Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review
Abstract
:1. Introduction
2. Systematic Review Methodology
2.1. Plan of the Review
2.1.1. Choosing Research Questions, Appropriate Search Keywords, and Contemporary Electronic Databases
2.1.2. Applying Practical Screening Criteria
2.1.3. Methodological Screening Criteria
2.2. Conducting the Review
2.2.1. The Review from 1999 to 2015
2.2.2. The Review from 2016 to 2021
2.3. Analysis of Reported Results
3. Result
3.1. Environmental Impact Assessment Indicators Using LCA
3.1.1. CML Methodology
3.1.2. ReCiPe Methodology
3.1.3. Other Environmental Impact Assessment Methodologies
3.2. Economic Impact Assessment Indicators Using LCC
Annual cash inflows
3.3. Social Impact Assessment Indicators Using SLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pazheri, F.R.; Othman, M.F.; Malik, N.H. A review on global renewable electricity scenario. Renew. Sustain. Energy Rev. 2014, 31, 835–845. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower’s future, the environment, and global electricity systems. Renew. Sustain. Energy Rev. 2010, 14, 713–723. [Google Scholar] [CrossRef]
- Din, Z.U.; Zainal, Z.A. Biomass integrated gasification-SOFC systems: Technology overview. Renew. Sustain. Energy Rev. 2016, 53, 1356–1376. [Google Scholar] [CrossRef]
- Narasipuram, R. Analysis, identification and design of robust control techniques for ultra-lift Luo DC-DC converter powered by fuel cell. Int. J. Comput. Aided Eng. Technol. 2021, 14, 102–129. [Google Scholar] [CrossRef]
- Ramadhani, F.; Hussain, M.A.; Mokhlis, H.; Hajimolana, S. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renew. Sustain. Energy Rev. 2017, 76, 460–484. [Google Scholar] [CrossRef]
- Bicer, Y.; Khalid, F. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. Int. J. Hydrogen Energy 2020, 45, 3670–3685. [Google Scholar] [CrossRef]
- Strazza, C.; del Borghi, A.; Costamagna, P.; Gallo, M.; Brignole, E.; Girdinio, P. Life Cycle Assessment and Life Cycle Costing of a SOFC system for distributed power generation. Energy Convers. Manag. 2015, 100, 64–77. [Google Scholar] [CrossRef]
- Lee, Y.D.; Ahn, K.Y.; Morosuk, T.; Tsatsaronis, G. Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system. Energy 2015, 79, 455–466. [Google Scholar] [CrossRef]
- Mehmeti, A.; McPhail, S.J.; Pumiglia, D.; Carlini, M. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications. J. Power Sources 2016, 325, 772–785. [Google Scholar] [CrossRef]
- Atia, N.G.; Bassily, M.A.; Elamer, A.A. Do life-cycle costing and assessment integration support decision-making towards sustainable development? J. Clean. Prod. 2020, 267, 122056. [Google Scholar] [CrossRef]
- Westkämper, E. Life cycle management and assessment: Approaches and visions towards sustainable manufacturing (keynote paper). CIRP Ann. 2000, 49, 501–526. [Google Scholar] [CrossRef]
- Jing, R.; Wang, M.; Wang, W.; Brandon, N.; Li, N.; Chen, J.; Zhao, Y. Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system. Energy Convers. Manag. 2017, 154, 365–379. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Chitsaz, A.; Mojaver, P.; Ghasemi, A. Stand-alone gas turbine and hybrid MCFC and SOFC-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments. Energy Rep. 2021, 7, 4659–4680. [Google Scholar] [CrossRef]
- Smith, L.; Ibn-Mohammed, T.; Koh, L.; Reaney, I.M. Life cycle assessment of functional materials and devices: Opportunities, challenges, and current and future trends. J. Am. Ceram. Soc. 2019, 102, 7037–7064. [Google Scholar] [CrossRef]
- Tanveer, W.H.; Abdelkareem, M.A.; Kolosz, B.W.; Rezk, H.; Andresen, J.; Cha, S.W.; Sayed, E.T. The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production. Renew. Sustain. Energy Rev. 2021, 142, 110803. [Google Scholar] [CrossRef]
- Gonçalves, F.d.; Lopes, E.S.; Lopes, M.S.; Filho, R.M. Evaluation of the feasibility of ethanol and gasoline in solid oxide fuel cell vehicles in Brazil. Int. J. Hydrogen Energy 2021, 46, 36381–36397. [Google Scholar] [CrossRef]
- Smith, L.; Ibn-Mohammed, T.; Yang, F.; Reaney, I.M.; Sinclair, D.C.; Koh, S.C.L. Comparative environmental profile assessments of commercial and novel material structures for solid oxide fuel cells. Appl. Energy 2019, 235, 1300–1313. [Google Scholar] [CrossRef]
- Naghshineh, B.; Lourenço, F.; Godina, R.; Jacinto, C.; Carvalho, H. A social life cycle assessment framework for additive manufacturing products. Appl. Sci. 2020, 10, 4459. [Google Scholar] [CrossRef]
- Mancini, L.; Sala, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- Reenaas, M. Solid Oxide Fuel Cell Combined with Gas Turbine Versus Diesel Engine as Auxiliary Power Producing Unit Onboard a Passenger Ferry: A Comparative Life Cycle Assessment and Life Cycle Cost. Master’s Thesis, Norges Teknisk-naturvitenskapelige Universitet, Trondheim, Norway, 2005. [Google Scholar]
- Vattenfall’s, E.I.S. Life-Cycle Assessment, Vatenfall’s Electricity Generation in Sweden. 2005. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.5058&rep=rep1&type=pdf (accessed on 25 August 2022).
- Litte, J.H.; Corcoran, J.; Pillai, V. Systematic Review and Meta- Analysis, Pocket Guides to Social Work Research Methods. Resour. Policy 2008, 57, 98–111. [Google Scholar]
- Tranfield, D.; Denyer, D. Smart. Towards a methodology for developing evidence—Informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Fink, A. Conducting Research Literature Reviews: From the Internet to Paper; Saga Publication: Saga, Japan, 2014; Volume 20. [Google Scholar]
- Salim, N.; Rahman, M.N.A.; Wahab, D.A. A systematic literature review of internal capabilities for enhancing eco-innovation performance of manufacturing firms. J. Clean. Prod. 2019, 209, 1445–1460. [Google Scholar] [CrossRef]
- Stechemesser, K.; Guenther, E. Carbon accounting: A systematic literature review. J. Clean. Prod. 2012, 36, 17–38. [Google Scholar] [CrossRef]
- Suhariyanto, T.T.; Wahab, D.A.; Rahman, M.N.A. Multi-Life Cycle Assessment for sustainable products: A systematic review. J. Clean. Prod. 2017, 165, 677–696. [Google Scholar] [CrossRef]
- Karakoussis, V.; Brandon, N.; Leach, M.; van der Vorst, R. The environmental impact of manufacturing planar and tubular solid oxide fuel cells. J. Power Sources 2001, 101, 10–26. [Google Scholar] [CrossRef]
- Lin, J.; Babbitt, C.W.; Trabold, T.A. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells. Bioresour. Technol. 2013, 128, 495–504. [Google Scholar] [CrossRef]
- Tonini, D.; Astru, T. LCA of biomass-based energy systems: A case study for Denmark. Appl. Energy 2012, 99, 234–246. [Google Scholar] [CrossRef]
- Staffell, I.; Ingram, A.; Kendall, K. Energy and carbon payback times for solid oxide fuel cell based domestic CHP. Int. J. Hydrogen Energy 2012, 37, 2509–2523. [Google Scholar] [CrossRef]
- Gantner, U.; Jakob, M.; Hirschberg, S. Total greenhouse gas emissions and costs of alternative Swiss energy supply strategies. Fifth International Conference on Greenhouse Gas Control Technologies. 2001, pp. 991–996. Available online: https://www.researchgate.net/profile/Martin-Jakob-2/publication/253789416_Total_greenhouse_gas_emissions_and_costs_of_alternative_Swiss_energy_supply_strategies/links/00b7d529e481e28e68000000/Total-greenhouse-gas-emissions-and-costs-of-alternative-Swiss-energy-supply-strategies.pdf (accessed on 25 August 2022).
- Knauer, T.; Möslang, K. The adoption and benefits of life cycle costing. J. Account. Organ. Chang. 2018, 14, 188–215. [Google Scholar] [CrossRef]
- Al-Khori, K.; Al-Ghamdi, S.G.; Boulfrad, S.; Koç, M. Life cycle assessment for integration of solid oxide fuel cells into gas processing operations. Energies 2021, 14, 4668. [Google Scholar] [CrossRef]
- Cánovas, A.; Zah, R.; Gassó, S. Comparative Life-Cycle Assessment of Residential Heating Systems, Focused on Solid Oxide Fuel Cells. In Sustainability in Energy and Buildings 22; Springer: Berlin/Heidelberg, Germany, 2013; pp. 659–668. [Google Scholar]
- Ferreira, V.J.; Wolff, D.; Hornés, A.; Morata, A.; Torrell, M.; Tarancón, A.; Corchero, C. 5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits. Appl. Energy 2021, 291, 116803. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Rillo, E.; Gandiglio, M.; Lanzini, A.; Bobba, S.; Santarelli, M.; Blengini, G. Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant. Energy 2017, 126, 585–602. [Google Scholar] [CrossRef]
- Moretti, C.; Corona, B.; Rühlin, V.; Götz, T.; Junginger, M.; Brunner, T.; Obernberger, I.; Shen, L. Combining biomass gasification and solid oxid fuel cell for heat and power generation: An early-stage life cycle assessment. Energies 2020, 13, 11. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Chen, W.Q.; Wang, Q.Q.; Lu, H.S. Environmental impacts of scandium oxide production from rare earths tailings of Bayan Obo Mine. J. Clean. Prod. 2020, 270, 122464. [Google Scholar] [CrossRef]
- Longo, S.; Cellura, M.; Guarino, F.; Ferraro, M.; Antonucci, V.; Squadrito, G. Life Cycle Assessment of Solid Oxide Fuel Cells and Polymer Electrolyte Membrane Fuel Cells: A Review. Hydrogen Econ. 2017, 685, 139–169. [Google Scholar] [CrossRef]
- Vargas, J.E.V.; Seabra, J.E.A. Fuel-cell technologies for private vehicles in Brazil: Environmental mirage or prospective romance? A comparative life cycle assessment of PEMFC and SOFC light-duty vehicles. Sci. Total Environ. 2021, 798, 149265. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Li, G. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy 2016, 94, 693–704. [Google Scholar] [CrossRef]
- SShafie, M.; Othman, Z.; Nu’man, A.H.; Yusuf, N.N.A.N. A Model of Life Cycle on Biogas Feed to Solid Oxide Fuel Cell in Malaysia: Economic and Environmental Perspective. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 86, 126–135. [Google Scholar] [CrossRef]
- Sadhukhan, J. Distributed and micro-generation from biogas and agricultural application of sewage sludge: Comparative environmental performance analysis using life cycle approaches. Appl. Energy 2014, 122, 196–206. [Google Scholar] [CrossRef]
- Gandiglio, M.; de Sario, F.; Lanzini, A.; Bobba, S.; Santarelli, M.; Blengini, G.A. Life cycle assessment of a biogas-fed solid oxide fuel cell (SOFC) integrated in awastewater treatment plant. Energies 2019, 12, 1611. [Google Scholar] [CrossRef] [Green Version]
- Shafie, S.M.; Othman, Z.; Hami, N.; Omar, S.; Nu’Man, A.H.; Yusoff, N.N.; Shaf, A. Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach. Acad. J. Econ. Stud. 2020, 10, 498–502. [Google Scholar] [CrossRef]
- Mori, M.; Stropnik, R.; Sekavčnik, M.; Lotrič, A. Criticality and life-cycle assessment of materials used in fuel-cell and hydrogen technologies. Sustainability 2021, 13, 3565. [Google Scholar] [CrossRef]
- Kawajiri, K.; Inoue, T. Cradle-to-gate greenhouse gas impact of nanoscale thin-film solid oxide fuel cells considering scale effect. J. Clean. Prod. 2016, 112, 4065–4070. [Google Scholar] [CrossRef]
- Baratto, F.; Diwekar, U.M. Life cycle assessment of fuel cell-based APUs. J. Power Sources 2005, 139, 188–196. [Google Scholar] [CrossRef]
- Osman, A.; Ries, R. Life cycle assessment of electrical and thermal energy systems for commercial buildings. Int. J. Life Cycle Assess. 2007, 12, 308–316. [Google Scholar] [CrossRef]
- Meyer, L.; Castillo, R.; Buchgeister, J.; Tsatsaronis, G. Application of exergoeconomic and exergoenvironmental analysis to an SOFC system with an allothermal biomass gasifier. Int. J. Thermodyn. 2009, 12, 177–186. [Google Scholar]
- Strazza, C.; del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships. Appl. Energy 2010, 87, 1670–1678. [Google Scholar] [CrossRef]
- Nease, J.; Adams, T.A. Comparative life cycle analyses of bulk-scale coal-fueled solid oxide fuel cell power plants. Appl. Energy 2015, 150, 161–175. [Google Scholar] [CrossRef]
- Nease, J.; Adams, T.A. Life cycle analyses of bulk—Scale solid oxide fuel cell power plants and comparisons to the natural gas combined cycle. Can. J. Chem. Eng. 2015, 93, 1349–1363. [Google Scholar] [CrossRef]
- Rogers, J.G.; Cooper, S.J.G.; O’Grady, T.; McManus, M.C.; Howard, H.R.; Hammond, G. The 20% house—An integrated assessment of options for reducing net carbon emissions from existing UK houses. Appl. Energy 2015, 138, 108–120. [Google Scholar] [CrossRef]
- Benveniste, G.; Pucciarelli, M.; Torrell, M.; Kendall, M.; Tarancón, A. Life Cycle Assessment of microtubular solid oxide fuel cell based auxiliary power unit systems for recreational vehicles. J. Clean. Prod. 2017, 165, 312–322. [Google Scholar] [CrossRef]
- Evangelisti, S.; Clift, R.; Tagliaferri, C.; Lettieri, P. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe. Waste Manag. 2017, 64, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Mehmeti, A.; Pérez-Trujillo, J.P.; Elizalde-Blancas, F.; Angelis-Dimakis, A.; McPhail, S.J. Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells. Energy Convers. Manag. 2018, 168, 276–287. [Google Scholar] [CrossRef]
- Cortés, A.; Feijoo, G.; Chica, A.; da Costa-Serra, J.F.; Moreira, M.T. Environmental implications of biohydrogen based energy production from steam reforming of alcoholic waste. Ind. Crop. Prod. 2019, 138, 111465. [Google Scholar] [CrossRef]
- Longo, S.; Cellura, M.; Guarino, F.; Brunaccini, G.; Ferraro, M. Life cycle energy and environmental impacts of a solid oxide fuel cell micro-CHP system for residential application. Sci. Total Environ. 2019, 685. [Google Scholar] [CrossRef]
- Di Florio, G.; Macchi, E.G.; Mongibello, L.; Baratto, M.C.; Basosi, R.; Busi, E.; Caliano, M.; Cigolotti, V.; Testi, M.; Trini, M. Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid. Appl. Energy 2021, 285, 116378. [Google Scholar] [CrossRef]
- Gerloff, N. Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 2021, 43, 102759. [Google Scholar] [CrossRef]
- Mehmeti, A.; McPhail, S.J.; Ulgiati, S. Life cycle inventory data and metrics for high-temperature fuel cells: A streamlined decision-support tool and case study application. Energy 2018, 159, 1195–1205. [Google Scholar] [CrossRef]
- Bare, J.C.; Hofstetter, P.; Pennington, D.W.; de Haes, H.A.U. Life cycle impact assessment workshop summary. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess. 2000, 5, 319–326. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.D.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016—A harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Report I: Characterization. 2016. Available online: https://www.rivm.nl/bibliotheek/rapporten/2016-0104.html (accessed on 25 August 2022).
- Yan, J.; Broesicke, O.A.; Tong, X.; Wang, D.; Li, D.; Crittenden, J.C. Multidisciplinary design optimization of distributed energy generation systems: The trade-offs between life cycle environmental and economic impacts. Appl. Energy 2021, 284, 116197. [Google Scholar] [CrossRef]
- Caramanico, N.; di Florio, G.; Baratto, M.C.; Cigolotti, V.; Basosi, R.; Busi, E. Economic analysis of hydrogen household energy systems including incentives on energy communities and externalities: A case study in Italy. Energies 2021, 14, 5847. [Google Scholar] [CrossRef]
- Whiston, M.M.; Collinge, W.O.; Bilec, M.M.; Schaefer, L.A. Exergy and economic comparison between kW-scale hybrid and stand-alone solid oxide fuel cell systems. J. Power Sources 2017, 353, 152–166. [Google Scholar] [CrossRef]
- Ding, X.; Sun, W.; Harrison, G.; Lv, X.; Weng, Y. Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid. Energy 2020, 213, 118804. [Google Scholar] [CrossRef]
- Fong, K.F.; Lee, C.K. System analysis and appraisal of SOFC-primed micro cogeneration for residential application in subtropical region. Energy Build. 2016, 128, 819–826. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Chen, J.M.; Ni, M. Economic Analysis of a Solid Oxide Fuel Cell Cogeneration / Trigeneration System for Hotels in Hong Kong. Energy Build. 2014, 75, 160–169. [Google Scholar] [CrossRef]
- Owebor, K.; Oko, C.O.C.; Diemuodeke, E.O.; Ogorure, O.J. Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants. Appl. Energy 2019, 239, 1385–1401. [Google Scholar] [CrossRef]
- Ogorure, O.J.; Oko, C.O.C.; Diemuodeke, E.O.; Owebor, K. Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant. Energy Convers. Manag. 2018, 171, 222–240. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.H.; Xu, Q. A solid oxide fuel cell (SOFC)-based biogas-from-waste generation system for residential buildings in China: A feasibility study. Sustain. 2018, 10, 2395. [Google Scholar] [CrossRef]
- Torkashvand, M.; Khodadadi, A.; Sanjareh, M.B.; Nazary, M.H. A Life Cycle-Cost Analysis of Li-ion and Lead-Acid BESSs and Their Actively Hybridized ESSs with Supercapacitors for Islanded Microgrid Applications. IEEE Access 2020, 8, 153215–153225. [Google Scholar] [CrossRef]
- da Silva, G.D.; Diogo, G. Social Impact Assessment Practice for Hydroelectricity in Canada: A Review of Methods and Monitoring; 2021. Available online: http://hdl.handle.net/10222/80597 (accessed on 25 August 2022).
- Martinez, N.; Komendantova, N. The effectiveness of the social impact assessment (SIA) in energy transition management: Stakeholders’ insights from renewable energy projects in Mexico. Energy Policy 2020, 145, 111744. [Google Scholar] [CrossRef]
- Sureau, S.; Mazijn, B.; Garrido, S.R.; Achten, W.M.J. Social life-cycle assessment frameworks: A review of criteria and indicators proposed to assess social and socioeconomic impacts. Int. J. Life Cycle Assess. 2018, 23, 904–920. [Google Scholar] [CrossRef]
- Feeney, R.G. Evaluating the use of social impact assessment in Northeast US federal fisheries management. Impact Assess. Proj. Apprais. 2013, 31, 271–279. [Google Scholar] [CrossRef]
- UNEP-SETAC. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Programme: Nairobi, Kenya, 2019; Volume 15. [Google Scholar]
- Hanna, K.; McGuigan, E.; Noble, B.; Parkins, J. An analysis of the state of impact assessment research for low carbon power production: Building a better understanding of information and knowledge gaps. Energy Res. Soc. Sci. 2019, 50, 116–128. [Google Scholar] [CrossRef]
Journal Name | No. of Publications |
---|---|
Applied Energy | 9 |
Energy | 6 |
Energies | 4 |
Journal of Cleaner Production | 3 |
The International Journal of Life Cycle Assessment | 2 |
Journal of Power Source | 2 |
Energy Conversion and Management | 2 |
Science oftheTotal Environment | 2 |
International Journal of Hydrogen Energy | 2 |
Sustainability | 2 |
Sustainable Cities and Society | 1 |
Sustainability in Energy and Buildings | 1 |
International Journal of Thermodynamics | 1 |
The Canadian Journal of Chemical Engineering | 1 |
Energy Reports | 1 |
Industrial Crops and Products | 1 |
Journal of Energy Storage | 1 |
International Journal of Energy Economics and Policy | 1 |
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences | 1 |
Total | 43 |
Sr. No | Authors/Publication Year | Impact Assessment Level | Impact Category Method |
---|---|---|---|
1 | Baratto and Diwekar (2005) [50] | Midpoint and Endpoint | US EPA and WAR algorithm |
2 | Reenaas (2005) [20] | Midpoint | CML 2001 |
3 | Osman and Ries (2007) [51] | Midpoint | N/A |
4 | Meyer et al. (2009) [52] | Midpoint and Endpoint | Eco-indicator 99 |
5 | Strazza et al. (2010) [53] | Midpoint | Document Product category Rules PCR 2007:08 |
6 | Tonini and Astrup (2012) [30] | Midpoint | (1) EDIP2003 methodology (2) IMPACT 2002+ |
7 | Cánovas et al. (2013) [35] | Midpoint and Endpoint | (1) Eco-indicator 99 (2) IPCC factors (3) Cumulative energy demand (CED) |
8 | Sadhukhan (2014) [45] | Midpoint and Endpoint | Monte Carlo analysis |
9 | Lee et al. (2015) [8] | Midpoint and Endpoint | ReCiPe method |
10 | Nease and Adams (2015a) [54] | Midpoint and Endpoint | ReCiPe 2008 |
11 | Nease and Adams (2015b) [55] | Midpoint and Endpoint | ReCiPe 2008 |
12 | Rogers et al. (2015) [56] | Midpoint | ReCiPe (midpoint H v10.1) |
13 | Strazza et al. (2015) [7] | Midpoint | CML |
14 | Benveniste et al. (2017) [57] | Midpoint | CML 2001 |
15 | Evangelisti et al. (2017) [58] | Midpoint | PE International (2014) |
16 | Rillo et al. (2017) [38] | Midpoint | ReCiPe v1.06 |
17 | Mehmeti et al. (2018) [59] | Midpoint and Endpoint | ReCiPe 2016 |
18 | Cortés et al. (2019) [60] | Midpoint and Endpoint | ReCiPe methodology |
19 | Gandiglio et al. (2019) [46] | Midpoint | CML methodology |
20 | Longo et al. (2019) [61] | Midpoint | ILCD 2001 |
21 | Smith et al. (2019) [17] | Midpoint and Endpoint | CML 2001 ReCiPe 2008 |
22 | Bicer and Khalid (2020) [6] | Midpoint | ReCiPe 1.08 |
23 | Moretti et al. (2020) [39] | Midpoint | ILCD approach |
24 | Shafie et al. (2020) [47] | Midpoint | CML approach |
25 | Wang et al. (2020) [40] | Midpoint and Endpoint | TRACI 2.1 |
26 | Al-Khori et al. (2021) [34] | Midpoint and Endpoint | N/A |
27 | Di Florio et al. (2021) [62] | Midpoint and Endpoint | (1) ReCiPe world 2016 (2) Cumulative Energy Demand 1.11 (3) IPCC 2013 GWP 100a |
28 | Ferreira et al. (2021) [36] | Midpoint | N/A |
29 | Gerloff (2021) [63] | Midpoint | ILCD 2.0 and IPCC |
30 | Mori et al. (2021) [48] | Midpoint and Endpoint | (1) EF3.0 (2) CML 2001 |
31 | Vargas and Seabra (2021) [42] | Midpoint | ReCiPe 2016 |
Study | GWP100/CC | OD | PO | AP | AD | TA | TE | IR | PED | ED | NRRD | RRD | PM | FETP | EP | MAEP | HHE | HTP | SE | ALO | ULO | NLT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baratto and Diwekar (2005) [50] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Reenaas (2005) [20] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
Osman and Ries (2007) [51] | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||
Meyer et al. (2009) [52] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
Strazza et al. (2010) [53] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Tonini and Astrup (2012) [30] | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||
Cánovas et al. (2013) [35] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Sadhukha (2014) [45] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Lee et al. (2015) [8] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Nease and Adams (2015a) [54] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
Nease and Adams (2015b) [55] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
Rogers et al. (2015) [56] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
Strazza et al. (2015) [7] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Benveniste et al. (2017) [57] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
Evangelisti et al. (2017) [58] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||
Rillo et al. (2017) [38] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||
Mehmeti et al. (2018) [59] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Cortés et al. (2019) [60] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
Gandiglio et al. (2019) [46] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Longo et al. (2019) [61] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
Smith et al. (2019) [17] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Bicer and Khalid (2020) [6] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||
Moretti et al. (2020) [39] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Shafie et al. (2020) [47] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
Wang et al. (2020) [40] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Al-Khori et al. (2021) [34] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||
Di Florio et al. (2021) [62] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||
Ferreira et al. (2021) [36] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Gerloff (2021) [63] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Mori et al. (2021) [48] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||
Vargas and Seabra (2021) [42] | ✓ | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salim, K.M.A.; Maelah, R.; Hishamuddin, H.; Amir, A.M.; Ab Rahman, M.N. Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review. Sustainability 2022, 14, 12380. https://doi.org/10.3390/su141912380
Salim KMA, Maelah R, Hishamuddin H, Amir AM, Ab Rahman MN. Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review. Sustainability. 2022; 14(19):12380. https://doi.org/10.3390/su141912380
Chicago/Turabian StyleSalim, Khaled M. A., Ruhanita Maelah, Hawa Hishamuddin, Amizawati Mohd Amir, and Mohd Nizam Ab Rahman. 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review" Sustainability 14, no. 19: 12380. https://doi.org/10.3390/su141912380
APA StyleSalim, K. M. A., Maelah, R., Hishamuddin, H., Amir, A. M., & Ab Rahman, M. N. (2022). Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review. Sustainability, 14(19), 12380. https://doi.org/10.3390/su141912380