Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations
Abstract
1. Introduction
2. Zoonoses Facilitated by Human Proximity to Animals
3. Factory Farms as Sites of Epidemiological Risk
4. Animal and Human Exploitation as a Root of Zoonoses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emerging Infectious Diseases. Available online: https://www.bcm.edu/departments/molecular-virology-and-microbiology/emerging-infections-and-biodefense/emerging-infectious-diseases (accessed on 22 June 2022).
- Kumar, B.; Manuja, A.; Gulati, B.R.; Virmani, N.; Tripathi, B.N. Suppl-2, M5: Zoonotic Viral Diseases of Equines and Their Impact on Human and Animal Health. Open Virol. J. 2018, 12, 80–98. [Google Scholar] [CrossRef] [PubMed]
- Recht, J.; Schuenemann, V.J.; Sánchez-Villagra, M.R. Host Diversity and Origin of Zoonoses: The Ancient and the New. Animals 2020, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- WHO. A Safer Future: Global Public Health Security in the 21st Century; World Health Organization: Geneva, Switzerland, 2007; Available online: https://apps.who.int/iris/bitstream/handle/10665/43713/9789241563444_eng.pdf?sequence=1&isAllowed=y (accessed on 22 June 2022).
- IOM (Institute of Medicine); NRC (National Research Council). Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases; The National Academies Press: Washington, DC, USA, 2009; pp. 1–303. [Google Scholar]
- Cascio, A.; Bosilkovski, M.; Rodriguez-Morales, A.J.; Pappas, G. The socio-ecology of zoonotic infections. Clin. Microbiol. Infect. 2011, 17, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Urbanik, J.; Hovorka, A.J. Animal Geographies in the Time of COVID-19: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2022; pp. 2307–2325. [Google Scholar]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef]
- Mennerat, A.; Nilsen, F.; Ebert, D.; Skorping, A. Intensive farming: Evolutionary implications for parasites and pathogens. Evol. Biol. 2010, 37, 59–67. [Google Scholar] [CrossRef]
- Anomaly, J. What’s wrong with factory farming? Public Health Ethics 2015, 8, 246–254. [Google Scholar] [CrossRef]
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef]
- Slingenbergh, J.; Gilbert, M.; Balogh, K.D.; Wint, W. Ecological sources of zoonotic diseases. Rev. Sci. Tech.-Off. Int. Epizoot. 2004, 23, 467–484. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1influenza virus. Nature 2009, 459, 931–939. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Morens, D.M. The 1918 influenza pandemic and its legacy. Cold Spring Harb. Perspect. Med. 2020, 10, a038695. [Google Scholar] [CrossRef]
- Greger, M. How to Survive A Pandemic; Flatiron Books: New York, NY, USA, 2020; pp. 1–592. [Google Scholar]
- Chowell, G.; Echevarría-Zuno, S.; Viboud, C.; Simonsen, L.; Tamerius, J.; Miller, M.A.; Borja-Aburto, V.H. Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Med. 2011, 8, e1000436. [Google Scholar] [CrossRef]
- Greger, M. Industrial animal agriculture’s role in the emergence and spread of disease. In The Meat Crisis, 2nd ed.; Joyce D’Silva, J.W., Ed.; Routledge: London, UK, 2017; pp. 217–227. [Google Scholar]
- Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 2009, 360, 2605–2615. [CrossRef]
- Sparke, M.; Anguelov, D. H1N1, globalization and the epidemiology of inequality. Health Place 2012, 18, 726–736. [Google Scholar] [CrossRef]
- Wallace, R.G. Breeding influenza: The political virology of offshore farming. Antipode 2009, 41, 916–951. [Google Scholar] [CrossRef]
- Kung, N.Y.; Morris, R.S.; Perkins, N.R.; Sims, L.D.; Ellis, T.M.; Bissett, L.; Chow, M.; Shortridge, K.F.; Guan, Y.; Peiris, M.J. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong, 2002. Emerg. Infect. Dis. 2007, 13, 412–418. [Google Scholar] [CrossRef]
- Ligon, B.L. Avian influenza virus H5N1: A review of its history and information regarding its potential to cause the next pandemic. Elsevier 2005, 16, 326–335. [Google Scholar] [CrossRef]
- Pappaioanou, M. Highly pathogenic H5N1 avian influenza virus: Cause of the next pandemic? Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 287–300. [Google Scholar] [CrossRef]
- Li, F.C.K.; Choi, B.C.K.; Sly, T.; Pak, A.W.P. Finding the real case-fatality rate of H5N1 avian influenza. J. Epidemiol. Community Health 2008, 62, 555–559. [Google Scholar] [CrossRef]
- Bouma, A.; Claassen, I.; Natih, K.; Klinkenberg, D.; Donnelly, C.A.; Koch, G.; Van Boven, M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathog. 2009, 5, e1000281. [Google Scholar] [CrossRef]
- World Health Organization. Epidemiology of WHO-confirmed human cases of avian influenza A (H5N1) infection. Wkly. Epidemiol. Rec. 2006, 81, 249–257. [Google Scholar]
- WHO (World Health Organization). Available online: https://www.who.int/news-room/questions-and-answers/item/influenza-h5n1#:~:text=What%20is%20H5N1%3F,infection%20from%20person%20to%20person (accessed on 22 June 2022).
- United Nations (UN). Environment Programme and International Livestock Research Institute. Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission. 2020, pp. 1–72. Available online: https://www.Uunep.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and (accessed on 22 June 2022).
- Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 2020, 21, 224. [Google Scholar] [CrossRef]
- Ding, Y.; He, L.I.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004, 203, 622–630. [Google Scholar] [CrossRef]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef]
- Killerby, M.E.; Biggs, H.M.; Midgley, C.M.; Gerber, S.I.; Watson, J.T. Middle East respiratory syndrome coronavirus transmission. Emerg. Infect. Dis. 2020, 26, 191–198. [Google Scholar] [CrossRef]
- Lu, L.; Zhong, W.; Bian, Z.; Li, Z.; Zhang, K.; Liang, B.; Zhong, Y.; Hu, M.; Lin, L.; Liu, J.; et al. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: A systematic review and meta-analysis. J. Infect. 2020, 81, e18–e25. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020, 19, 141–154. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, J. Adverse impact of industrial animal agriculture on the health and welfare of farmed animals. Integr. Zool. 2006, 1, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Hribar, C. Understanding Concentrated Animal Feeding Operations and Their Impact on Communities; National Association of Local Boards of Health (NALBOH): Kimberly, WI, USA, 2010; pp. 1–23. [Google Scholar]
- Weis, T. Industrial livestock and the ecological hoofprint. In The Routledge Handbook on Rural Studies; Shucksmith, M., Brown, D.L., Eds.; Routledge: London, UK, 2016; pp. 205–214. [Google Scholar]
- Pica-Ciamarra, U.; Otte, J. The ‘Livestock Revolution’: Rhetoric and reality. Outlook Agric. 2011, 40, 7–19. [Google Scholar] [CrossRef]
- Epstein, J.H.; Price, J.T. The significant but understudied impact of pathogen transmission from humans to animals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2009, 76, 448–455. [Google Scholar] [CrossRef]
- Rothenburger, J.L.; Himsworth, C.H.; Nemeth, N.M.; Pearl, D.L.; Jardine, C.M. Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth 2017, 14, 630–641. [Google Scholar] [CrossRef]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef]
- Sims, L.D.; Guan, Y.; Ellis, T.M.; Liu, K.K.; Dyrting, K.; Wong, H.; Kung, N.Y.; Shortridge, K.F.; Peiris, M. An update on avian influenza in Hong Kong 2002. Avian Dis. 2003, 47, 1083–1086. [Google Scholar] [CrossRef]
- Webster, R.G. Wet markets—A continuing source of severe acute respiratory syndrome and influenza? Lancet 2004, 363, 234–236. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Update: Isolation of avian influenza A (H5N1) viruses from humans—Hong Kong, 1997–1998. MMWR. Morb. Mortal. Wkly. Rep. 1998, 46, 1245–1247. [Google Scholar]
- Kapan, D.D.; Bennett, S.N.; Ellis, B.N.; Fox, J.; Lewis, N.D.; Spencer, J.H.; Saksena, S.; Wilcox, B.A. Avian influenza (H5N1) and the evolutionary and social ecology of infectious disease emergence. EcoHealth 2006, 3, 187–194. [Google Scholar] [CrossRef]
- Apata, D.F. Antibiotic resistance in poultry. Int. J. Poult. Sci. 2009, 8, 404–408. [Google Scholar] [CrossRef]
- Stibbe, A. Language, power and the social construction of animals. Soc. Anim. 2001, 9, 145–161. [Google Scholar] [CrossRef]
- Dhont, K.; Piazza, J.; Hodson, G. The role of meat appetite in willfully disregarding factory farming as a pandemic catalyst risk. Appetite 2021, 64, 105279. [Google Scholar] [CrossRef]
- Cassuto, D.N. Bred meat: The cultural foundation of the factory farm. Law Contemp. Probl. 2007, 70, 59–87. [Google Scholar] [CrossRef]
- Akram-Lodhi, H. The Ecological Hoofprint: The Global Burden of Industrial Agriculture. Can. Food Stud. 2014, 1, 23–26. [Google Scholar] [CrossRef][Green Version]
- Kreuziger, C. Dismembering the meat industry piece by piece: The value of federalism to farm animals. Law Ineq. 2005, 23, 363–407. [Google Scholar]
- Mallon, R. The Deplorable Standard of Living Faced by Farmed Animals in America’s Meat Industry and How to Improve Conditions by Eliminating the Corporate Farm. J. Med. L 2005, 9, 389–416. [Google Scholar]
- Williams, N.M. Affected ignorance and animal suffering: Why our failure to debate factory farming puts us at moral risk. J. Agric. Environ. Ethics 2008, 21, 371–384. [Google Scholar] [CrossRef]
- Maerz, M. Corporate Cruelty: Holding Factory Farms Accountable for Animal Cruelty Crimes to Encourage Systemic Reform. J. Animal Nat. Resour. L. 2020, 16, 137. [Google Scholar] [CrossRef]
- Taylor, S. Animal crips. In Disability and Animality, 1st ed.; Jenkins, S., Montford, K.S., Taylor, C., Eds.; Routledge: London, UK, 2020; pp. 13–34. [Google Scholar]
- Taylor, A.; Taylor, S. Solidarity across species. Dissent 2020, 67, 103–105. [Google Scholar] [CrossRef]
- Moura, D.J.; Nääs, I.A.; Pereira, D.F.; Silva, R.B.T.R.; Camargo, G.A. Animal welfare concepts and strategy for poultry production: A review. Braz. J. Poult. Sci. 2006, 8, 137–147. [Google Scholar] [CrossRef]
- Kwon, J.S.; Lee, H.J.; Lee, D.H.; Lee, Y.J.; Mo, I.P.; Nahm, S.S.; Kim, M.J.; Lee, J.B.; Park, S.Y.; Choi, I.S.; et al. Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res. 2008, 133, 187–194. [Google Scholar] [CrossRef]
- Micciche, A.C.; Feye, K.M.; Rubinelli, P.M.; Wages, J.A.; Knueven, C.J.; Ricke, S.C. The implementation and food safety issues associated with poultry processing reuse water for conventional poultry production systems in the United States. Front. Sustain. Food Syst. 2018, 2, 70. [Google Scholar] [CrossRef]
- Bengtsson, D. The Broiler Production Systems of Sweden and the United States. 2021. Available online: https://stud.epsilon.slu.se/16830/ (accessed on 22 June 2022).
- Pesti, G.M.; Miller, B.R. Animal Feed Formulation: Economic and Computer Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993; pp. 1–174. [Google Scholar]
- Biswas, A. Pulmonary hypertension syndrome in broiler chickens: A review. Vet. Arh. 2019, 89, 723–734. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kong, A.; Cao, Q.; Tong, Z.; Wang, X. The role of blood vessels in broiler chickens with tibial dyschondroplasia. Poult. Sci. 2019, 98, 6527–6532. [Google Scholar] [CrossRef] [PubMed]
- Kittelsen, K.E.; Granquist, E.G.; Aunsmo, A.L.; Moe, R.O.; Tolo, E. An evaluation of two different broiler catching methods. Animals 2018, 8, 141. [Google Scholar] [CrossRef]
- De Lima, V.A.; Ceballos, M.C.; Gregory, N.G.; Da Costa, M.J.P. Effect of different catching practices during manual upright handling on broiler welfare and behavior. Poult. Sci. 2019, 98, 4282–4289. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Tuyttens, F.A. Broiler chickens dead on arrival: Associated risk factors and welfare indicators. Poult. Sci. 2017, 96, 259–265. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Sulaiman, N.F.A.; Ramiah, S.K.; Awad, E.A.; Idrus, Z. The effect of water shower spray on stress physiology and mortality in broiler chickens subjected to road transportation under the hot and humid tropical condition, Research Square. 2022; not undergone peer review. [Google Scholar]
- Samsuddin, N.S.B. Performance of A State Farmers’ Organization on Broiler Supply Chain Based on Environmental Life Cycle Costing In Johor, Malaysia. Master’s Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2019. [Google Scholar]
- Compa, L.A. Blood, Sweat, and Fear: Workers’ Rights in US Meat and Poultry Plants. 2004, pp. 1–185. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/75316/Compa80_Blood_Sweat_and_Fear.pdf?sequence=1&isAllowed=y (accessed on 22 June 2022).
- Richards, R.J.; Richards, E.L. Cheap meat: How factory farming is harming our health, the environment, and the economy. Ky. J. Equine Agric. Nat. Resour. L 2011, 4, 31. [Google Scholar]
- Moyce, S.C.; Schenker, M. Migrant workers and their occupational health and safety. Annu. Rev. Public Health 2018, 39, 351–365. [Google Scholar] [CrossRef]
- Alexander, C.S. Explaining peripheral labor: A poultry industry case study. Berkeley J. Emp. Lab. L 2012, 33, 353. [Google Scholar]
- Constance, D.H.; Martinez-Gomez, F.; Aboites-Manrique, G.; Bonanno, A. The problems with poultry production and processing. In The Ethics and Economics of Agrifood Competition; Springer: Dordrecht, The Netherlands, 2013; pp. 155–175. [Google Scholar]
- Schwartzman, K.C. The Chicken Trail: Following Workers, Migrants, and Corporations across the Americas; Cornell University Press: Ithaca, NY, USA, 2012; pp. 1–195. [Google Scholar]
- Williams, B.; Freshour, C. Carceral geographies of pesticides and poultry. Food Foodways 2022, 30, 38–57. [Google Scholar] [CrossRef]
- Stories of Vulnerability: COVID-19 in Slaughterhouses. Available online: https://www.prindleinstitute.org/2020/05/stories-of-vulnerability-covid-19-in-slaughterhouses/ (accessed on 22 June 2022).
- Wibisono, F.M.; Wibisono, F.J.; Effendi, M.H.; Plumeriastuti, H.; Hidayatullah, A.R.; Hartadi, E.B.; Sofiana, E.D. A review of salmonellosis on poultry farms: Public health importance. Syst. Rev. Pharm. 2020, 11, 481–486. [Google Scholar]
- Arzey, G.G.; Kirkland, P.D.; Arzey, K.E.; Frost, M.; Maywood, P.; Conaty, S.; Hurt, A.C.; Deng, Y.M.; Iannello, P.; Barr, I.; et al. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg. Infect. Dis. 2012, 18, 814. [Google Scholar] [CrossRef]
- Tweed, S.A.; Skowronski, D.M.; David, S.T.; Larder, A.; Petric, M.; Lees, W.; Li, Y.; Katz, J.; Krajden, M.; Tellier, R.; et al. Human illness from avian influenza H7N3, British Columbia. Emerg. Infect. Dis. 2004, 10, 2196. [Google Scholar] [CrossRef]
- Lopez-Martinez, I.; Balish, A.; Barrera-Badillo, G.; Jones, J.; Nuñez-García, T.E.; Jang, Y.; Aparicio-Antonio, R.; Azziz-Baumgartner, E.; Belser, J.A.; Ramirez-Gonzalez, J.E.; et al. Highly pathogenic avian influenza A (H7N3) virus in poultry workers, Mexico, 2012. Emerg. Infect. Dis. 2013, 19, 1531. [Google Scholar] [CrossRef]
- Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; van der Nat, H.; Vennema, H.; Meijer, A.; van Steenbergen, J.; Fouchier, R.; Osterhaus, A.; et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004, 363, 587–593. [Google Scholar] [CrossRef]
- Gray, G.C.; Trampel, D.W.; Roth, J.A. Pandemic influenza planning: Shouldn’t swine and poultry workers be included? Vaccine 2007, 25, 4376–4381. [Google Scholar] [CrossRef][Green Version]
- Wickramage, K.; Gostin, L.O.; Friedman, E.; Prakongsai, P.; Suphanchaimat, R.; Hui, C.; Duigan, P.; Barragan, E.; Harper, D.R. Missing: Where are the migrants in pandemic influenza preparedness plans? Health Hum. Rights 2018, 20, 251. [Google Scholar]
- Mackenzie, J.S.; Jeggo, M. The One Health approach—Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef]
- Centre for Global Development. One Health: Placing Human, Animal, and Environmental Issues at the Heart of COVID-19 Recovery in the Asia-Pacific Region. Available online: https://www.cgdev.org/blog/one-health-placing-human-animal-and-environmental-issues-heart-covid-19-recovery-asia-pacific (accessed on 22 June 2022).
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchese, A.; Hovorka, A. Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability 2022, 14, 12806. https://doi.org/10.3390/su141912806
Marchese A, Hovorka A. Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability. 2022; 14(19):12806. https://doi.org/10.3390/su141912806
Chicago/Turabian StyleMarchese, Alyssa, and Alice Hovorka. 2022. "Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations" Sustainability 14, no. 19: 12806. https://doi.org/10.3390/su141912806
APA StyleMarchese, A., & Hovorka, A. (2022). Zoonoses Transfer, Factory Farms and Unsustainable Human–Animal Relations. Sustainability, 14(19), 12806. https://doi.org/10.3390/su141912806