica.net/wp-content/uploads//Total_in-use-All-Vehicles.pdf (accessed on 9 April 2022).
- Statistica Research Department. Volume of Greenhouse Gas Emissions in the Gulf Cooperation Council in 2014, by Country. 2017. Available online: https://www.statista.com/statistics/814843/gcc-volume-of-ghg-emissions-by-country/ (accessed on 5 April 2022).
- IEA. World Energy Outlook 2010, Paris Cedex, France. 2011. Available online: https://www.iea.org/reports/world-energy-outlook-2010 (accessed on 1 March 2022).
- Reiche, D. Energy Policies of Gulf Cooperation Council (GCC) Countries—Possibilities and Limitations of Ecological Modernization in Rentier States. Energ. Policy 2010, 38, 2395–2403. [Google Scholar] [CrossRef] [Green Version]
- Amoatey, P.; Omidvarborna, H.; Baawain, S.; Al-Mamun, A. Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review. Enviro. Int. 2018, 121, 491–506. [Google Scholar] [CrossRef]
- Achilleos, S.; Al-Ozairi, E.; Alahmad, B.; Garshick, E.; Eophytou, A.; Bouhamra, W.; Yassin, M.; Koutrakis, P. Acute effects of air pollution on mortality: A 17-year analysis in Kuwait. Environ. Int. 2019, 126, 476–483. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Gasana, J.; Al-Dabbous, A.; Alajeel, A.; Al-Shatti, A.; Behbehani, W.; Malak, M. Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait. Environ. Res. 2019, 179, 108730. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rueda, D.; Alsufyani, W.; Herbst, C.; AlBalawi, S.; Alsukait, R.; Alomran, M. Ambient particulate matter burden of disease in the Kingdom of Saudi Arabia. Environ. Res. 2021, 197, 111036. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, N.; Saeed, S.; Saeed, F.; Ismail, M. Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Syst. Environ. 2020, 4, 611–630. [Google Scholar] [CrossRef]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Schleussner, C.F. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Change 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in Temperature Trends and Extremes over Saudi Arabia for the Period 1978–2019. Adv. Meteorol. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- AlSarmi, S.; Washington, R. Recent observed climate change over the Arabian Peninsula. J. Geophys. Res. Atmos. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Al-Rashidi, T.B.; El-Gamily, H.I.; Amos, C.L.; Rakha, K.A. Sea surface temperature trends in Kuwait bay, Arabian Gulf. Nat. Hazards 2009, 50, 73–82. [Google Scholar] [CrossRef]
Country | Area (km2) | Population in 2017 (Million) | Oil Production in 2017 (Million Barresls/Day) | Natural Gas-Marketed Production in 2019 (Million m3) | Electricity Production in 2019 (GWH) |
---|---|---|---|---|---|
Kuwait | 17,818 | 4.2 | 2.70 | 13,952 | 75,082 |
KSA | 2,149,690 | 32.6 | 9.96 | 117,000 | 342,622 |
Bahrain | 778 | 1.5 | 0.19 | 17,149 | 17,854 |
Qatar | 11,600 | 2.7 | 0.60 | 176,000 | 49,873 |
UAE | 83,600 | 9.3 | 2.96 | 55,097 | 138,454 |
Oman | 309,500 | 4.5 | 0.97 | 36,462 | 37,513 |
Parameter | Source | Spatial Resolution (Degree) | Temporal Resolution | Temporal Coverage | Units of Measurements |
---|---|---|---|---|---|
CO2 | AIRS * | 2 × 2.5 | Monthly | 2003–2016 | Parts per million (ppm) |
CH4 | AIRS | 1 | Monthly | 2003–2020 | Parts per billion per volume (ppbv) |
SO2 | MERRA-2 ** | 0.5 × 0.6 | Monthly | 1980–2020 | Kg/m3 |
NO2 | OM I *** | 0.25 | Daily | 2005–2020 | Molecules/cm2 |
Black carbon | MERRA-2 | 0.5 × 0.6 | Monthly | 1980–2020 | Kg/m3 |
Nighttime Temp. anomaly | AIRS | 1 | Monthly | 2003–2016 | Degrees Celsius |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hereher, M.E. Climate Change during the Third Millennium—The Gulf Cooperation Council Countries. Sustainability 2022, 14, 14181. https://doi.org/10.3390/su142114181
Hereher ME. Climate Change during the Third Millennium—The Gulf Cooperation Council Countries. Sustainability. 2022; 14(21):14181. https://doi.org/10.3390/su142114181
Chicago/Turabian StyleHereher, Mohamed E. 2022. "Climate Change during the Third Millennium—The Gulf Cooperation Council Countries" Sustainability 14, no. 21: 14181. https://doi.org/10.3390/su142114181
APA StyleHereher, M. E. (2022). Climate Change during the Third Millennium—The Gulf Cooperation Council Countries. Sustainability, 14(21), 14181. https://doi.org/10.3390/su142114181