Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea
Abstract
:1. Introduction
2. Previous Research
3. Technology, Policy, and Market Trends of NGV Batteries
3.1. Technology Trends
3.2. Policy Trends
3.3. Market Trends
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NGVs | next-generation vehicles |
CJK | China, Japan and South Korea |
EVs | electric vehicles |
HVs | hybrid vehicles |
PHVs | plug-in hybrid vehicles |
FCVs | fuel cell vehicles |
LIBs | lithium-ion batteries |
ESS | energy storage system |
SOC | state of charge |
METI | Ministry of Economy, Trade and Industry |
MIIT | Ministry of Industry and Information Technology |
References
- Avenyo, E.K.; Tregenna, F. Greening manufacturing: Technology intensity and carbon dioxide emissions in developing countries. Appl. Energy 2022, 324, 119726. [Google Scholar] [CrossRef]
- Epicoco, N.; Falagario, M. Decision support tools for developing sustainable transportation systems in the EU: A review of research needs, barriers, and trends. Res. Transp. Bus. Manag. 2022, 43, 100819. [Google Scholar] [CrossRef]
- Li, X. A Study on Decoupling of Carbon Emissions from Beijing-Tianjin-Hebei Transport Industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012069. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Shah, K.J.; Pan, S.-Y.; Lee, I.; Kim, H.; You, Z.; Zheng, J.-M.; Chiang, P.-C. Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. J. Clean. Prod. 2021, 326, 129392. [Google Scholar] [CrossRef]
- Yumitori, S. Development and Research on Next Generation-Materials for Lithium-Ion Rechargeable Battery for Automotive Application; CMC: Tokyo, Japan, 2014; p. 266. [Google Scholar]
- Li, X.; Lv, T.; Zhan, J.; Wang, S.; Pan, F. Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao. Sustainability 2022, 14, 9588. [Google Scholar] [CrossRef]
- Macioszek, E. Smart and Green Solutions for Transport Systems. In Electric Vehicles-Problems and Issues; Sierpiński, G., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 169–183. [Google Scholar]
- Macioszek, E. E-mobility Infrastructure in the Górnośląsko-Zagłębiowska Metropolis, Poland, and Potential for Development. In Proceedings of the 5th World Congress on New Technologies, Lisbon, Portugal, 18–20 August 2019. [Google Scholar]
- Wu, Y.; Wang, Z.; Huangfu, Y.; Ravey, A.; Chrenko, D.; Gao, F. Hierarchical Operation of Electric Vehicle Charging Station in Smart Grid Integration Applications—An Overview. Int. J. Electr. Power Energy Syst. 2022, 139, 108005. [Google Scholar] [CrossRef]
- Liang, X. Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2017, 53, 855–866. [Google Scholar] [CrossRef]
- Wu, Y.; Ravey, A.; Chrenko, D.; Miraoui, A. Demand side energy management of EV charging stations by approximate dynamic programming. Energy Convers. Manag. 2019, 196, 878–890. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Ravey, A.; Chrenko, D.; Miraoui, A. Real-time energy management of photovoltaic-assisted electric vehicle charging station by markov decision process. J. Power Sources 2020, 476, 228504. [Google Scholar] [CrossRef]
- Alfaro-Algaba, M.; Ramirez, F.J. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recycl. 2020, 154, 104461. [Google Scholar] [CrossRef]
- Abdelbaky, M.; Peeters, J.R.; Dewulf, W. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Manag. 2021, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Rhee, S.-W. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of). Waste Manag. 2020, 106, 261–270. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Albertsen, L.; Richter, J.L.; Peck, P.; Dalhammar, C.; Plepys, A. Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resour. Conserv. Recycl. 2021, 172, 105658. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Khattari, Y.; Lamrani, B.; Maaroufi, M.; Zeraouli, Y.; Kousksou, T. Key challenges for a large-scale development of battery electric vehicles: A comprehensive review. J. Energy Storage 2021, 44, 103273. [Google Scholar] [CrossRef]
- Wu, C.; Gao, X.; Xi, X.; Zhao, Y.; Li, Y. The stability optimization of the international lithium trade. Resour. Policy 2021, 74, 102336. [Google Scholar] [CrossRef]
- Piçarra, A.; Annesley, I.R.; Otsuki, A.; de Waard, R. Market assessment of cobalt: Identification and evaluation of supply risk patterns. Resour. Policy 2021, 73, 102206. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Serrona, K. Comparative Analysis of ELV Recycling Policies in the European Union, Japan and China. Investig. Linguist. 2019, 43, 34–56. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhao, L.; Wang, D. Development Status and Trend of Lithium-ion Battery in China and Foreign Countries. Automot. Eng. 2018, 03, 11–13. [Google Scholar]
- Chen, T.-H.; Hsieh, T.-Y.; Yang, N.-C.; Yang, J.-S.; Liao, C.-J. Evaluation of advantages of an energy storage system using recycled EV batteries. Int. J. Electr. Power Energy Syst. 2013, 45, 264–270. [Google Scholar] [CrossRef]
- Faessler, B.; Kepplinger, P.; Petrasch, J. Decentralized price-driven grid balancing via repurposed electric vehicle batteries. Energy 2017, 118, 446–455. [Google Scholar] [CrossRef]
- Munakata, Y.; Kanamura, K. Development Trends, Issues, and Future Prospects of Next-Generation Secondary Batteries; AndTech: Kanagawa, Japan, 2021; pp. 1–17. [Google Scholar]
- Ishikawa, T. Development Trends, Issues, and Future Prospects of Next-Generation Secondary Batteries; AndTech: Kanagawa, Japan, 2021; pp. 131–140. [Google Scholar]
- Hu, G.; Huang, P.; Bai, Z.; Wang, Q.; Qi, K. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 2021, 10, 100140. [Google Scholar] [CrossRef]
- Nikkei, Successive EV fires that never go out, batteries reburn without cooling. Nihon Keizai Shimbun, 30 September 2021; 1–2.
- Hayashi, K.; Sakuta, A. About the development status of all-solid-state batteries. Inst. Electr. Eng. Jpn. 2021, 141, 579–582. [Google Scholar]
- NEDO, Advanced Technical Development Business of Lithium-Ion Battery Application · Practicality-Basic Plan; Smart Community Department: Kanagawa, Japan, 2016.
- Fuji Keizai Group. Survey Results of the Global Market for Next-Generation Batteries; Fuji Keizai Co., Ltd.: Tokyo, Japan, 2020. [Google Scholar]
- NEDO. Toward the Formulation of Technology Strategies in the Field of Vehicle Batteries; Technology Strategy Center: Kawasaki, Japan, 2015. [Google Scholar]
- Lee, D.; Kim, K. Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea. Sustainability 2021, 13, 10686. [Google Scholar] [CrossRef]
- Mike, W.; Young, C.C. The Hydrogen Economy South Korea-Market Intelligence Report; The UK’s Department for International Trade (DIT). 2021. Available online: https://www.intralinkgroup.com/Syndication/media/Syndication/Reports/Korean-hydrogen-economy-market-intelligence-report-January-2021.pdf (accessed on 5 September 2022).
- Song, Y.; Zhang, X.; Xu, S.; Guo, X.; Wang, L.; Zheng, X.; Huang, W.; He, Y.; Liu, R.; Yan, X.; et al. International Hydrogen Energy Policy Summary and Chinese Policy Analysis. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3552–3557. [Google Scholar]
- Joint Ministries. NGVs Industry Development Strategy-2030 National Roadmap-; Joint Ministries: Seoul, Korea, 2019. [Google Scholar]
- METI. Interim Arrangement (Draft) Supplementary Material of the Automotive New Era Strategies; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2018. [Google Scholar]
- MIIT. Action Plan for Promoting the Development of Automobile Power Battery Industry; Ministry of Industry and Information Technology: Beijing, China, 2017. [Google Scholar]
- Diaz, L.A.; Strauss, M.L.; Adhikari, B.; Klaehn, J.R.; McNally, J.S.; Lister, T.E. Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour. Conserv. Recycl. 2020, 161, 104900. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Tian, W.; Zuo, Z. Application-derived safety strategy for secondary utilization of retired power battery. Energy Storage Sci. Technol. 2018, 7, 1094. [Google Scholar]
- Zhang, L.; Liu, Y.; Zhang, L.; Pang, B. Commercial Value of Power Battery Echelon Utilization in China’s Energy Storage Industry. J. Beijing Univ. Technol. 2018, 20, 34–44. [Google Scholar]
- Wang, S.; Yu, J. Life-Cycle Assessment on Nickel-Metal Hydride Battery in Hybrid Vehicles: Comparison between Regenerated and New Battery. Investig. Linguist. 2019, 43, 57–79. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry. Waste Manag. Res. 2020, 39, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, J.; Okubo, K. Scenario Analysis on the Generation of End-of-Life Hybrid Vehicle in Developing Countries—Focusing on the Exported Secondhand Hybrid Vehicle from Japan to Mongolia. Recycling 2019, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yu, J.; Okubo, K. Life cycle assessment on the reuse and recycling of the nickel-metal hydride battery: Fleet-based study on hybrid vehicle batteries from Japan. J. Ind. Ecol. 2021, 25, 1236–1249. [Google Scholar] [CrossRef]
- Mahmood, K.; Gutteridge, F. EV batteries remanufacturing: BORG automotive challenge-Team 33. In Reman Challenge BORG June 2019; pp. 1–24. Available online: https://strathprints.strath.ac.uk/69631/ (accessed on 5 September 2022).
- Nguyen, T.P.; Easley, A.D.; Kang, N.; Khan, S.; Lim, S.-M.; Rezenom, Y.H.; Wang, S.; Tran, D.K.; Fan, J.; Letteri, R.A.; et al. Polypeptide organic radical batteries. Nature 2021, 593, 61–66. [Google Scholar] [CrossRef]
- Hu, X. Development status and optimization suggestions of electric vehicles in China and Japan. Guangxi Qual. Superv. Guide 2019, 6, 2. [Google Scholar]
- METI. Green Growth Strategy for 2050 Carbon Neutral; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2020. [Google Scholar]
- METI. Development of Next-Generation Batteries and Next-Generation Motors; Manufacturing Industries Bureau: Tokyo, Japan, 2021. [Google Scholar]
- MIIT. New Energy Vehicle Industry Development Plan (2021–2035); Ministry of Industry and Information Technology: Beijing, China, 2020. [Google Scholar]
- MIIT. New Energy Vehicle Battery Secondary Use Management Measures; Ministry of Industry and Information Technology: Beijing, China, 2021. [Google Scholar]
- Li, Z.; Li, Y. Research on laws and regulations of power battery recycling in developed countries. Automob. Accessories 2019, 19, 3. [Google Scholar]
- Yoneyama, K. Vehicle Batteries, Mandatory Recovery and Accelerated Reuse; ARC WATCHING: Tokyo, Japan, 2018. [Google Scholar]
- Ministry of Environment. Notice Concerning the Return of EV Batteries; Ministry of Environment: Sejong, Korea, 2018. [Google Scholar]
- Joint Ministries. 2030 Secondary Battery Industry (K-Battery) Development Strategy; Joint Ministries: Seoul, Korea, 2021. [Google Scholar]
- Martins, L.S.; Guimaraes, L.F.; Botelho Junior, A.B.; Tenorio, J.A.S.; Espinosa, D.C.R. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 2021, 295, 113091. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X. Demand Subsidy versus Production Regulation: Development of New Energy Vehicles in a Competitive Environment. Mathematics 2021, 9, 1280. [Google Scholar] [CrossRef]
- Zhang, J. Both Production and Sales of New Energy Vehicles Grow Rapidly. China’s Foreign Trade Engl. Version 2021, 1–28. [Google Scholar]
- Wang, S.; Yu, J. A Bibliometric Research on Next-Generation Vehicles Using CiteSpace. Recycling 2021, 6, 14. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Li, B.; Mo, T.; Li, Y.; Feng, S.-P.; Qu, J.; Chu, P.K. Development and application of fuel cells in the automobile industry. J. Energy Storage 2021, 42, 103124. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, L.; Zhang, Y.; Tan, Q.; Li, J. An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 2022, 425, 127900. [Google Scholar] [CrossRef] [PubMed]
- Rajaeifar, M.A.; Heidrich, O.; Ghadimi, P.; Raugei, M.; Wu, Y. Sustainable supply and value chains of electric vehicle batteries. Resour. Conserv. Recycl. 2020, 161, 104905. [Google Scholar] [CrossRef]
- Coffin, D.; Horowitz, J. The supply chain for electric vehicle batteries. J. Int. Commer. Econ. 2018, 1, 1–21. [Google Scholar]
- Duarte Castro, F.; Cutaia, L.; Vaccari, M. End-of-life automotive lithium-ion batteries (LIBs) in Brazil: Prediction of flows and revenues by 2030. Resour. Conserv. Recycl. 2021, 169, 105522. [Google Scholar] [CrossRef]
- Jones, B.; Elliott, R.J.R.; Nguyen-Tien, V. The EV revolution: The road ahead for critical raw materials demand. Appl. Energy 2020, 280, 115072. [Google Scholar] [CrossRef]
- Nikkei, EV batteries, one after another US-Korea alliance. Nihon Keizai Shimbun, 22 May 2021; 13.
- Nikkei, Panasonic CFO “New battery supplied to Tesla”. Nihon Keizai Shimbun, 2 February 2022; 1.
- Nikkei, Chinese CATL, unstable large battery company. Nihon Keizai Shimbun, 22 April 2022; 12.
- Mukai, T.; Sato, N.; Okimoto, S. Lithium-Ion Battery: Development of Performance Improvement and Trends in the Vehicle LiB Industry; Science & Technology: Tokyo, Japan, 2019. [Google Scholar]
- Yu, J. Resource weaponization, environmental regulation, carbon neutralization. Scrap Watch March, South Korea. 3 March 2022. Available online: http://www.scrapwatch.co.kr/news/articleView.html?idxno=42186 (accessed on 5 September 2022).
Country | Year | Policy Name | Policy Feature |
---|---|---|---|
Japan | 2018 | Long-term Goal | Development Goal |
2020 | Green Growth Strategy for 2050 Carbon Neutral | Development Strategy | |
2021 | Development of Next-generation Batteries and Next-Generation Motors | Development Strategy | |
China | 2017 | Automotive Industry Medium- to Long-term Development Plan | Development Plan |
2020 | New Energy Vehicle Industry Development Plan (2021–2035) | Resource Recovery System | |
2021 | New Energy Vehicle Battery Secondary Use Management Measures | Resource Recovery Strategy | |
South Korea | 2018 | Notice Concerning the Return of EV Batteries | Recycling Regulation |
2019 | NGVs Industry Development Strategy | Development Strategy | |
2021 | K-Battery Development Strategy | Development Strategy |
Country | Year | Vehicle (Hundred Thousand) | NGVs (Hundred Thousand) | Main NGVs Type (Hundred Thousand) | NGVs/Vehicle |
---|---|---|---|---|---|
China | 2018 | 28.1 | 12.6 | EV (9.8) | 4.5% |
2019 | 25.8 | 12.1 | EV (9.7) | 4.7% | |
2020 | 25.3 | 13.7 | EV (11.2) | 5.4% | |
Japan | 2018 | 5.3 | 15.0 | HV (14.6) | 28.5% |
2019 | 5.2 | 14.8 | HV (14.4) | 28.4% | |
2020 | 4.6 | 13.8 | HV (13.5) | 30.0% | |
South Korea | 2018 | 1.8 | 2.9 | HV (1.9) | 15.9% |
2019 | 1.8 | 3.7 | HV (2.3) | 20.6% | |
2020 | 1.6 | 4.4 | HV (2.5) | 27.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yu, J.; Liu, X. Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea. Sustainability 2022, 14, 12087. https://doi.org/10.3390/su141912087
Chen H, Yu J, Liu X. Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea. Sustainability. 2022; 14(19):12087. https://doi.org/10.3390/su141912087
Chicago/Turabian StyleChen, Hongxia, Jeongsoo Yu, and Xiaoyue Liu. 2022. "Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea" Sustainability 14, no. 19: 12087. https://doi.org/10.3390/su141912087