Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment Methodology
2.2. Goal and Scope Definition
2.3. Functional Unit and Allocation Strategy
2.4. System Boundary
2.5. Life Cycle Inventory
2.5.1. Raw Material Production
2.5.2. Layout and Operations of the Oil Extraction Plant
2.5.3. Polygeneration
2.5.4. Biodiesel
2.6. Life Cycle Impact Assessment and Interpretation
3. Results
3.1. Mass Flows and Characterisation
3.2. Life Cycle Inventory Analysis
3.2.1. Cardoon Production
3.2.2. Oil Extraction Plant
3.2.3. Polygeneration
3.2.4. Biodiesel
3.3. Life Cycle Impact Assessment
3.3.1. Definition and Characterisation of the Main Impact Categories
3.3.2. Polygeneration and Biodiesel Chains
3.3.3. Cardoon Production
3.3.4. Oil Extraction
3.3.5. Transesterification
3.3.6. Energy Generation
4. Discussion
4.1. Life Cycle Interpretation
4.1.1. Macro-Level Categories
4.1.2. Biodiesel and Polygeneration Chains
5. Conclusions
Limitations of the Study and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Input/Output | Value |
---|---|
Seed production | 1.5 t/ha |
Seed moisture | 8% |
Seed oil content | 25% |
Epigean fraction | 15 t/ha |
Moisture epigean fraction | 15% |
Hypogeum fraction | 3 t/ha |
Moisture hypogeum fraction | 50% |
Nitrogen fertilizer as N | 57.5 kg/ha |
Phosphate fertilizer as P2O5 | 146.9 kg/ha |
Compost | 20 kg/ha |
Cultivated field | 36 ha |
Cardoon Production |
---|
Nitrogen fertiliser, as N {RoW}|diammonium phosphate production|APOS, S |
Phosphate fertiliser, as P2O5 {RoW}|diammonium phosphate production|APOS, S |
Fertilising, by broadcaster {RoW}|processing|APOS, S |
Tillage, harrowing, by rotary harrow {RoW}|processing|APOS, S |
Tillage, ploughing {RoW}|processing|APOS, S |
Swath, by rotary windrower {RoW}|processing|APOS, S |
Baling {RoW}|processing|APOS, S |
Bale loading {RoW}|processing|APOS, S |
Sowing {RoW}|processing|APOS, S |
Combine harvesting {RoW}|processing|APOS, S |
Compost {GLO}|market for|APOS, S |
Electricity, medium voltage {IT}|market for|APOS, S |
Oil Extraction |
Metal working, average for steel product manufacturing {GLO}|market for|APOS, S |
Steel, unalloyed {GLO}|market for|APOS, S |
Electric motor, vehicle {RER}|Production|APOS, S |
Dust collector, multicyclone {GLO}|market for|APOS, S |
Building, hall {GLO}|market for|APOS, S |
Building, hall, steel construction {RoW}|building construction, hall, steel construction|APOS, S |
Polygeneration |
Heat and power co-generation unit, 200 kW electrical, diesel SCR, common components for heat + electricity {RER}|construction|APOS, U |
Absorption chiller, 100 kW {RoW}|production|APOS, U |
Biodiesel |
Fatty acid methyl ester {RoW}|esterification of soybean oil|APOS, U (modified) |
Polygeneration References |
Electricity, medium voltage {IT}|market for|APOS, S |
Heat, district or industrial, natural gas {RER}|market group for|APOS, S |
Biodiesel References |
Fatty acid methyl ester {RoW}|market for fatty acid methyl ester|APOS, U |
Fatty acid methyl ester {RoW}|esterification of palm oil|APOS, U |
Fatty acid methyl ester {RoW}|esterification of rape oil|APOS, U |
Fatty acid methyl ester {RoW}|esterification of soybean oil|APOS, U (modified) |
Oil References |
Palm kernel oil, crude {GLO}|market for|APOS, U |
Palm oil, crude {GLO}|market for|APOS, U |
Rape oil, crude {RoW}|market for|APOS, U |
Soybean oil, crude {GLO}|market for|APOS, U |
References
- Edenhofer, O. (Ed.) Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ottaiano, L.; di Mola, I.; Impagliazzo, A.; Cozzolino, E.; Masucci, F.; Mori, M.; Fagnano, M. Yields and Quality of Biomasses and Grain in Cynara cardunculus L. Grown in Southern Italy, as Affected by Genotype and Environmental Conditions. Ital. J. Agron. 2017, 11, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Jiang, J.; Zhao, J. Thermochemical Conversion of Triglycerides for Production of Drop-in Liquid Fuels. Renew. Sustain. Energy Rev. 2016, 58, 331–340. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World Population Stabilization Unlikely This Century. Science (1979) 2014, 346, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Statista OPEC Primary Energy Demand Worldwide in 2020, with a Forecast until 2045, by Fuel Type. Available online: https://woo.opec.org/chapter.php?chapterNr=206 (accessed on 14 October 2022).
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for Mitigation of Climate Change: A Review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of Biomass to Biofuels and Life Cycle Assessment: A Review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Moore, J.E.; Mascarenhas, A.; Bain, J.; Straus, S.E. Developing a Comprehensive Definition of Sustainability. Implement. Sci. 2017, 12, 110. [Google Scholar] [CrossRef]
- IEA—International Energy Agency—World Energy Outlook. Available online: https://iea.blob.core.windows.net/assets/e6f58562-203e-474c-97a3-486f409aa7ff/WEO2014.pdf (accessed on 14 October 2022).
- Yaashikaa, P.R.; Kumar, P.S.; Karishma, S. Bio-Derived Catalysts for Production of Biodiesel: A Review on Feedstock, Oil Extraction Methodologies, Reactors and Lifecycle Assessment of Biodiesel. Fuel 2022, 316, 123379. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass Production for Bioenergy Using Marginal Lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Turco, R.; Tesser, R.; Cucciolito, M.E.; Fagnano, M.; Ottaiano, L.; Mallardo, S.; Malinconico, M.; Santagata, G.; di Serio, M. Cynara Cardunculus Biomass Recovery: An Eco-Sustainable, Nonedible Resource of Vegetable Oil for the Production of Poly(Lactic Acid) Bioplasticizers. ACS Sustain. Chem. Eng. 2019, 7, 4069–4077. [Google Scholar] [CrossRef]
- Bureau, J.-C.; Swinnen, J. EU Policies and Global Food Security. Glob. Food Sec. 2018, 16, 106–115. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a Biomass and Multi-Purpose Crop: A Review of 30 Years of Research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Abt, R.C.; Abt, K.L.; Cubbage, F.W.; Henderson, J.D. Effect of Policy-Based Bioenergy Demand on Southern Timber Markets: A Case Study of North Carolina. Biomass Bioenergy 2010, 34, 1679–1686. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Struik, P.C.; Vos, J.; Danalatos, N.G. Phenological Growth Stages of Cynara Cardunculus: Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2010, 156, 253–270. [Google Scholar] [CrossRef]
- Bolohan, C.; Marin, D.I.; Mihalache, M.; Ilie, L.; Oprea, A.C. Oprea Research on Cynara cardunculus L. Species under the Conditions of Southeastern Romania Area. Geography 2013, 56, 429–432. [Google Scholar]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial Applications of Cynara cardunculus L. for Energy and Other Uses. Ind. Crop. Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M.G. Biomass and Grain Oil Yields in Cynara cardunculus L. Genotypes Grown in a Mediterranean Environment. Field Crop. Res. 2007, 101, 187–197. [Google Scholar] [CrossRef]
- Zayed, A.; Serag, A.; Farag, M.A. Cynara cardunculus L.: Outgoing and Potential Trends of Phytochemical, Industrial, Nutritive and Medicinal Merits. J. Funct. Foods 2020, 69, 103937. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Long-Term Evaluation of Biomass Production and Quality of Two Cardoon (Cynara cardunculus L.) Cultivars for Energy Use. Biomass Bioenergy 2009, 33, 810–816. [Google Scholar] [CrossRef]
- Fernández, J.; Hidalgo, M.; del Monte, J.P.; Curt, M.D. Cynara cardunculus L. as a Perennial Crop for Non-Irrigated Lands: Yields and Applications. Acta Hortic. 2005, 681, 109–116. [Google Scholar] [CrossRef]
- Curt, M.D.; Sánchez, G.; Fernández, J. The Potential of Cynara cardunculus L. for Seed Oil Production in a Perennial Cultivation System. Biomass Bioenergy 2002, 23, 33–46. [Google Scholar] [CrossRef]
- Hill, K. Industrial Development and Application of Biobased Oleochemicals. In Biorefineries-Industrial Processes and Products. Wiley-VCH Verlag GmbH: Weinheim, Germany; pp. 291–314.
- Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Convers Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Gil, M.; Arauzo, I.; Teruel, E.; Bartolomé, C. Milling and Handling Cynara cardunculus L. for Use as Solid Biofuel: Experimental Tests. Biomass Bioenergy 2012, 41, 145–156. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Petrozzi, A.; Coccia, V.; D’Antonio, S.; Cotana, S. Mass and Energy Flows of Cardoon Oil in a Prototype System for Seeds Milling and Vegetable Oil Treatment and Cogeneration. Energy Procedia 2015, 82, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Nogales-Delgado, S.; Sánchez, N.; Encinar, J.M. Valorization of Cynara cardunculus L. Oil as the Basis of a Biorefinery for Biodiesel and Biolubricant Production. Energies 2020, 13, 5085. [Google Scholar] [CrossRef]
- Coulson, M.; Bridgwater, A.V. Fast Pyrolysis of Annually Harvested Crops for Bioenergy Applications. Bio.-Energy Res. Group 2004, 1098, 10–14. [Google Scholar]
- Genovese, C.; Platania, C.; Venticinque, M.; Calderaro, P.; Argento, S.; Scandurra, S.; Raccuia, S.A. Evaluation of Cardoon Seeds Presscake for Animal Feeding. Acta Hortic. 2016, 1147, 323–328. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Varriale, S.; Porta, R.; Naviglio, D.; Spennato, M.; Gardossi, L.; Giosafatto, C.V.L.; Pezzella, C. A Biorefinery Approach for the Conversion of Cynara cardunculus Biomass to Active Films. Food Hydrocoll. 2022, 122, 107099. [Google Scholar] [CrossRef]
- Turco, R.; Tesser, R.; Russo, V.; Vitiello, R.; Fagnano, M.; di Serio, M. Comparison of Different Possible Technologies for Epoxidation of Cynara cardunculus Seed Oil. Eur. J. Lipid Sci. Technol. 2020, 122, 1900100. [Google Scholar] [CrossRef]
- Baskar, G.; Kalavathy, G.; Aiswarya, R.; Abarnaebenezer Selvakumari, I. Advances in Bio-Oil Extraction from Nonedible Oil Seeds and Algal Biomass. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 187–210. [Google Scholar]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumar Sharma, P.; Jhalani, A. A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. How Extraction Method Affects Yield, Fatty Acids Composition and Bioactive Properties of Cardoon Seed Oil? Ind. Crop. Prod. 2018, 124, 459–465. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Habibi-Nodeh, F.; Hesari, J.; Nemati, M.; Achachlouei, B.F. Effect of Pretreatment with Microwaves on Oxidative Stability and Nutraceuticals Content of Oil from Rapeseed. Food Chem. 2010, 121, 1211–1215. [Google Scholar] [CrossRef]
- Subroto, E.; Manurung, R.; Heeres, H.J.; Broekhuis, A.A. Optimization of Mechanical Oil Extraction from Jatropha curcas L. Kernel Using Response Surface Method. Ind. Crop. Prod. 2015, 63, 294–302. [Google Scholar] [CrossRef]
- Nde, D.; Foncha, A. Optimization Methods for the Extraction of Vegetable Oils: A Review. Processes 2020, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Guédé, S.S.; Soro, Y.R.; Kouamé, A.F.; Brou, K. Optimization of Screw Press Extraction of Citrillus Lanatus Seed Oil and Physicochemical Characterization. Eur. J. Food Sci. Technol. 2017, 5, 35–46. [Google Scholar]
- Long, F.; Zhang, X.; Cao, X.; Zhai, Q.; Song, Y.; Wang, F.; Jiang, J.; Xu, J. Mechanism Investigation on the Formation of Olefins and Paraffin from the Thermochemical Catalytic Conversion of Triglycerides Catalyzed by Alkali Metal Catalysts. Fuel Process. Technol. 2020, 200, 106312. [Google Scholar] [CrossRef]
- Khan, S.; Kay Lup, A.N.; Qureshi, K.M.; Abnisa, F.; Wan Daud, W.M.A.; Patah, M.F.A. A Review on Deoxygenation of Triglycerides for Jet Fuel Range Hydrocarbons. J. Anal. Appl. Pyrolysis 2019, 140, 1–24. [Google Scholar] [CrossRef]
- Athar, M.; Zaidi, S. A Review of the Feedstocks, Catalysts, and Intensification Techniques for Sustainable Biodiesel Production. J. Environ. Chem. Eng. 2020, 8, 104523. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Porta, R. Biorefining of Seed Oil Cakes as Industrial Co-Streams for Production of Innovative Bioplastics. A Review. Trends Food Sci. Technol. 2021, 109, 259–270. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A Technological and Economic Review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Cotana, F.; Cavalaglio, G.; Petrozzi, A.; Coccia, V. Lignocellulosic Biomass Feeding in Biogas Pathway: State of the Art and Plant Layouts. Energy Procedia 2015, 81, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- ISO. Environmental Management—Life Cycle Assessment—Principles and Framework (ISO 14040); International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment: Requirements and Guidelines (ISO 14044); International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Letcher, T. Comprehensive Renewable Energy, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sustainability SimaPro. Available online: https://simapro.com/ (accessed on 14 October 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E. Bo Weidema. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Deligios, P.A.; Sulas, L.; Spissu, E.; Re, G.A.; Farci, R.; Ledda, L. Effect of Input Management on Yield and Energy Balance of Cardoon Crop Systems in Mediterranean Environment. Eur. J. Agron. 2017, 82, 173–181. [Google Scholar] [CrossRef]
- Mancini, M.; Lanza Volpe, M.; Gatti, B.; Malik, Y.; Moreno, A.C.; Leskovar, D.; Cravero, V. Characterization of Cardoon Accessions as Feedstock for Biodiesel Production. Fuel 2019, 235, 1287–1293. [Google Scholar] [CrossRef]
- Mettler Toledo Instruments Moisture Analyzer HB43-S. Available online: https://Www.Mt.Com/Dam/P5/Labtec/05_Moisture_Analyzer/02_Advanced_Line/03_Documents/03_Operating_Instructions/HB43-S_OI_en.Pdf (accessed on 14 October 2022).
- LECO Instruments Calorimeter AC-350. Available online: http://Www.Zycon.Com/Literature/128173/62890/Ac-350%20flyer%20203-968.Pdf (accessed on 14 October 2022).
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Torres, C.M.; Ríos, S.D.; Torras, C.; Salvadó, J.; Mateo-Sanz, J.M.; Jiménez, L. Sustainability Analysis of Biodiesel Production from Cynara cardunculus Crop. Fuel 2013, 111, 535–542. [Google Scholar] [CrossRef]
- Ganesan, R.; Manigandan, S.; Shanmugam, S.; Chandramohan, V.P.; Sindhu, R.; Kim, S.-H.; Brindhadevi, K.; Pugazhendhi, A. A Detailed Scrutinize on Panorama of Catalysts in Biodiesel Synthesis. Sci. Total Environ. 2021, 777, 145683. [Google Scholar] [CrossRef]
- Li, D.; Feng, W.; Chen, C.; Chen, S.; Fan, G.; Liao, S.; Wu, G.; Wang, Z. Transesterification of Litsea Cubeba Kernel Oil to Biodiesel over Zinc Supported on Zirconia Heterogeneous Catalysts. Renew. Energy 2021, 177, 13–22. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Kant Bhatia, R.; Jeon, J.-M.; Pugazhendhi, A.; Kumar Awasthi, M.; Kumar, D.; Kumar, G.; Yoon, J.-J.; Yang, Y.-H. An Overview on Advancements in Biobased Transesterification Methods for Biodiesel Production: Oil Resources, Extraction, Biocatalysts, and Process Intensification Technologies. Fuel 2021, 285, 119117. [Google Scholar] [CrossRef]
- Long, F.; Liu, W.; Jiang, X.; Zhai, Q.; Cao, X.; Jiang, J.; Xu, J. State-of-the-Art Technologies for Biofuel Production from Triglycerides: A Review. Renew. Sustain. Energy Rev. 2021, 148, 111269. [Google Scholar] [CrossRef]
- Guo, S.; Yang, Z.; Gao, Y. Effect of Adding Biodiesel to Diesel on the Physical and Chemical Properties and Engine Performance of Fuel Blends. J. Biobased. Mater. Bioenergy 2016, 10, 34–43. [Google Scholar] [CrossRef]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent Advancement in Biodiesel Production Methodologies Using Various Feedstock: A Review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.; Struijs, J.; Zelm, R. ReCiPE 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Natl. Inst. Public Health Environ. 2008. Available online: https://web.universiteitleiden.nl/cml/ssp/publications/recipe_characterisation.pdf (accessed on 14 October 2022).
- Krug, T.; Tanabe, K.; Srivastava, N.; Jamsranjav, B.; Fukuda, M.; Troxler, T. Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Intergovernmental Panel on Climate Change: Cham, Switzerland, 2004. [Google Scholar]
- Temporim, R.B.L.; Petrozzi, A.; Coccia, V.; Cotana, F.; Cavalaglio, G. A Prototype Plant for Oilseed Extraction: Analysis of Mass and Energy Flows. Sustainability 2020, 12, 9786. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. (Eds.) Life Cycle Assessment—Theory and Practice; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-56474-6. [Google Scholar]
- Barros Lovate Temporim, R.; Cavalaglio, G.; Petrozzi, A.; Coccia, V.; Iodice, P.; Nicolini, A.; Cotana, F. Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L. Energies 2022, 15, 2397. [Google Scholar] [CrossRef]
- Cespi, D.; Passarini, F.; Mastragostino, G.; Vassura, I.; Larocca, S.; Iaconi, A.; Chieregato, A.; Dubois, J.-L.; Cavani, F. Glycerol as Feedstock in the Synthesis of Chemicals: A Life Cycle Analysis for Acrolein Production. Green Chem. 2015, 17, 343–355. [Google Scholar] [CrossRef]
- Burnham, A.; Han, J.; Clark, C.E.; Wang, M.; Dunn, J.B.; Palou-Rivera, I. Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum. Environ. Sci. Technol. 2012, 46, 619–627. [Google Scholar] [CrossRef]
- Carvalho, M.; da Silva, E.S.; Andersen, S.L.F.; Abrahão, R. Life Cycle Assessment of the Transesterification Double Step Process for Biodiesel Production from Refined Soybean Oil in Brazil. Environ. Sci. Pollut. Res. 2016, 23, 11025–11033. [Google Scholar] [CrossRef]
- González-García, S.; García-Rey, D.; Hospido, A. Environmental Life Cycle Assessment for Rapeseed-Derived Biodiesel. Int. J. Life Cycle Assess. 2013, 18, 61–76. [Google Scholar] [CrossRef]
- de Souza, S.P.; Pacca, S.; de Ávila, M.T.; Borges, J.L.B. Greenhouse Gas Emissions and Energy Balance of Palm Oil Biofuel. Renew. Energy 2010, 35, 2552–2561. [Google Scholar] [CrossRef]
- Al-attab, K.A.; Zainal, Z.A. Performance of High-Temperature Heat Exchangers in Biomass Fuel Powered Externally Fired Gas Turbine Systems. Renew. Energy 2010, 35, 913–920. [Google Scholar] [CrossRef]
- Haes, U.; Finnveden, G.; Goedkoop, M.; Hauschild, M.; Hertwich, E.; Hofstetter, P.; Jolliet, O.; Klöpffer, W.; Krewitt, W.; Lindeijer, E.; et al. Life-Cycle Impact Assessment: Striving Towards Best Practice. In Brussels: Society of Environmental Toxicology and Chemistry (SETAC); SETAC Press: Pensacola, FL, USA, 2002; ISBN 1-880611-54-6. [Google Scholar]
- Vergara, P.; Ladero, M.; García-Ochoa, F.; Villar, J.C. Valorization of Cynara cardunculus Crops by Ethanol-Water Treatment: Optimization of Operating Conditions. Ind. Crop. Prod. 2018, 124, 856–862. [Google Scholar] [CrossRef]
Stage Mid-Level Category | Equipment/Machinery | Power Input kW | Engine Weight kg | Electricity MJ | Machinery Weight kg |
---|---|---|---|---|---|
Storage | Belt (underground) | 3 | 21 | 203 | 500 |
Elevator (underground to top silos) | 3 | 21 | 203 | 900 | |
Belts (top silos) | 3 | 21 | 203 | 350 | |
Belts (input top silos) | 3 | 21 | 203 | 350 | |
Transportation | Belts (output down silos) | 3 | 21 | 203 | 270 |
Belts (ground) | 3 | 21 | 203 | 270 | |
Elevator (up cleaning) | 3 | - | 203 | - | |
Selection | Cleaning sieve system | 1.5 | 15 | 763 | 300 |
Cyclone—dust collector | 0.75 | 12 | 381 | 300 | |
Extraction | Screw input (seeds) | 1.1 | 15 | 1119 | 190 |
Press | 11 | 160 | 11,187 | 3140 | |
Screw output (oilcake) | 1.5 | 15 | 1526 | 190 | |
Pump output | 1.1 | 15 | 1119 | 150 | |
Filtration | Pump filter | 0.75 | 12 | 38 | 300 |
Impact Category (IC) | Polygeneration | Biodiesel |
---|---|---|
Global Warming | 1.33% | 1.98% |
Ozone Formation (Human Health) | 2.16% | 2.92% |
Ozone Formation (Terrestrial Ecosystems) | 2.56% | 3.47% |
Terrestrial Ecotoxicity | 7.15% | 5.24% |
Marine Ecotoxicity | 3.25% | 2.29% |
Human Carcinogenic Toxicity | 73.13% | 69.74% |
Fossil Resource Scarcity | 2.89% | 5.24% |
Total | 92.47% | 90.87% |
Impact Category/Damage Category | Unit | Biodiesel | Polygeneration | ||||||
---|---|---|---|---|---|---|---|---|---|
Cardoon | Standard | Palm | Rapeseed | Soybean | Power and Gas Grids | Cardoon | |||
Midpoint Level | Global warming | kg CO2 eq | 1.34 | 3.14 | 2.44 | 1.77 | 5.65 | 0.08 | 0.05 |
Ozone formation (Human Health) | kg NOx eq | 0.01 | 4.67 × 10−3 | 2.97 × 10−3 | 0.01 | 4.08 × 10−3 | 1.15 × 10−4 | 1.89 × 10−4 | |
Ozone formation (Terrestrial ecosystems) | kg NOx eq | 0.01 | 4.92 × 10−3 | 3.30 × 10−3 | 0.01 | 4.52 × 10−3 | 1.17 × 10−4 | 1.93 × 10−4 | |
Terrestrial ecotoxicity | kg 1,4-DCB | 6.75 | 4.53 | 3.21 | 5.32 | 3.98 | 0.07 | 0.46 | |
Marine ecotoxicity | kg 1,4-DCB | 0.01 | 0.01 | 4.38 × 10−3 | 0.01 | 0.01 | 1.13 × 10−4 | 6.01 × 10−4 | |
Human carcinogenic toxicity | kg 1,4-DCB | 0.06 | 0.02 | 0.01 | 0.02 | 0.01 | 4.19 × 10−4 | 3.20 × 10−3 | |
Fossil resource scarcity | kg oil eq | 0.44 | 0.31 | 0.17 | 0.37 | 0.25 | 0.03 | 0.01 | |
Endpoint Level | Human health | mPt | 58.79 | 100.02 | 64.31 | 100.85 | 123.71 | 1.97 | 2.33 |
Ecosystems | mPt | 2.07 | 17.64 | 5.93 | 17.15 | 19.11 | 0.08 | 0.07 | |
Resources | mPt | 1.05 | 0.76 | 0.41 | 0.93 | 0.61 | 0.06 | 0.03 | |
Total | mPt | 61.91 | 118.42 | 70.65 | 118.93 | 143.42 | 2.11 | 2.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros Lovate Temporim, R.; Cavalaglio, G.; Petrozzi, A.; Coccia, V.; Cotana, F.; Nicolini, A. Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains. Sustainability 2022, 14, 13868. https://doi.org/10.3390/su142113868
Barros Lovate Temporim R, Cavalaglio G, Petrozzi A, Coccia V, Cotana F, Nicolini A. Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains. Sustainability. 2022; 14(21):13868. https://doi.org/10.3390/su142113868
Chicago/Turabian StyleBarros Lovate Temporim, Ramoon, Gianluca Cavalaglio, Alessandro Petrozzi, Valentina Coccia, Franco Cotana, and Andrea Nicolini. 2022. "Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains" Sustainability 14, no. 21: 13868. https://doi.org/10.3390/su142113868
APA StyleBarros Lovate Temporim, R., Cavalaglio, G., Petrozzi, A., Coccia, V., Cotana, F., & Nicolini, A. (2022). Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains. Sustainability, 14(21), 13868. https://doi.org/10.3390/su142113868