A Bibliometric Analysis of the Trends and Characteristics of Railway Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. What Publication Trends Exist Regarding Rail Systems (Q1)?
3.2. What Journals Published the Most Articles about Rail Systems? (Q2)
3.3. Who Contributes the Most (Authors, Institutions, and Countries) to the Study of Rail Systems? (Q3)
3.4. Main Research Areas on Rail Systems (Q4)
4. Conclusions
5. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kostrzewski, M.; Melnik, R. Condition monitoring of rail transport systems: A bibliometric performance analysis and systematic literature review. Sensors 2021, 21, 4710. [Google Scholar] [CrossRef] [PubMed]
- Larumbe, J. Evaluating sustainability of mass rapid transit stations in Dubai. Sustainability 2021, 13, 12965. [Google Scholar] [CrossRef]
- Zare, A.; Stevanovic, S.; Jafari, M.; Verma, P.; Babaie, M.; Yang, L.; Rahman, M.M.; Ristovski, Z.D.; Brown, R.J.; Bodisco, T.A. Analysis of cold-start NO2 and NOx emissions, and the NO2/NOx ratio in a diesel engine powered with different diesel-biodiesel blends. Environ. Pollut. 2021, 290, 118052. [Google Scholar] [CrossRef] [PubMed]
- Gulcimen, S.; Aydogan, E.K.; Uzal, N. Life cycle sustainability assessment of a light rail transit system: Integration of environmental, economic, and social impacts. Integr. Environ. Assess. Manag. 2021, 17, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Van Ryswyk, K.; Kulka, R.; Marro, L.; Yang, D.; Toma, E.; Mehta, L.; McNeil-Taboika, L.; Evans, G.J. Impacts of Subway System Modifications on Air Quality in Subway Platforms and Trains. Environ. Sci. Technol. 2021, 55, 11133–11143. [Google Scholar] [CrossRef] [PubMed]
- Boschiero, M.; Zanotelli, D.; Ciarapica, F.E.; Fadanelli, L.; Tagliavini, M. Greenhouse gas emissions and energy consumption during the post-harvest life of apples as affected by storage type, packaging and transport. J. Clean. Prod. 2019, 220, 45–56. [Google Scholar] [CrossRef]
- Chester, M.; Pincetl, S.; Elizabeth, Z.; Eisenstein, W.; Matute, J. Infrastructure and automobile shifts: Positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environ. Res. Lett. 2013, 8, 015041. [Google Scholar] [CrossRef]
- Chipindula, J.; Du, H.B.; Botlaguduru, V.S.V.; Choe, D.; Kommalapati, R.R. Life cycle environmental impact of a high-speed rail system in the Houston-Dallas I-45 corridor. Public Transp. 2021, 14, 481–501. [Google Scholar] [CrossRef]
- Ramanathan, M.; Kalyan Kumar, J. Embracing underground rail to enhance sustainability. Civ. Eng. 2013, 83, 54–59. [Google Scholar] [CrossRef]
- Hamurcu, M.; Eren, T. Strategic planning based on sustainability for urban transportation: An application to decision-making. Sustainability 2020, 12, 3589. [Google Scholar] [CrossRef]
- To, W.M.; Lee, P.K.C.; Yu, B.T.W. Sustainability assessment of an urban rail system—The case of Hong Kong. J. Clean. Prod. 2020, 253, 119961. [Google Scholar] [CrossRef]
- Nicola, D.A.; Rosen, M.A.; Bulucea, C.A.; Brandusa, C. Some sustainability aspects of energy conversion in urban electric trains. Sustainability 2010, 2, 1389–1407. [Google Scholar] [CrossRef] [Green Version]
- Cuthill, N.; Cao, M.; Liu, Y.; Gao, X.; Zhang, Y. The association between Urban Public Transport infrastructure and social equity and spatial accessibility within the urban environment: An investigation of Tramlink in London. Sustainability 2019, 11, 1229. [Google Scholar] [CrossRef] [Green Version]
- Dolinayova, A.; Kanis, J.; Loch, M. Social and Economic Efficiency of Operation Dependent and Independent Traction in Rail Freight. Procedia Eng. 2016, 134, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Abulibdeh, A. Planning for Congestion Pricing Policies in the Middle East: Public Acceptability and Revenue Distribution. Transp. Lett. 2022, 14, 282–297. [Google Scholar] [CrossRef]
- Whittington, D.; Cook, J. Valuing Changes in Time Use in Low- and Middle-Income Countries. J. Benefit-Cost Anal. 2019, 10, 51–72. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.F.; Leite, A.D.; Pereira, L.D.F.; Neves, J.M.D.J.; Oliveira Pinheiro, M.G.D.; Chang, S.K.J. Wheelchair accessibility of urban rail systems: Some preliminary findings of a global overview. IATSS Res. 2021, 45, 326–335. [Google Scholar] [CrossRef]
- Masirin, M.I.M.; Salin, A.M.; Zainorabidin, A.; Martin, D.; Samsuddin, N. Review on Malaysian Rail Transit Operation and Management System: Issues and Solution in Integration. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Perez-Martinez, P.J.; Miranda, R.M.; Andrade, M.F. Freight road transport analysis in the metro Sao Paulo: Logistical activities and CO2 emissions. Transp. Res. Part A Policy Pract. 2020, 137, 16–33. [Google Scholar] [CrossRef]
- Cools, M.; Fabbro, Y.; Bellemans, T. Free public transport: A socio-cognitive analysis. Transp. Res. Part A Policy Pract. 2016, 86, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.K.; Majumder, S.; Biswas, A.; Prentkovskis, O.; Kar, S.; Skačkauskas, P. A Study on Decision-Making of the Indian Railways Reservation System during COVID-19. J. Adv. Transp. 2022, 2022, 7685375. [Google Scholar] [CrossRef]
- Kurczyński, D. Effect of the rme biodiesel on the diesel engine fuel consumption and emission. Commun.-Sci. Lett. Univ. Zilina 2021, 23, B308–B316. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Soares, D.D.F. Solar photovoltaic assistance system study for a Brazilian light rail vehicle. U.Porto J. Eng. 2020, 6, 35–45. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Chu, C.C. Analysis and Improvement of Midterm Maintenance Productivity for High-Speed Trains. J. Transp. Eng. Part A Syst. 2021, 147, 04021093. [Google Scholar] [CrossRef]
- Chen, Z. Socioeconomic Impacts of high-speed rail: A bibliometric analysis. Socio-Econ. Plan. Sci. 2022, 101265. [Google Scholar] [CrossRef]
- Qaiser, F.H.; Ahmed, K.; Sykora, M.; Choudhary, A.; Simpson, M. Decision support systems for sustainable logistics: A review & bibliometric analysis. Ind. Manag. Data Syst. 2017, 117, 1376–1388. [Google Scholar] [CrossRef]
- Kumar, S.; Marrone, M.; Liu, Q.; Pandey, N. Twenty years of the International Journal of Accounting Information Systems: A bibliometric analysis. Int. J. Account. Inf. Syst. 2020, 39, 100488. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing Integrative Literature Reviews: Guidelines and Examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Cronin, B. Bibliometrics and beyond: Some thoughts on web-based citation analysis. J. Inf. Sci. 2001, 27, 1–7. [Google Scholar] [CrossRef]
- Zhu, W.; Guan, J. A bibliometric study of service innovation research: Based on complex network analysis. Scientometrics 2013, 94, 1195–1216. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Ackerson, L.G.; Chapman, K. Identifying the role of multidisciplinary journals in scientific research. Coll. Res. Libr. 2003, 64, 468–478. [Google Scholar] [CrossRef]
- Gabriel Junior, R.F.; da Rocha, R.P.; Caregnato, S.E.; Pavão, C.M.G.; Passos, P.C.S.J.; Borges, E.N.; Vanz, S.A.S.; Azambuja, L.A.B. Open access to research data in brazil: Mapping repositories, practices and perceptions of researchers and technologies. Cienc. Inf. 2019, 48, 87–101. [Google Scholar]
- Prins, A.A.M.; Costas, R.; Van Leeuwen, T.N.; Wouters, P.F. Using google scholar in research evaluation of humanities and social science programs: A comparison with web of science data. Res. Eval. 2016, 25, 264–270. [Google Scholar] [CrossRef]
- Bar-Ilan, J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 2010, 82, 495–506. [Google Scholar] [CrossRef]
- Ciani, L.; Guidi, G.; Patrizi, G. Human reliability in railway engineering: Literature review and bibliometric analysis of the last two decades. Saf. Sci. 2022, 151, 105755. [Google Scholar] [CrossRef]
- Radu, V.; Radu, F.; Tabirca, A.I.; Saplacan, S.I.; Lile, R. Bibliometric Analysis of Fuzzy Logic Research in International Scientific Databases. Int. J. Comput. Commun. Control. 2021, 16, 4120. [Google Scholar] [CrossRef]
- Tian, X.; Hu, Y.; Yin, H.; Geng, Y.; Bleischwitz, R. Trade impacts of China’s Belt and Road Initiative: From resource and environmental perspectives. Resour. Conserv. Recycl. 2019, 150, 104430. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Škare, M. A bibliometric analysis of Economic Research-Ekonomska Istraživanja (2007–2019). Econ. Res.-Ekon. Istraz. 2020, 33, 865–886. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, S.; Saravanan, P.; Kumaraguru, K.; Jaya, N.; Rajeshkannan, R.; Rajasimman, M. The scientometric evaluation on the research of biodiesel based on HistCite and VOSviewer (1993–2019). Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Kozhemyachenko, A.A.; Petrov, I.B.; Favorskaya, A.V.; Khokhlov, N.I. Boundary Conditions for Modeling the Impact of Wheels on Railway Track. Comput. Math. Math. Phys. 2020, 60, 1539–1554. [Google Scholar] [CrossRef]
- Kozhemyachenko, A.A.; Petrov, A.I.B.; Favorskaya, A.V. Calculation of the stress state of a railway track with unsupported sleepers using the grid-characteristic method. J. Appl. Mech. Tech. Phys. 2021, 62, 344–350. [Google Scholar] [CrossRef]
- Keropyan, A.M. Determination procedure of actual drive wheel–rail contact area for railway vehicles. Gorn. Zhurnal 2021, 2021, 66–70. [Google Scholar] [CrossRef]
- Wei, K.; Wang, S.; Dou, Y.; Ou, L. Influence of Frequency-dependent Dynamic Properties of Rail Pads on High-frequency Vibration of Wheel-rail System Induced by Rail Corrugation. J. Railw. Eng. Soc. 2019, 36, 84–90. [Google Scholar]
- Chen, G.X.; Cui, X.L.; Qian, W.J. Investigation into rail corrugation in high-speed railway tracks from the viewpoint of the frictional self-excited vibration of a wheel–rail system. J. Mod. Transp. 2016, 24, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Zegras, C. Rail transit ridership: Station-area analysis of Boston’s Massachusetts Bay Transportation Authority. Transp. Res. Rec. 2016, 2544, 110–122. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, C.S.; Wei, K.; Xu, H. The Energy Research on the Wheel-rail System in the Process of Stochastic Vibration. J. Railw. Eng. Soc. 2015, 32, 30–34+41. [Google Scholar]
- Wang, K.; Huang, C.; Zhai, W.; Liu, P.; Wang, S. Progress on wheel-rail dynamic performance of railway curve negotiation. J. Traffic Transp. Eng. 2014, 1, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Y.; Si, D.L.; Chen, Z.H. Wheel-rail dynamic interaction characteristic on high-speed railway. J. Traffic Transp. Eng. 2008, 8, 15–18. [Google Scholar]
- Liu, L.Y.; Liu, H.L.; Lei, X.Y. High-frequency vibration characteristics of wheels in wheel-rail system. Jiaotong Yunshu Gongcheng Xuebao/J. Traffic Transp. Eng. 2011, 11, 44–49+67. [Google Scholar]
- Xue, F.C.; Zhang, J.M. Spatial distribution of vibration accelerations in coupled rail-embankment-foundation system on high-speed railway under moving loads. Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng. 2014, 36, 2179–2187. [Google Scholar] [CrossRef]
- Chen, G.X.; Qian, W.J.; Mo, J.L.; Zhu, M.H. Influence of the rail pad stiffness on the occurrence propensity of rail corrugation. J. Vib. Eng. Technol. 2016, 4, 455–458. [Google Scholar]
- Jiang, H.; Bian, X.; Chen, Y.; Jiang, J. Full-scale accelerated testing for simulation of train moving loads in track-subgrade system of high-speed railways. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2015, 48, 85–95. [Google Scholar]
- Li, F.; Fu, W.; Yi, B.; Song, L.; Liu, T.; Wang, X.; Wang, C.; Lei, Y.; Lin, Q. Comparison of macroscopic spray characteristics between biodiesel-pentanol blends and diesel. Exp. Therm. Fluid Sci. 2018, 98, 523–533. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Liu, F.; Hua, J.; Zhou, L.; Wei, H. Experimental Study on Optimization of Combustion Performance of Spark Ignition Kerosene Engine of High-Pressure Direct-Injection. Neiranji Gongcheng/Chin. Intern. Combust. Engine Eng. 2019, 40, 8–15. [Google Scholar] [CrossRef]
- Feng, L.; Sun, X.; Pan, X.; Yi, W.; Cui, Y.; Wang, Y.; Wen, M.; Ming, Z.; Liu, H.; Yao, M. Gasoline spray characteristics using a high pressure common rail diesel injection system by the method of laser induced exciplex fluorescence. Fuel 2021, 302, 121174. [Google Scholar] [CrossRef]
- Pawlak, G.; Płochocki, P.; Simiński, P.; Skrzek, T. The experimental verification of the multi-fuel IC engine concept with the use of jet propellant-8 (JP-8) and its blends with pure rapeseed oil. Int. J. Energy Environ. Eng. 2021, 12, 627–639. [Google Scholar] [CrossRef]
- Wierzbicki, S. Effect of the proportion of natural gas in the feeding dose on the combustion process in a self-ignition engine with a common rail fuel system. Diagnostyka 2018, 19, 65–70. [Google Scholar] [CrossRef]
- Zöldy, M.; Lengyel, A.; Bereczky, Á.; Krajnik, K.; Holló, A. Investigation of diesel oil-LPG content fuel utilisation in heavy duty diesel-engines with common rail system. Int. J. Heavy Veh. Syst. 2021, 28, 15–33. [Google Scholar] [CrossRef]
- Chen, H.; Ban, T.; Ishida, M.; Nakahara, S. Influential factors on adhesion between wheel and rail under wet conditions. Q. Rep. RTRI 2012, 53, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.J.; Chu, Q.H.; Bai, S.C.; Wang, X.; Yang, F.Q.; Jiang, C.F. Study on common rail pressure control of VM high pressure common rail diesel engine. Neiranji Gongcheng/Chin. Intern. Combust. Engine Eng. 2010, 31, 96–99+104. [Google Scholar]
- Zhang, J.; Li, Y.; Ouyang, G.; An, S. Study on flowlimiter of high pressure common rail system. Wuhan Ligong Daxue Xuebao J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2008, 32, 507–509. [Google Scholar]
- Chen, H.L.; Ouyang, G.Y.; Xu, H.C. Research on simulation of rail pressure control based on pump control valve. Neiranji Gongcheng/Chin. Intern. Combust. Engine Eng. 2009, 30, 57–60. [Google Scholar]
- Xu, H.C.; Li, Y.X.; Ouyang, G.Y. Optimization design of solenoid valve for electronically controlled high pressure pump. Neiranji Gongcheng/Chin. Intern. Combust. Engine Eng. 2009, 30, 48–51+57. [Google Scholar]
- Hensher, D.A.; Ho, C.; Mulley, C. Identifying resident preferences for bus-based and rail-based investments as a complementary buy in perspective to inform project planning prioritisation. J. Transp. Geogr. 2015, 46, 1–9. [Google Scholar] [CrossRef]
- Hensher, D.A.; Ho, C.; Mulley, C. Identifying preferences for public transport investments under a constrained budget. Transp. Res. Part A Policy Pract. 2015, 72, 27–46. [Google Scholar] [CrossRef]
- Zimny-Schmitt, D.; Goetz, A.R. An investigation of the performance of urban rail transit systems on the corridor level: A comparative analysis in the American west. J. Transp. Geogr. 2020, 88, 102848. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Yazdi, A.H. Technological frames and the politics of automated electric Light Rail Rapid Transit in Poland and the United Kingdom. Technol. Soc. 2019, 59, 101190. [Google Scholar] [CrossRef]
- Roberts, J.D.; Hu, M.; Saksvig, B.I.; Brachman, M.L.; Durand, C.P. Examining the influence of a new light rail line on the health of a demographically diverse and understudied population within the washington, D.C. metropolitan area: A protocol for a natural experiment study. Int. J. Environ. Res. Public Health 2018, 15, 333. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.B.; Jensen, W.A.; Tharp, D. Residents’ expectations for new rail stops: Optimistic neighborhood perceptions relate to subsequent transit ridership. Transportation 2019, 46, 125–146. [Google Scholar] [CrossRef]
- Olesen, K. Infrastructure imaginaries: The politics of light rail projects in the age of neoliberalism. Urban Stud. 2020, 57, 1811–1826. [Google Scholar] [CrossRef]
- Knowles, R.D.; Ferbrache, F. Evaluation of wider economic impacts of light rail investment on cities. J. Transp. Geogr. 2016, 54, 430–439. [Google Scholar] [CrossRef]
- Karakose, M.; Yaman, O. Complex Fuzzy System Based Predictive Maintenance Approach in Railways. IEEE Trans. Ind. Inform. 2020, 16, 6023–6032. [Google Scholar] [CrossRef]
- Armstrong, J.; Preston, J. Capacity utilisation and performance at railway stations. J. Rail Transp. Plan. Manag. 2017, 7, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Preston, J.; Pritchard, J.; Waterson, B. Train overcrowding: Investigation of the provision of better information to mitigate the issues. Transp. Res. Rec. 2017, 2649, 1–10. [Google Scholar] [CrossRef]
- Sharma, H.K.; Roy, J.; Kar, S.; Prentkovskis, O. Multi Criteria Evaluation Framework for Prioritizing Indian Railway Stations Using Modified Rough AHP-Mabac Method. Transp. Telecommun. J. 2018, 19, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Couto, A. The effect of high-speed technology on European railway productivity growth. J. Rail Transp. Plan. Manag. 2011, 1, 80–88. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Bostic, R.W.; Eisenlohr, A.; Rodnyansky, S.; Santiago-Bartolomei, R.; Jamme, H.T.W. The joint effects of income, vehicle technology, and rail transit access on greenhouse gas emissions. Transp. Res. Rec. 2018, 2672, 75–86. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Peng, J. Life cycle cost, energy and carbon assessments of Beijing-Shanghai high-speed railway. Sustainability 2020, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Lin, J.; Xu, W.; Yang, D.; Liu, J.; Li, H. Carbon, water, land and material footprints of China’s high-speed railway construction. Transp. Res. Part D Transp. Environ. 2020, 82, 102314. [Google Scholar] [CrossRef]
- Soni, A.R.; Chandel, M.K. Assessment of emission reduction potential of Mumbai metro rail. J. Clean. Prod. 2018, 197, 1579–1586. [Google Scholar] [CrossRef]
- Mitchell, L.E.; Crosman, E.T.; Jacques, A.A.; Fasoli, B.; Leclair-Marzolf, L.; Horel, J.; Bowling, D.R.; Ehleringer, J.R.; Lin, J.C. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmos. Environ. 2018, 187, 9–23. [Google Scholar] [CrossRef]
- Sekasi, J.; Martens, M.L. Assessing the contributions of urban light rail transit to the sustainable development of addis ababa. Sustainability 2021, 13, 5667. [Google Scholar] [CrossRef]
- Sarker, R.I.; Mailer, M.; Sikder, S.K. Walking to a public transport station: Empirical evidence on willingness and acceptance in Munich, Germany. Smart Sustain. Built Environ. 2020, 9, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.F.; Akasaka, Y.; Pinheiro, M.G.O.; Jason Chang, S.K. Information as the first attribute of accessibility: A method for assessing the information provided by urban rail systems to tourists with reduced mobility. Sustainability 2020, 12, 10185. [Google Scholar] [CrossRef]
- Hong, L.; Ouyang, M.; Xu, M.; Hu, P. Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems. Reliab. Eng. Syst. Saf. 2020, 193, 106622. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, M.; Liu, X. Estimating light-rail transit peak-hour boarding based on accessibility at station and route levels in Wuhan, China. Transp. Plan. Technol. 2017, 40, 624–639. [Google Scholar] [CrossRef]
- Wu, J.; Yang, M.; Sun, S.; Zhao, J. Modeling travel mode choices in connection to metro stations by mixed logit models: A case study in Nanjing, China. Promet-Traffic Transp. 2018, 30, 549–561. [Google Scholar] [CrossRef]
- Liu, X.L.; Su, W.H.; Zhan, Q. Numerical study of effects of delivery pipe on performance of common rail system. Neiranji Gongcheng/Chin. Intern. Combust. Eng. Eng. 2010, 31, 47–51+57. [Google Scholar]
Searches | Keyword | Filter | Result | Comment |
---|---|---|---|---|
1st | Rail System | 4510 | Not very discriminatory (Extremely high number of documents) | |
2nd | Rail System | Year: Between 2002 and 2021 | 3513 | A 20-year dataframe was chosen, as indicated by most authors for bibliometric analysis in this field of science |
3rd | Rail System | Document type: Articles | 1943 | Articles pass through peer-review, which indicates higher quality |
4th | Rail System | Publication stage: Final | 1918 | Documents under publishing processes were not included. |
Year | Articles (A) | Authors (AU) | Countries (C) | Citations (TC) | TC/A | Journals (J) |
---|---|---|---|---|---|---|
2002–2006 | 248 | 550 | 41 | 212 | 0.85 | 149 |
2007–2011 | 387 | 901 | 72 | 1535 | 3.97 | 242 |
2012–2016 | 583 | 1570 | 57 | 5824 | 9.99 | 325 |
2017–2021 | 700 | 1992 | 62 | 15,334 | 21.91 | 381 |
Journals (J) | A | TC | TC/A | H | HJ | SJR | C | First Article | Last Article | Articles by Five-Year Period | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2002–2006 | 2007–2011 | 2012–2016 | 2017–2021 | ||||||||||
Transportation Research Record | 70 | 608 | 8.69 | 15 | 119 | 0.62 (Q2) | United States | 2015 | 2020 | 9 | 28 | 22 | 11 |
Neiranji Gongcheng Chinese Internal Combustion Engine Engineering | 51 | 114 | 2.24 | 5 | 14 | 0.18(Q4) | China | 2013 | 2021 | 10 | 13 | 20 | 8 |
Journal Of Transport Geography | 39 | 1071 | 27.46 | 19 | 108 | 1.81 (Q1) | United Kingdom | 2016 | 2021 | 3 | 6 | 17 | 13 |
Transportation Research Part A Policy And Practice | 30 | 1471 | 49.03 | 16 | 133 | 2.18 (Q1) | United Kingdom | 2014 | 2021 | 2 | 6 | 10 | 12 |
Tiedao Xuebao Journal Of The China Railway Society | 27 | 152 | 5.63 | 7 | 30 | 0.40 (Q2) | China | 2015 | 2021 | 0 | 4 | 11 | 12 |
Sustainability Switzerland | 25 | 203 | 8.12 | 9 | 85 | 0.61 (Q1) | Switzerland | 2018 | 2021 | 0 | 2 | 2 | 23 |
Proceedings Of The Institution Of Mechanical Engineers Part F Journal Of Rail And Rapid Transit | 23 | 327 | 14.22 | 8 | 55 | 0.66 (Q2) | United Kingdom | 2009 | 2021 | 1 | 3 | 4 | 15 |
Zhongguo Tiedao Kexue China Railway Science | 21 | 140 | 6.67 | 8 | 27 | 0.44 (Q2) | China | 2004 | 2021 | 7 | 4 | 2 | 8 |
Eb Elektrische Bahnen | 18 | 30 | 1.67 | 3 | 12 | 0.10 (Q4) | Germany | 2003 | 2018 | 10 | 3 | 3 | 2 |
Neiranji Xuebao Transactions Of CSICE Chinese Society For Internal Combustion Engines | 18 | 51 | 2.83 | 4 | 18 | 0.16 (Q4) | China | 2002 | 2020 | 6 | 3 | 5 | 4 |
Transport Policy | 18 | 478 | 26.56 | 11 | 96 | 1.69 (Q1) | United Kingdom | 2007 | 2021 | 0 | 2 | 8 | 8 |
Fuel | 16 | 580 | 36.25 | 10 | 213 | 1.56 (Q1) | Netherlands | 2005 | 2021 | 0 | 1 | 7 | 8 |
Research In Transportation Economics | 14 | 128 | 9.14 | 6 | 46 | 1.02 (Q1) | United States | 2007 | 2021 | 0 | 0 | 9 | 5 |
Transportation Research Part D Transport And Environment | 14 | 202 | 14.43 | 8 | 99 | 1.60 (Q1) | United Kingdom | 2011 | 2021 | 0 | 2 | 5 | 7 |
Urban Studies | 14 | 677 | 48.36 | 10 | 147 | 1.92 (Q1) | United Kingdom | 2005 | 2020 | 1 | 2 | 4 | 7 |
Planning | 13 | 7 | 0.54 | 1 | 11 | 0.10 (Q4) | United States | 2004 | 2018 | 1 | 6 | 4 | 2 |
Transportation Planning And Technology | 13 | 155 | 11.92 | 7 | 42 | 0.43 (Q2) | United Kingdom | 2004 | 2020 | 1 | 5 | 3 | 4 |
Urban Rail Transit | 13 | 126 | 9.69 | 5 | 14 | 0.52 (Q2) | Germany | 2015 | 2021 | 0 | 0 | 3 | 10 |
ZEV Rail Glasers Annalen | 13 | 4 | 0.31 | 1 | 6 | 0 | Germany | 2002 | 2008 | 8 | 5 | 0 | 0 |
Energies | 12 | 49 | 4.08 | 3 | 93 | 1.60 (Q2) | Switzerland | 2015 | 2021 | 0 | 0 | 1 | 11 |
Autores | A | TC | TC/A | Institution | C | 1st A | Last A | H-Index |
---|---|---|---|---|---|---|---|---|
Zhang, Y.T. | 15 | 45 | 3.00 | Southwest Jiaotong University | China | 2005 | 2018 | 4 |
Ma, X. | 14 | 55 | 3.93 | Beijing Jiaotong University | China | 2013 | 2021 | 4 |
Wang, P. | 13 | 59 | 4.54 | Ministry of Education China | China | 2013 | 2020 | 5 |
Ouyang, G.Y. | 12 | 35 | 2.92 | Beijing Institute of Technology | China | 2005 | 2013 | 4 |
Fan, L. | 11 | 22 | 2.00 | Naval University of Engineering | China | 2013 | 2021 | 3 |
Mulley, C. | 11 | 272 | 24.73 | Harbin Engineering University | China | 2007 | 2019 | 2 |
Bai, Y. | 10 | 21 | 2.10 | Shanghai Jiao Tong University | China | 2013 | 2021 | 3 |
Chen, G.X. | 9 | 96 | 10.67 | Tianjin University | China | 2011 | 2021 | 5 |
Huang, Z. | 9 | 65 | 7.22 | Tongji University | China | 2006 | 2018 | 4 |
Pagliara, F. | 9 | 246 | 27.33 | Newcastle University | United Kingdom | 2009 | 2019 | 5 |
TC/A | ||||||||
---|---|---|---|---|---|---|---|---|
Institution | C | A | TC | TC/A | H index | IC (%) | IC | NIC |
Southwest Jiaotong University | China | 106 | 987 | 9.31 | 17 | 12.3% | 12.62 | 8.85 |
Beijing Jiaotong University | China | 68 | 568 | 8.35 | 12 | 22.1% | 16.87 | 5.94 |
Ministry of Education China | China | 37 | 213 | 5.76 | 9 | 18.9% | 10.57 | 4.63 |
Beijing Institute of Technology | China | 35 | 108 | 3.09 | 6 | 5.7% | 0.00 | 3.27 |
Naval University of Engineering | China | 29 | 48 | 1.66 | 4 | 0.0% | 0.00 | 1.66 |
Harbin Engineering University | China | 26 | 75 | 2.88 | 5 | 26.9% | 5.57 | 1.89 |
Shanghai Jiao Tong University | China | 25 | 168 | 6.72 | 7 | 8.0% | 11.50 | 6.30 |
Tianjin University | China | 22 | 158 | 7.18 | 6 | 4.5% | 0.00 | 7.52 |
Tongji University | China | 21 | 120 | 5.71 | 6 | 14.3% | 14.33 | 4.28 |
Newcastle University | United Kingdom | 19 | 714 | 37.58 | 10 | 31.6% | 20.33 | 45.54 |
Country | A | TC | TC/A | H Index | R | |||
---|---|---|---|---|---|---|---|---|
2002–2006 | 2007–2011 | 2012–2016 | 2017–2021 | |||||
China | 571 | 4145 | 7.26 | 30 | (1) 46 | (1) 88 | (1) 158 | (1) 279 |
United States | 361 | 7359 | 20.39 | 46 | (5) 10 | (2) 87 | (2) 119 | (2) 111 |
United Kingdom | 168 | 3799 | 22.61 | 31 | (2) 44 | (3) 35 | (3) 53 | (3) 62 |
Germany | 91 | 591 | 6.49 | 16 | (4) 18 | (4) 21 | (8) 24 | (9) 15 |
Italy | 85 | 1479 | 17.40 | 22 | (3) 31 | (5) 13 | (7) 25 | (4) 37 |
Australia | 70 | 1135 | 16.21 | 21 | (7) 9 | (7) 8 | (4) 31 | (5) 26 |
Spain | 62 | 1075 | 17.34 | 18 | (8) 5 | (8) 8 | (5) 26 | (6) 23 |
Canada | 55 | 881 | 16.02 | 18 | (9) 5 | (9) 8 | (9) 16 | (7) 21 |
South Korea | 51 | 420 | 8.24 | 12 | (6) 10 | (10) 6 | (6) 26 | (10) 15 |
Taiwan | 42 | 701 | 16.69 | 14 | (10) 4 | (6) 11 | (10) 12 | (8) 16 |
Country | NC | Main collaborators | IC (%) | TC/A | |
---|---|---|---|---|---|
IC | NIC | ||||
China | 25 | United States, United Kingdom, Hong Kong, Australia, Canada | 16.8% | 15.74 | 5.55 |
United States | 34 | United States, China, United Kingdom, Australia, Canada | 27.1% | 23.37 | 19.27 |
United Kingdom | 27 | China, United States, Australia, Italy, Germany | 38.1% | 28.59 | 18.93 |
Germany | 14 | United Kingdom, Germany, Spain, United States, Canada | 22.0% | 14.15 | 4.34 |
Italy | 21 | Austria, Italy, Spain, United Kingdom, Netherlands | 30.6% | 13.50 | 19.12 |
Australia | 15 | United Kingdom, United States, China, Canada, Iran | 38.6% | 20.41 | 13.58 |
Spain | 11 | Netherlands, United Kingdom, United States, Italy, France | 33.9% | 24.19 | 13.83 |
Canada | 18 | China, United States, Australia, Hong Kong, Italy | 41.8% | 16.04 | 16.00 |
South Korea | 8 | United States, India, Thailand, Malaysia, Singapore | 27.5% | 15.29 | 5.57 |
Taiwan | 14 | United States, Australia, Brazil, Hong Kong, Canada | 23.8% | 22.00 | 15.03 |
Group | Keyword | 2002–2021 | 2002–2006 | 2007–2011 | 2012–2016 | 2017–2021 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | % | A | % | A | % | A | % | A | % | ||
Sustainability and Rail Systems | Urban Development | 37 | 1.9% | 3 | 1.2% | 7 | 1.8% | 11 | 1.9% | 16 | 2.3% |
Optimization | 68 | 3.5% | 7 | 2.8% | 13 | 3.4% | 21 | 3.6% | 27 | 3.9% | |
Light Rail | 118 | 6.2% | 3 | 1.2% | 19 | 4.9% | 26 | 4.5% | 70 | 10.0% | |
Environmental Impact | 22 | 1.1% | 4 | 1.6% | 5 | 1.3% | 8 | 1.4% | 5 | 0.7% | |
Railway Mechanics | Common Rail System | 92 | 4.8% | 9 | 3.6% | 17 | 4.4% | 27 | 4.6% | 39 | 5.6% |
Wheel-rail Systems | 82 | 4.3% | 9 | 3.6% | 10 | 2.6% | 18 | 3.1% | 45 | 6.4% | |
Finite Element Method | 63 | 3.3% | 8 | 3.2% | 10 | 2.6% | 18 | 3.1% | 27 | 3.9% | |
High-speed Train | 78 | 4.1% | 4 | 1.6% | 10 | 2.6% | 9 | 1.5% | 20 | 2.9% | |
Urban Train Development | Accessibility | 38 | 2.0% | 1 | 0.4% | 7 | 1.8% | 12 | 2.1% | 18 | 2.6% |
Public Transport | 112 | 1.8% | 12 | 4.8% | 32 | 8.3% | 22 | 3.8% | 46 | 6.6% | |
Rail Systems | 180 | 9.4% | 9 | 3.6% | 82 | 21.2% | 40 | 6.9% | 49 | 7.0% | |
Sustainability | 38 | 2.0% | 2 | 0.8% | 6 | 1.6% | 11 | 1.9% | 19 | 2.7% | |
Maintenance | Urban Transport | 132 | 6.9% | 16 | 6.5% | 27 | 7.0% | 42 | 7.2% | 47 | 6.7% |
Light Rail Transit | 183 | 9.5% | 19 | 7.7% | 30 | 7.8% | 64 | 11.0% | 70 | 10.0% | |
Transportation Infrastructure | 51 | 2.7% | 4 | 1.6% | 6 | 1.6% | 20 | 3.4% | 21 | 3.0% | |
Vibrations (mechanical) | 92 | 4.8% | 9 | 3.6% | 15 | 3.9% | 16 | 2.7% | 52 | 7.4% | |
Energy Efficiency and Greenhouse Gases | Energy Use | 34 | 1.8% | 3 | 1.2% | 5 | 1.3% | 10 | 1.7% | 16 | 2.3% |
Greenhouse Gases | 20 | 1.0% | 0 | 0.0% | 5 | 1.3% | 7 | 1.2% | 8 | 1.1% | |
High-speed Rail | 31 | 1.6% | 1 | 0.4% | 4 | 1.0% | 10 | 1.7% | 16 | 2.3% | |
Emission Control | 20 | 1.0% | 0 | 0.0% | 4 | 1.0% | 5 | 0.9% | 11 | 1.6% | |
Combustion | Diesel Engines | 245 | 12.8% | 45 | 18.1% | 56 | 14.5% | 65 | 11.1% | 79 | 11.3% |
High-pressure Effects | 24 | 1.3% | 4 | 1.6% | 3 | 0.8% | 7 | 1.2% | 10 | 1.4% | |
High-pressure Common Rail System | 97 | 5.1% | 6 | 2.4% | 22 | 5.7% | 32 | 5.5% | 37 | 5.3% | |
Fuel Injection | 87 | 4.5% | 21 | 8.5% | 12 | 3.1% | 23 | 3.9% | 31 | 4.4% | |
Total number of articles: | 1.918 | 248 | 387 | 583 | 700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Fonseca-Soares, D.; Galvinicio, J.D.; Eliziário, S.A.; Ramos-Ridao, A.F. A Bibliometric Analysis of the Trends and Characteristics of Railway Research. Sustainability 2022, 14, 13956. https://doi.org/10.3390/su142113956
Da Fonseca-Soares D, Galvinicio JD, Eliziário SA, Ramos-Ridao AF. A Bibliometric Analysis of the Trends and Characteristics of Railway Research. Sustainability. 2022; 14(21):13956. https://doi.org/10.3390/su142113956
Chicago/Turabian StyleDa Fonseca-Soares, Diogo, Josicleda Domiciano Galvinicio, Sayonara Andrade Eliziário, and Angel Fermin Ramos-Ridao. 2022. "A Bibliometric Analysis of the Trends and Characteristics of Railway Research" Sustainability 14, no. 21: 13956. https://doi.org/10.3390/su142113956
APA StyleDa Fonseca-Soares, D., Galvinicio, J. D., Eliziário, S. A., & Ramos-Ridao, A. F. (2022). A Bibliometric Analysis of the Trends and Characteristics of Railway Research. Sustainability, 14(21), 13956. https://doi.org/10.3390/su142113956